You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at

  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at

  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required

  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact

Balancing Privacy and Performance in Federated Learning: a Systematic Literature Review on Methods and Metrics

Publication Type:

Journal article


Journal of Parallel and Distributed Computing


Federated Learning (FL) has emerged as a novel paradigm in the area of Artificial Intelligence (AI), emphasizing decentralized data utilization and bringing learning to the edge or directly on-device. While this approach eliminates the need for data centralization, ensuring enhanced privacy and protection of sensitive information, it is not without challenges. Particularly during the training phase and the exchange of model update parameters between servers and clients, new privacy challenges have arisen. While several privacy-preserving FL solutions have been developed to mitigate potential breaches in FL architectures, their integration poses its own set of challenges. Incorporating these privacy-preserving mechanisms into FL at the edge computing level can increase both communication and computational overheads, which may, in turn, compromise data utility and learning performance metrics. This paper provides a systematic literature review on essential methods and metrics to support the most appropriate trade-offs between FL privacy and other performance-related application requirements such as accuracy, loss, convergence time, utility, communication, and computation overhead. We aim to provide an extensive overview of recent privacy-preserving mechanisms in FL used across various applications, placing a particular focus on quantitative privacy assessment approaches in FL and the necessity of achieving a balance between privacy and the other requirements of real-world FL applications. This review collects, classifies, and discusses relevant papers in a structured manner, emphasizing challenges, open issues, and promising research directions.


author = {Samaneh Mohammadi and Ali Balador and Sima Sinaei and Francesco Flammini},
title = {Balancing Privacy and Performance in Federated Learning: a Systematic Literature Review on Methods and Metrics},
volume = {144},
month = {March},
year = {2024},
journal = {Journal of Parallel and Distributed Computing},
url = {}