You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at http://www.ieee.org/web/publications/rights/copyrightpolicy.html)

  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at http://www.acm.org/pubs/copyright_policy/)

  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required

  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact webmaster@ide.mdh.se

Secure and Efficient Federated Learning by Combining Homomorphic Encryption and Gradient Pruning in Speech Emotion Recognition

Fulltext:


Publication Type:

Conference/Workshop Paper

Venue:

18th International Conference on Information Security Practice and Experience


Abstract

Speech Emotion Recognition (SER) detects human emotions expressed in spoken language. SER is highly valuable in diverse fields; however, privacy concerns arise when analyzing speech data, as it reveals sensitive information like biometric identity. To address this, Federated Learning (FL) has been developed, allowing models to be trained locally and just sharing model parameters with servers. However, FL introduces new privacy concerns when transmitting local model parameters between clients and servers, as third parties could exploit these parameters and disclose sensitive information. In this paper, we introduce a novel approach called Secure and Efficient Federated Learning (SEFL) for SER applications. Our proposed method combines Paillier homomorphic encryption (PHE) with a novel gradient pruning technique. This approach enhances privacy and maintains confidentiality in FL setups for SER applications while minimizing communication and computation overhead and ensuring model accuracy. As far as we know, this is the first paper that implements PHE in FL setup for SER applications. Using a public SER dataset, we evaluated the SEFL method. Results show substantial efficiency gains with a key size of 1024, reducing computation time by up to 25% and communication traffic by up to 70%. Importantly, these improvements have minimal impact on accuracy, effectively meeting the requirements of SER applications.

Bibtex

@inproceedings{Mohammadi6730,
author = {Samaneh Mohammadi and Sima Sinaei and Ali Balador and Francesco Flammini},
title = {Secure and Efficient Federated Learning by Combining Homomorphic Encryption and Gradient Pruning in Speech Emotion Recognition},
month = {August},
year = {2023},
booktitle = {18th International Conference on Information Security Practice and Experience},
url = {http://www.ipr.mdu.se/publications/6730-}
}