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Abstract
Model-driven engineering envisions an enhancement of software engineering by promoting automation through
model transformations. However, the effective use of model-driven tools often requires significant expertise
due to their reliance on custom domain-specific languages for transformations. This expertise gap, combined
with challenges like inadequate tool support and the need for additional training, has meant that model-driven
engineering sometimes struggled to reduce, and might have even increased, accidental complexity. Addressing
this problem, our work investigates the use of large language models, specifically ChatGPT-4, to reduce accidental
complexity in model transformation processes within model-driven engineering. We conducted a systematic
literature review and designed an experiment to explore ChatGPT-4’s efficacy in performingmodel transformations
out-of-the-box. Using a semi-automated pipeline, we applied ChatGPT-4 to 99 UML class diagram models,
generating Java programs and comparing themwith ground truth programs created by a state-of-the-art modelling
tool. Our findings indicate a cumulative success rate of 94% after three iterations, with most generation errors
being resolved during the process. However, complex models presented a significant challenge, with a cumulative
success rate of only 17%.
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1. Introduction
Model-Driven Engineering (MDE) advances software engineering by shifting the focus from coding
to modelling [1]. It relies on two pillars: models, which are well-defined abstractions of reality [2],
and model transformations, which automate model manipulation [3]. Models simplify complexity by
emphasizing relevant details, while transformations enhance automation by synchronizing development
stages, generating code, and enabling early validation [1]. MDE provides powerful abstractions and
automation, with studies highlighting benefits such as reduced defects, increased productivity, and
improved understandability [4]. However, its reliance on custom domain-specific languages for models,
queries, and transformations demands significant expertise. This, coupled with inadequate tool support
and training requirements, has paradoxically struggled to reduce accidental complexity despite reducing
inherent software complexity [4, 5]. Low-/no-code development builds on MDE principles to mitigate
these challenges by offering pre-made components. While this approach reduces accidental complexity,
it still requires learning platform-specific tools and constrains solutions to predefined component
compositions [6]

Large Language Models (LLMs) are powerful tools with broad applications in software engineering,
spanning from requirements management to runtime monitoring. By enabling natural language
interaction, they lower the skill barrier for AI-powered solutions, making them increasingly relevant for
MDE-related tasks aimed at reducing accidental complexity. While research has explored using LLMs to
extract models from requirements and informal diagrams or to create domain-specific languages from
natural language specifications, their application to model transformations remains largely unexplored.
Only preliminary attempts, such as those using ChatGPT1, suggest that this field is still in its early
stages.

To address this problem, this paper investigates the use of LLMs for performingmodel transformations
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out-of-the-box. Specifically, we conducted a systematic literature review and designed an experiment
to evaluate the precision of ChatGPT-4 in translating UML class diagram models into corresponding
Java programs. Our study is supported by an experimental pipeline that automates data collection,
transformation execution, and result analysis. It is important to note that this work focuses on LLMs’
ability to perform model transformations out-of-the-box, not on code generation. Translating UML
diagrams into Java programs was used solely to establish the ground truth, as described in Section 4.
Our findings show a cumulative success rate of 94% for transformed models out of 99 input cases, with
most generation errors being resolved during the process. However, the experiment also highlights
significant issues when dealing with complex models, for which the cumulative success rate drops to
only 17%. By providing a systematic approach and a publicly available replication package in Section A,
we enable the research community to experiment with ChatGPT-4 in additional transformation tasks.
Furthermore, our experimental pipeline can be refined to support alternative LLMs, modelling languages,
or datasets.

2. Research Process
Figure 1 illustrates our research process, which follows constructive research techniques com-
monly applied in computer science and engineering [7, 8]. These techniques involve developing
an artefact to address a domain-specific problem, generating knowledge about potential solutions.

Observation Literature review Experiment Reflection

Figure 1: Research process

By integrating existing theoretical knowledge
with novel applications, constructive research
aims to tackle practically significant issues that
remain under-explored in the literature. We
began by investigating whether LLMs could re-
duce the accidental complexity in model trans-
formation processes by performing model

transformations out-of-the-box. To assess prior research on this topic, we conducted a Systematic
Literature Review (SLR) following Kitchenham et al.’s guidelines [9]. Finding no prior studies directly
addressing this question, we designed and executed an experiment to explore our hypothesis. Finally,
we analysed the experimental results to evaluate and refine our initial observations.

2.1. Systematic literature review
We conducted an automated search of peer-reviewed literature across four major scientific databases:
IEEEXplore, ACMDigital Library, SCOPUS, andWeb of Science. To ensure both rigour and inclusiveness,
we used the search string: (”llm” OR ”large languagemodel*”) AND (”mde” OR ”model-driven engineering”),
querying all fields without applying filters. This search yielded 35 potential studies2. After removing
non-research articles and duplicates, we identified 10 primary studies (Table 1). These were analysed
using the guidelines of Cruzes et al. [10]. While we omit details for brevity, all search and selection data,
along with the full list of primary studies, are available in our public replication package in Section A.
A discussion of the selected studies is presented in Section 3.

2.2. Experiment
Given the absence of prior research on using LLMs to mitigate accidental complexity in model trans-
formation processes, we designed and conducted an experiment to explore this hypothesis. Inspired
by recent studies on LLMs for code generation [11, 12], we developed a semi-automated experimental
pipeline to streamline data collection, execution, and analysis
Dataset. The dataset needed to be independent, publicly available, and contain a large number of

UML class diagram models. To satisfy these criteria, we selected the Lindholmen dataset3, curated by

2Our review does not include any work published after May 2024
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the University of Rostock. This dataset links to GitHub repositories that use UML, offering access to
over 93,000 potential UML-related artefacts4.
Ground truth. To assess ChatGPT-4’s performance in translating UML class diagrams into Java

programs, we required a reliable ground truth dataset. For this, we leveraged the code generation
capabilities of Modelio, a widely recognized modelling tool5. Our choice was driven by two key
requirements: handling XMI files and automatically generating Java models. We evaluated alter-
native tools such as Astah, Papyrus, ArgoUML, and Visual Paradigm, but each presented limita-
tions6. Using Modelio ensured that the Java programs serving as benchmarks were accurate trans-
lations of the UML class diagrams, mitigating potential threats to construct and internal validity.

Dataset ChatGPT Comparison

Ground truth

Errors

Figure 2: Simplified overview of the experimental
pipeline

Automation. The experimental pipeline
was designed to minimize manual interven-
tion. To achieve this, we integrated various
tools and technologies to automate key steps.
Python scripts handled multiple automation
tasks, Modelio was used for generating ground
truth models, AutoHotKey7 automated repet-
itive keyboard and mouse interactions, and
Beyond Compare8 facilitated automated file comparisons. This automation streamlined the workflow,
ensuring consistency and efficiency in executing the experiment.
Reproducibility and Verifiability. To ensure that our experimental pipeline and results can be

independently replicated and verified, we provide a public replication package containing all artefacts
used in this work in Section A. Figure 2 presents a simplified overview of our experimental pipeline.
The process starts with a dataset of UML class diagram models, which are input into ChatGPT-4 for
translation into Java programs. The generated Java programs are then compared against ground truth
Java models produced by Modelio. Identified discrepancies are used to iteratively refine the ChatGPT-
4 output, with a maximum of two re-prompting cycles, as previous studies suggest that additional
iterations beyond the third yield minimal improvements [11, 12]. Section 4 provides a detailed discussion
on the pipeline’s definition and execution.

2.3. Threats to validity
To mitigate threats to conclusion validity, we meticulously followed well-defined research processes
and provided a public replication package to ensure reproducibility. A key limitation is the statistical
validity of our dataset, which includes 99 models. However, the scarcity of large, high-quality datasets
for software engineering research remains a well-known challenge, and previous studies have often
relied on even smaller datasets [13]. Potential threats to internal validity stem from the use of Modelio
to establish ground truth. However, this risk is minimal, as Modelio is an industry-standard tool for
MDE and Java. Our selection was driven by two core requirements: XMI file handling and automatic
Java model generation. Alternative tools, such as Astah, Papyrus, ArgoUML, and Visual Paradigm,
had limitations preventing their integration into our pipeline. Additionally, while class diagrams may
not fully represent all transformation scenarios, they are fundamental to modelling, as they define a
system’s structural backbone [14]. Construct validity threats relate to model selection and experimental
design. Although we ensured variation in structural complexity, our dataset may not fully reflect
the complexity of real-world transformations. Furthermore, since ChatGPT-4’s training data is not
publicly available, there is a potential risk that it may have been trained on similar UML models,

4It should be noted that these files may include various UML diagrams, not just class diagrams, and some may contain artefacts
such as images rather than serialised UML class diagrams.
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ArgoUML failed to import XMI files, and Visual Paradigm lacked Java model generation capabilities. These constraints made
them unsuitable for our automated pipeline.
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which could influence results. Our study intentionally adopted a zero-shot approach to evaluate LLMs’
out-of-the-box capabilities, prioritising simplicity to minimise accidental complexity, though more
advanced prompting strategies (e.g., Chain of Thought, Tree of Thought) could improve performance.
External validity may be affected by the modelling and programming languages used. The dataset’s size
also poses a limitation, as curating high-quality models required a labour-intensive process involving
ChatGPT-4, Modelio, and the Lindholmen dataset. Despite these constraints, we aimed to enhance
generalisability by including models with varying structural complexities.

3. Related Work
This section reviews the primary studies identified through our SLR. While an exhaustive analysis is
beyond the scope of this paper, Table 1 classifies these studies based on their research focus. Notably,
no prior research has explored the use of LLMs to reduce the accidental complexity of model trans-
formation processes, establishing our study as a pioneering contribution. Additionally, despite the
increasing number of studies on LLM-based code generation, generating code from natural language is
fundamentally different from performing model transformations out-of-the-box. Consequently, we do
not include such works in this review.

Table 1
Classification of primary studies

Ref Title Authors Chat-
bot

LLMs for soft-
ware engineering

Prompt-
ing

Domain
modelling

[15] Measuring and Clustering Heterogeneous Chatbot
Designs

Cañizares
et al.

x

[16] Building Domain-Specific Machine Learning Work-
flows: A Conceptual Framework for the State of the
Practice

Oakes et
al.

x

[17] Accelerating Software Development Using Genera-
tive AI: ChatGPT Case Study

Rajbhoj
et al.

x x

[18] Prompt Engineering: User Prompt Meta Model for
GPT Based Models

Tame-
naoul et
al.

x

[19] Chat2Code: A Chatbot for Model Specification and
Code Generation, the Case of Smart Contracts

Qasse et
al.

x x

[20] Model-Driven Smart Contract Generation Leveraging
ChatGPT

Petrović
et al.

x

[21] Model-Driven Prompt Engineering Clariso
et al.

x

[22] Extracting Domain Models from Textual Require-
ments in the Era of Large Language Models

Arulmo-
han et
al.

x

[23] Prompting or Fine-tuning? A Comparative Study of
Large Language Models for Taxonomy Construction

Chen et
al.

x

[24] Automated Domain Modeling with Large Language
Models: A Comparative Study

Chen et
al.

x

3.1. Large Language Models and Model-Driven Engineering
Cañizares et al. explored chatbot design measurement and classification, introducing a suite of metrics
and clustering methods [15]. Their tool, Asymob, facilitates the translation of chatbot platforms
into a neutral notation, improving comparability. Oakes et al. examined domain-specific machine
learning workflows and identified six key challenges in workflow development [16]. Their study
highlighted gaps in tool support and recommended future research to reduce accidental complexity,
aligning with our study’s focus. Rajbhoj et al. investigated systematic prompting strategies for software
development life cycle tasks, validating their approach using ChatGPT [17]. Their results show that
generative AI can significantly reduce skill barriers in MDE, supporting our premise that LLMs can
simplify complex transformation tasks. Tamenaoul et al. developed a meta-model for user prompts,
formalizing several prompt engineering patterns [18]. Similarly, Clariso et al. proposed Impromptu, a
domain-specific language for platform-independent prompt generation and adaptation [21]. Qasse et
al. explored chatbots as an interactive alternative for MDE, developing a framework that generates



platform-independent code from conversational inputs, with a focus on smart contracts [19]. Their
findings suggest that chatbot-based development can improve accessibility in software engineering.
Petrović et al. investigated ChatGPT for automating smart contract generation, proposing a model-
driven framework for treating smart contract creation as an interactive dialogue [20]. Their evaluation
highlighted ChatGPT’s adaptability but also noted challenges such as increased response times and
costs. Arulmohan et al. examined LLMs for extracting domain models from textual documents like
product backlogs [22]. They compared GPT-3.5 against a state-of-the-practice tool and a CRF-based
NLP approach, finding that while GPT-3.5 outperformed standard tools, the CRF approach achieved
higher accuracy with minimal training. Chen et al. developed a framework for automated taxonomy
construction, comparing LLM prompting with fine-tuning [23]. Their results showed that prompting
often outperforms fine-tuning, particularly for smaller datasets, though fine-tuning allows easier
post-processing. Chen et al. also explored the automation of domain modelling using LLMs [24].
While GPT-3.5 and GPT-4 demonstrated strong understanding capabilities, they struggled with full
automation, achieving only moderate F1 scores in class, attribute, and relationship generation. This
complements our study, as it focuses on automating one pillar of MDE—modelling—while we focus on
model transformations.

3.2. Simplifying Model Transformations
Over the years, many studies have aimed to make model transformations more accessible to users
unfamiliar with transformation languages and related technologies. One of the most notable approaches
is Varrò’s transformation by example method [25]. This method generalizes XML transformation
techniques for model transformations, deriving transformation rules from initial interrelated source
and target models. These rules can be refined iteratively by adding more source-target model pairs,
eliminating the need to learn a dedicated transformation language. Building on Varrò’s work, Kappel
et al. surveyed early Model Transformation By-Example approaches [26]. Kessentini et al. extended
this method with an optimization-based approach, using search-based algorithms (particle swarm opti-
mization and simulated annealing) to determine the best transformation fragment combinations [27].
Among AI-driven solutions, Burgueño et al. proposed a neural network-based model transformation
approach [28]. Their encoder-decoder LSTM architecture with an attention mechanism learns transfor-
mation patterns from input-output examples, automatically generating transformation outputs once
trained.

4. Experimental pipeline
This section presents the experimental pipeline, aligning with the requirements outlined in Section 2. We
detail its configuration, including the tools, technologies, and artefacts used, all of which are available
in our public replication package in Section A.The pipeline consists of four main phases: cleaning,
ground truth generation, generation, and comparison. Figure 3 provides a comprehensive overview,
with execution flow indicated by black-circled numbers. We initiated our experimental pipeline with the
publicly available Lindholmen dataset, which contained 93,608 files, including 3,722 XMI UML diagrams.
To ensure data quality and manageability, we performed a thorough cleaning process (black-circled 1 in
Figure 3). This involved removing duplicates, inaccessible files, incompatible character sets, and files
exceeding 200KB—beyond the input limit of ChatGPT-4’s web version. We also excluded corrupted
files that could not be imported into Modelio, as they would prevent ground truth generation. After
this screening, 99 usable XMI files remained, forming our initial dataset of textual UML class diagram
representations. We imported the XMI files into Modelio to generate the corresponding Java programs,
serving as the ground truth (black-circled 2 in Figure 3). During this process, some elements—such as
names or attributes—were occasionally missing due to incomplete XMI data or Modelio’s interpretation.
In such cases, we inserted custom strings to ensure Java grammar compliance. Once exported, Modelio
generated each class as a separate file. To streamline comparisons, we used a Python script to merge
these files into a single Java file per XMI instance, preserving their content.



Notably, this Java output serves as a model for the eventual implementa-
tion code, which would be further refined or manually written in later stages.
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Figure 3: Detailed overview of the experimental
pipeline

To minimize threats to validity, we fed
ChatGPT-4 with XMI files exported from
Modelio rather than using raw dataset files
(black-circled 2 in Figure 3), reducing dis-
crepancies between ChatGPT-4 and Modelio
interpretations. We then prompted ChatGPT-4
to generate Java programs from these XMI
files (black-circled 3 in Figure 3) using the
instruction: The following is an XMI
serialization of a UML Class Diagram
model. Generate the corresponding
Java program. Do not implement get
and set functions. Do not add any
comments. To automate this process, we used
AutoHotKey for interacting with ChatGPT-4
via pre-programmed inputs and formatting

responses. AutoHotKey also facilitated storing the generated outputs in our replication package. After
generating the Java programs, we compared the ChatGPT-4-generated Java programs with the ground
truth, Java programs created by Modelio (black-circled 4 in Figure 3). It is important to clarify that
we do not compare ChatGPT-4 with Modelio regarding the transformation process. Instead, we used
Modelio solely to generate the ground truth Java models. Before this comparison, we took additional
steps to format the programs and eliminate impurities that might lead to false positives. For example, we
removed IDs that Modelio adds to the Java programs using a python script or fixed the formatting using
AutoHotKey. Additionally, we standardised the formatting by employing the Language Support for
Java extension developed by Red Hat in Visual Studio Code, which helped us eliminate extra spaces and
correct indentation errors. For the comparison, we employed Beyond Compare, a tool that facilitates
side-by-side comparison of two files. It reads the files and highlights the differences in a detailed
comparison report. After generating the comparison report with Beyond Compare, we manually
analysed it (black-circled 5 in Figure 3) to filter out irrelevant differences, such as capitalization or
ordering variations, while identifying substantial discrepancies like missing classes, incorrect attributes,
and erroneous cardinality. We logged all significant differences in a separate error log (black-circled
6 in Figure 3) and used this to create a refined prompt for a subsequent ChatGPT-4 generation
attempt (black-circled 7 in Figure 3) similar to this: In the previous response, the following
errors were discovered. The attribute readWriteSingleValuedEnumerationAttribute
is missing an enum instance. The function opParameters has the wrong return type.
Regenerate the response fixing the errors above. This cycle was repeated up to two times,
as previous research indicates that additional attempts rarely produce further improvements [11, 12].

5. Results
This section presents our study’s findings, starting with the success rate of the ChatGPT-4 transformation
process and its variation with the structural complexity of UML class diagram models. Additionally, we
identify and discuss the most common errors encountered during transformation.

5.1. Success rate
In our experiment, we implemented the semi-automatic pipeline described in Section 2 and applied it
to 99 UML class diagram models, allowing up to three iterations. Table 2 summarises the outcomes,
reporting the absolute number of successfully and unsuccessfully transformed models, the single success
rate per iteration, and the cumulative success rate (total percentage of models successfully transformed



up to the given iteration.). In the first iteration, 67 out of 99 models were successfully transformed (67%
single and cumulative success rate). The second iteration transformed 21 additional models (66% single
success rate), raising the cumulative success rate to 89%. In the third and final iteration, 5 more models
were transformed (45% single success rate), bringing the cumulative success rate to 94%. Table 2 also
notes that 6 models remained untransformed after three iterations.

Table 2
Absolute value, single and cumulative success rate

Absolute value Single success rate Cumulative success rate
1st iteration 67 67% 67%
2nd iteration 21 66% 89%
3rd iteration 5 45% 94%

Failed 6

Total 99

We categorized the XMI files by structural complexity to evaluate ChatGPT-4’s performance
across different model types. First, we quantified complexity by counting the various structural
elements—Classes, Primitive Types, Enumerations, Interfaces, and Associations—in each XMI file and
summing them. This metric revealed a wide range of complexity, from a few elements to over 80.
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Figure 4: Bar chart showing the total number of models per
cluster, the absolute number of model successfully
transformed in each iteration, and the absolute num-
ber of failed models.

To reduce categorization bias, we
applied the K-means clustering al-
gorithm [29] with 𝑘 = 3 based on
the total number of elements. This
yielded three clusters: low complex-
ity models with up to 9 elements (57
models), medium complexity mod-
els with 10 to 36 elements (36 mod-
els), and high complexity models
with more than 36 elements (6 mod-
els).

Figures 4 and 5 show the transfor-
mation success rates for each clus-
ter. In the low complexity group, 47
out of 57 models (82%) were success-
fully transformed in the first itera-
tion. A further 9 models succeeded
in the second iteration (90% success
for that round), boosting the cumu-
lative rate to 98%, and the final model succeeded in the third iteration, reaching a 100% cumulative
success rate. In the medium complexity group, 19 of 36 models (53%) transformed in the first iteration.
An additional 12 models succeeded in the second iteration (71% for that round), raising the cumulative
rate to 87%, and 4 more models succeeded in the third iteration (80% for that round), with a final
cumulative success rate of 97%. One model, however, failed to transform after three iterations. For the
high complexity group, only 1 of 6 models (17%) transformed in the first iteration. Due to this low rate,
we conducted further analysis, which indicated that a high number of associations—specifically, more
than 40—was correlated with transformation failures, while the number of classes showed no direct
correlation.

5.2. Errors

During the three executions, we collected all significant differences that emerged from comparing
the ChatGPT-4-generated Java programs with the ground truth Java programs created by Modelio, as



described in Section 4. We then categorised these differences into error types, which are summarised in
Table 3, along with the count of individual occurrences.
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rates per iteration, per cluster.

The data show that wrong type is
the most common error, accounting
for 61% of the total errors. Examples
of these errors include attributes
being generated as single objects
rather than lists, or attributes whose
type was set to Object rather than
String, as shown below. The second
most common error is incorrect ex-
tends relationships among classes,
accounting for 16% of the total er-
rors. Other common errors include
wrong type, missing classes, and
missing attributes. To gain deeper
insights into potential correlations
between errors and iterations, we
analysed the frequency of errors

across the three iterations. While no strong correlation emerges between specific errors and iter-
ations—since the most common errors maintain a consistent ranking—most errors are progressively
resolved. Exceptions include incorrect extends and missing enumeration instance. The former decreases
after the second iteration but remains unresolved in over 40% of cases, while the latter is introduced
in the second iteration and only partially corrected in the final one. Additionally, we examined error
distribution across structural complexity clusters. Models in the low-complexity cluster exhibit fewer
distinct errors, with only three error types exceeding three occurrences and relatively few instances per
type. In contrast, models in the medium and high-complexity clusters show a broader range of errors
and higher instance counts. This suggests that model complexity is a key factor contributing to errors.

Table 3
Errors

Error Occurrences Error Occurrences
Incorrect extends 60 Missing enum 4
Wrong type 222 Missing parameter 2
Missing class 31 Wrong name 2
Missing attribute 28 Extra attributes generated 1
Lacking enum instance 10 Missing constructor 1
Missing interface 5 Wrong enum instance 1

6. Discussion

Choosing UML and Java notations may be seen as restrictive, particularly since our case focuses
on model-to-text transformations [30]. While Czarnecki and Helsen treated model-to-model and
model-to-text transformations uniformly, differentiating them mainly by the availability of mature tool
support [30], focusing on a single transformation type may limit the broader applicability of our findings.
However, UML class diagrams hold a special role in modelling as the most widely used and structurally
significant diagrams [31], suggesting a degree of generalizability. Additionally, their selection was
instrumental in ensuring a well-sized dataset and ground truth models, reducing potential threats to
validity (see Section 2). The lack of large-scale benchmark datasets for software engineering and MDE
research remains a well-documented challenge [32].

Our experimental pipeline, based on prior studies [11, 12], establishes ground-truth models using



Modelio, an industry-standard tool, but allows for substitution with other tools if needed. The choice of
a zero-shot learning strategy may be viewed as a limitation. While advanced prompting techniques like
Chain of Thought and Tree of Thought could improve reasoning, we prioritized a zero-shot approach
to assess LLMs’ out-of-the-box capabilities, minimizing additional complexity. Few-shot learning could
further improve success rates, particularly for models with more than 36 elements. Additionally, our
experiment shows that just 12 error types emerged during generation, with four accounting for the
majority. Addressing these through refined prompting could improve both single and cumulative
success rates. Our decision to limit the process to three iterations aligns with prior research [11, 12].
Our findings suggest that ChatGPT-4 can help reducing accidental complexity in model transformation
by eliminating the need for transformation languages and related tools. However, it has limitations
in handling complex models with many associations. Notably, even for a widely used language like
Java—on which ChatGPT-4 has likely been trained—generating fully correct target models remains
challenging.

As a pioneering study on LLM-driven model transformation, some aspects beyond this work warrant
further investigation. Transformation testing remains an open research area, particularly beyond
functional testing [33]. Our black-box testing approach, based on an oracle, could be extended with
mutation techniques to improve evaluation. More advanced checks, such as semantic correctness,
would require explainability features within LLMs.

Our findings have promising implications for MDE and automated software engineering. They show
the potential to simplify model transformations, making them more accessible to non-experts. Notably,
all generated target models conformed to the target metamodel, and in some cases, ChatGPT-4 correctly
inferred missing information, such as attribute names, improving resilience against domain evolution.
However, LLMs are not yet mature enough for unsupervised transformation tasks, particularly with
structurally complex models. While they significantly reduce accidental complexity, mechanisms are
needed to check for errors and omissions in generated results. Few-shot and multi-shot learning may
improve performance for complex models, but systematic research is required to characterize and
address potential generation issues. Interestingly, adopting a model transformation chain, as in this
study, may simplify such analysis compared to tasks like generating code from natural language, as
intermediate steps provide better traceability of patterns.

In conclusion, LLMs like ChatGPT-4 present a novel alternative to traditional DSL-based model
transformations. While DSLs ensure precise, deterministic, and reproducible transformations with
mature debugging tools, they require significant expertise and upfront effort. In contrast, LLMs
lower entry barriers, enabling natural language interaction and flexibility, but they lack the precision,
transparency, and scalability of DSLs, particularly for complex models. LLMs excel in adaptability,
handling evolving requirements and inferring missing details, yet their black-box nature complicates
error tracing. DSLs remain preferable for high-precision, repeatable transformations. The choice
between LLMs and DSLs depends on the use case: LLMs enable rapid prototyping and reduce accidental
complexity, while DSLs offer fine-grained control. Future research should explore hybrid approaches,
integrating DSL precision with the accessibility and adaptability of LLMs.

7. Conclusion and Future Work

Many studies have aimed to reduce the accidental complexity in model transformation processes, yet
no research prior to April 2024 has systematically explored the use of LLMs for performing model
transformations out of the box. This work investigates ChatGPT-4’s potential to address this challenge.
We conducted a systematic literature review and designed an experiment to assess ChatGPT-4’s effec-
tiveness in automating model transformations. Using a semi-automated pipeline, we applied ChatGPT-4
to 99 UML class diagram models, generating Java programs and comparing them against ground truth
programs from a state-of-the-art modeling tool. Our findings indicate a cumulative success rate of
94% after three iterations, with most errors resolved. However, complex models remained a challenge,
achieving a cumulative success rate of only 17%.



Future research should explore LLMs in different transformation scenarios, including model-to-model
and model-to-text transformations. Expanding the dataset with more diverse models and leveraging
few-shot and multi-shot learning strategies could improve success rates, particularly for complex
models. Additionally, developing advanced error handling and correction mechanisms will be essential
to enhancing accuracy and reliability.
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