You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at http://www.ieee.org/web/publications/rights/copyrightpolicy.html)

  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at http://www.acm.org/pubs/copyright_policy/)

  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required

  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact webmaster@ide.mdh.se

Smart Battery Circularity: Towards Achieving Climate-Neutral Electrification

Publication Type:

Conference/Workshop Paper

Venue:

Advances in Production Management Systems. Production Management Systems for Volatile, Uncertain, Complex, and Ambiguous Environments


Abstract

The transition towards sustainable electrification, particularly in the context of electric vehicles (EVs), necessitates a comprehensive understanding and effective management of battery circularity. With a plethora of EV models and battery variants, navigating the complexities of circularity becomes increasingly challenging. Furthermore, efficient fleet management emphasizes the necessity for robust data collection and analysis across diverse EVs to optimize battery value throughout its lifecycle. Advanced digital technologies play a crucial role in bridging informational gaps and enabling real-time connectivity, intelligence, and analytical capabilities for batteries. However, despite the potential benefits, the integration of circularity and digital technologies in the battery sector remains largely unexplored. Both circularity and digital technologies in the battery domain are still emerging, lacking conceptualization on their integration. To tackle these challenges, this paper advocates for the concept of smart battery circularity, which amalgamates advanced digital technologies with circular economy principles. The purpose of this paper is to enhance the conceptualization of smart battery circularity and elucidate the key knowledge areas necessary to facilitate it. The study identifies three critical knowledge areas essential for enabling smart battery circularity: digitally enabled circular business models, digital twin platforms for circular battery services, and smart battery performance monitoring. The sub-areas within each key knowledge area are also outlined. By delineating these knowledge areas, the study proposes an integrative framework, showcasing how these areas contribute to smart battery circularity both individually and collectively. The study offers insights to accelerate the development of initiatives aimed at establishing a sustainable and circular battery ecosystem, thereby advancing global efforts towards climate-neutral electrification.

Bibtex

@inproceedings{Chirumalla7029,
author = {Koteshwar Chirumalla and Erik Dahlquist and Moris Behnam and Kristian Sandstr{\"o}m and Martin Kurdve and Anas Fattouh},
title = {Smart Battery Circularity: Towards Achieving Climate-Neutral Electrification},
month = {September},
year = {2024},
booktitle = {Advances in Production Management Systems. Production Management Systems for Volatile, Uncertain, Complex, and Ambiguous Environments},
url = {http://www.ipr.mdu.se/publications/7029-}
}