
Benchmarking Large Language Models for Autonomous
Run-time Error Repair: Toward Self-Healing Software Systems

Alessio Bucaioni
Mälardalen University

Sweden
alessio.bucaioni@mdu.se

Gabriele Gualandi
Mälardalen University

Sweden
gabriele.gualandi@mdu.se

Johan Toma
Mälardalen University

Sweden

ABSTRACT
As software systems grow in complexity and become integral to
daily operations, traditional approaches to software testing, mainte-
nance, and evolution are increasingly inadequate. Recent advances
in artificial intelligence, particularly in large language models, offer
promising avenues for achieving self-healing software—software
capable of autonomously detecting, diagnosing, and repairing faults
without human intervention. However, while much of the existing
literature focuses on on code repair of vulnerabilities or repository-
level bugs, the application of large languagemodels for autonomously
repairing run-time errors—which require dynamic analysis and ex-
ecution context awareness—remains largely uncharted.

In this study, we empirically benchmark ten distinct large lan-
guage models—ChatGPT-4o, ChatGPT-4o-mini, Claude 3.5 Sonnet,
Claude 3.5 Haiku, Gemini 1.5 Flash, Llama 3.2, Mistral Nemo, Grok
Beta, Command R+, and Jamba 1.5 Large—to assess their ability to
repair run-time errors in code. We conducted our evaluation on a
dataset of 76 programming problems manually sourced from Leet-
code, implemented in C++ (48 problems) and Java (28 problems).
Each model was provided with a single opportunity to generate a
corrected solution, which was then evaluated based on its ability
to pass all associated test cases.

Our experimental results provide early empirical evidence of
the potential of large language models to drive a paradigm shift
in artificial intelligence-driven software engineering. The findings
reveal that while certain large language models demonstrate strong
code-fixing capabilities, others struggle, highlighting significant
performance disparities across models. This work not only fills
a critical gap in empirical software engineering, but also opens
avenues for refining artificial intelligence-driven software engi-
neering, particularly for self-healing software.

CCS CONCEPTS
• Software and its engineering→ Software verification and
validation.

KEYWORDS
Self-healing code, code repair, large language models, bechmarking

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
EASE 2025, 17–20 June, 2025, Istanbul, Turkey
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

ACM Reference Format:
Alessio Bucaioni, Gabriele Gualandi, and Johan Toma. 2018. Benchmarking
Large Language Models for Autonomous Run-time Error Repair: Toward
Self-Healing Software Systems. In Proceedings of The 29th International Con-
ference on Evaluation and Assessment in Software Engineering (EASE 2025).
ACM, New York, NY, USA, 6 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
As software systems grow increasingly complex and critical to daily
operations, traditional approaches to software testing, maintenance
and evolution are rapidly becoming insufficient [7]. Downtime,
unexpected run-time errors, and escalating maintenance costs de-
mand a paradigm shift toward self-healing software [6, 9], hence
autonomic software capable of detecting, diagnosing, and repairing
faults and anomalies without human intervention [6, 9]. Recent ad-
vancements in Artificial Intelligence (AI), particularly in the domain
of Large Language Models (LLMs), have opened new avenues for
addressing long-standing challenges in software engineering such
as self-healing software [3]. While models such as ChatGPT have
demonstrated exceptional capabilities in natural language under-
standing and programming [1], leveraging these models to enable
self-healing in software remains largely under-explored- making
this an emerging and futuristic research direction in empirical soft-
ware engineering.

Our study investigates how LLMs can fuel this paradigm shift
by autonomously repairing run-time errors, thereby bridging AI-
driven software engineering and next-generation autonomous sys-
tems. In our research, we empirically benchmark ten distinct LLMs-
ChatGPT-4o, ChatGPT-4o-mini, Claude 3.5 Sonnet, Claude 3.5Haiku,
Gemini 1.5 Flash, Llama 3.2, Mistral Nemo, Grok Beta, Command
R+, and Jamba 1.5 Large-to assess their ability to autonomously re-
pair run-time errors. The evaluation is conducted on a dataset of 76
programming problems manually sourced from Leetcode—a widely
recognized online platform that offers a vast repository of coding
problems and solutions—implemented in two widely used program-
ming languages: C++ (48 problems) and Java (28 problems). Our
approach is grounded in a rigorous empirical methodology. Each
LLM was provided a single attempt to correct run-time errors, and
success was quantified by measuring the percentage of problems
for which the errors were effectively resolved. This study not only
examines the effectiveness of each individual LLM, but also pro-
vides comparative insights into their relative performance across a
diverse set of challenges. By doing so, we address a critical research
gap: while the integration of AI into software engineering has been
widely discussed, empirical studies that systematically benchmark
the self-healing potential of different LLMs remain scarce. Building
on the results of our experiment, we draw research implications

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

EASE 2025, 17–20 June, 2025, Istanbul, Turkey Bucaioni et al.

and outline potential future research avenues for the community.
In summary, this paper makes the following contributions:

• It provides early empirical evidence on the capability of LLMs
to autonomously repair run-time errors in code.

• It benchmarks ten distinct LLMs using a curated set of 76
programming problems, offering a comparative analysis of
their performance.

• It lays the groundwork for future research on integrating
AI-driven self-healing mechanisms into real-world software
systems, ultimately advancing the field of autonomous sys-
tems.

The remainder of this paper is organized as follows. In Section 2,
we review existing studies related to our work. In Section 3, we
describe the methodology used to benchmark LLMs for run-time
error repair and detail its implementation. In Section 4, we present
the results of our experiments. In Section 5, we discuss these results
along with the potential threats to validity. Finally, in Section 6, we
conclude the paper and outline possible future research avenues.
Section 7 provides a public replication package.

2 RELATEDWORK
While a significant body of literature exists on code repair and its au-
tomation and improvement using AI techniques, the vast majority
of these studies focus on identifying and correcting code vulnerabil-
ities—known flaws, weak points, glitches, or other security issues
in software. In contrast, our study explicitly benchmarks LLMs for
run-time error repair—an aspect that remains under-explored in
AI-driven software engineering. Run-time errors often arise due to
complex execution dependencies, making their resolution more nu-
anced than static vulnerability fixes. To the best of our knowledge,
our work is the first documented, peer-reviewed effort to benchmark
LLMs for their ability to autonomously repair run-time errors. An
opportunistic review of the related literature, using the search string
"llm* AND ("code repair" OR "self-healing")" on abstracts and titles,
yielded only 11 unique results—8 from Scopus, 1 from the ACM
Digital Library, and 2 from IEEE Xplore. Notably, we deliberately
excluded papers that had not undergone peer review, such as those
uploaded solely to arXiv or similar platforms, as they do not provide
sufficient assurance of methodological rigour.

One of the most significant differences between our research and
prior studies is that those studies primarily focus on fixing code
vulnerabilities rather than run-time errors. For instance, De et al.
investigate the effectiveness of LLMs in addressing Java vulnerabil-
ities [4] by benchmarking only two LLMs, namely Code Llama and
Mistral. Similarly, Zhang et al. evaluate LLMs for repairing memory
corruption vulnerabilities—specifically in C/C++—and benchmark
only ChatGPT-4 and Claude [10]. Additionally, Jain et al. present a
related study that, instead of leveraging LLMs, employs deep learn-
ing techniques to fix security vulnerabilities such as code size issues,
the presence of security-sensitive data structures, and conditional
statements [8]. Unlike De et al., who evaluated only two LLMs on
Java vulnerabilities, our study benchmarks ten distinct LLMs across
a diverse dataset of 76 run-time error problems from Leetcode. Ad-
ditionally, while Chen et al. assessed repository-level bug fixes, our
focus is on single-file, functionally constrained run-time errors,
which demand different debugging capabilities.

Chen et al. investigated the performance of ChatGPT-3.5 in han-
dling repository-level repair tasks [2]. They defined repository-
level repair tasks as those that repair bugs arising from complex
interactions or dependencies among multiple code files, such as
interface inconsistencies, incorrect error handling, global variable
misuse, and race conditions. To evaluate this, they introduced Re-
poBugs—a new benchmark comprising 124 typical repository-level
bugs collected from open-source repositories. Their preliminary
experiments demonstrated that ChatGPT-3.5 achieved a success
rate of 22.58% in fixing these issues. It is important to note that, in
contrast to our study, Chen et al. concentrated on repository-level
repair tasks rather than on run-time errors.

In their paper, Diaz et al. shed light on the automated patching
of infrastructure-as-code projects with the help of LLMs [5]. They
evaluated six LLMs across three different scenarios. In Scenario
0, they introduced an error in the module name, which caused
execution to fail. In Scenario 1, they injected an error in the module
state by providing an invalid value, as the state was restricted
to a specific set of acceptable values. Finally, in Scenario 2, they
misspelled the name of a common package.

Given the above, our study represents a crucial step in AI-driven
software engineering, demonstrating how LLMs can autonomously
repair run-time errors—an emerging direction in self-healing soft-
ware. By providing the first systematic benchmark of LLMs for this
task, our work lays the foundation for future research.

3 THE PIPELINE FOR BENCHMARKING LLMS
ON AUTONOMOUS CODE REPAIR

In this section, we describe the methodology used to benchmark
LLMs for run-time error repairing. We divided the process into four
primary steps: Data Collection, Prompt Generation, Communica-
tion with LLMs, and the Evaluation Pipeline (Figure 1).

LeetCode

Dataset Prompts

LLMs Responses

Test cases Verdict

Data collection Prompt generation

Communication with LLMsEvaluation Pipeline

1
2

3
4

5
6

Legend

Figure 1: Overview of the experimental pipeline

Data Collection. Weexecuted a pivotal and labour-intensive stage
in our benchmarking workflow by gathering programming solu-
tions that exhibit run-time errors. To minimize threats to valid-
ity, we selected Leetcode as our primary source, which ensured
that our dataset remained objective. Since we focused specifically
on run-time errors—as opposed to compile-time or other error
types—we manually selected each candidate solution. We individu-
ally reviewed each solution to verify that it produced a run-time
error, ensuring our dataset precisely aligned with our research ob-
jectives. We further refined our dataset by including only solutions
written in Java or C++, thereby maintaining consistency across

Benchmarking Large Language Models for Autonomous Run-time Error Repair: Toward Self-Healing Software Systems EASE 2025, 17–20 June, 2025, Istanbul, Turkey

experiments. We recorded essential metadata for every eligible
solution—such as the problem name, description, programming
language, difficulty level, and a unique numerical identifier—in
JSON files. We maintained separate JSON files for Java and C++ to
streamline subsequent processing. We preprocessed each solution
to remove extraneous comments and personal identifiers, ensuring
we preserved only the relevant code.

Prompt Generation. In this phase, we transformed each program-
ming problem and its corresponding erroneous solution into a clear,
structured prompt. We designed these prompts to include all per-
tinent details—such as the problem description, code snippet, and
explicit instructions for rectifying run-time errors—ensuring that
each LLM received a comprehensive and unambiguous input. We
predefined and standardized the prompt structure to include:

• Explicit request to correct the code,
• The programming language in question,
• The name and overview of the problem,
• A clear outline of the task and expected behaviour, and
• The code generating the run-time error.

Although we automated prompt generation using custom Python
scripts, the process is technology-agnostic manner so that anyone
can apply the underlying process regardless of the automation tools
they use.

Communication with LLMs. During the communication phase,
we interfaced with the LLMs and captured their corrected code out-
puts. We systematically transmitted the structured prompts to each
LLM and stored their responses. We developed custom applications
to automate prompt delivery, minimize manual intervention, and
standardize communication across all models. We ensured that ev-
ery prompt transmitted via the appropriate APIs reached its target
consistently. We queried each LLM individually, sent structured
prompts over the API, and collected real-time responses that we
expected to contain the corrected code. To support subsequent eval-
uations, we stored each response in dedicated, structured files and
applied a consistent naming convention that linked each output
to its respective LLM. This systematic organization allowed us to
compare model performance methodically. Moreover, we designed
the entire process to be reproducible so that we delivered each
prompt to all ten LLMs under identical conditions.

Evaluation Pipeline. In the final phase, we assessed the perfor-
mance of each LLM based on its ability to correct run-time errors.
We validated the outputs generated by the LLMs against a com-
prehensive set of test cases to determine if the corrections enabled
successful execution. Notably, LeetCode provided these test cases
for each selected problem, which helped us reduce threats to va-
lidity by grounding our evaluation in a standardized framework.
We categorized the results from the testing phase into two distinct
outcomes: success or failure, and we deemed a solution success-
ful only if it passed all test cases without error. Since LeetCode
does not publicly expose the full set of test cases via an API, we
manually monitored each submission. We individually tracked each
submission and documented its outcome to ensure the accuracy and
integrity of our benchmarking results. We systematically logged
these outcomes in a structured format, typically within a spread-
sheet, and we included pertinent metadata for each problem—such

as the problem name, programming language, difficulty level, and
the corresponding result for each LLM.

3.1 Implementing the Pipeline
In this section, we detail the concrete tools and technologies we used
to implement our benchmarking process across all four key phases.
In our experiment, we selected ChatGPT-4o, ChatGPT-4o-mini,
Claude 3.5 Sonnet, Claude 3.5 Haiku, Gemini 1.5 Flash, Llama 3.2,
Mistral Nemo, Grok Beta, Command R+, and Jamba 1.5 Large. We
provide a public replication package containing all our experimental
artifacts—scripts, prompts, and results—at in Section 7.

We began with data collection by focusing on LeetCode. We
manually scrutinized each candidate solution to confirm the pres-
ence of a run-time error. We stored the selected problems and
their erroneous solutions in JSON files grouped by programming
language. We recorded key metadata like the problem name, de-
scription, programming language, difficulty level, and a unique
numerical identifier in each entry. Listing 1 shows an excerpt from
the JSON file for the Java programs, focusing on problem number
15, "Permutation Sequence"1. We cleansed each solution by apply-

{
"id" : 15,
"programming_problem_name": "Permutation Sequence",
"difficulty" : "Hard",
"desc" : "The set [1, 2, 3, ..., n] contains total ...",
"additional_information" : "",
"solution": "class Solution { public String ...",
"programming_language" : "java",
"new_error" : ""

}

Listing 1: Excerpt of the JSON file containing the JAVA prob-
lems.

ing preprocessing steps that removed extraneous comments and
personal identifiers before storage. We developed a Python-based
application to automate the creation of prompts from the stored
JSON files (Listing 21). This application systematically reads each

for java_problem in java_data:
prompt = f'''
Please help me solve this code with {java_problem[...

{java_problem['programming_problem_name']}
This is the programming problems desc: { ...
This code contains a run-time error.
{java_problem['additional_information']}
{java_problem['solution']}'''

java_prompt_data.append({"id": i, "programming_ ...
i += 1

Listing 2: Excerpt of the Python-based application.

entry and generates a corresponding prompt designed to steer the
LLMs toward correcting run-time errors. An example of prompt

1Please note that some rows have been truncated for readability and to conserve
space.

EASE 2025, 17–20 June, 2025, Istanbul, Turkey Bucaioni et al.

generated by the Python-based application in Listing 2 is displayed
in Listing 3
Please help me solve this code with java Permutation
Sequence

This is the programming problems desc: The set [1, 2, 3,
..., n] contains total of n! unique permutations. By listing
and labeling all of the permutations in order, we get the
following sequence for n = 3: 1. 123, 2. 132, 3. 213, 4.
231, 5. 312, 6. 321, given n and k return k-th permutation
sequence

This code contains a run-time error.
class Solution { public String getPermutation(int n, int k)
{ List<Integer> numbers = new ArrayList<>(); int[]
factorials = new int[n + 1]; for (int i = 1; i <= n; i++) {
numbers.add(i); } factorials[0] = 1; for (int i = 1; i <= n;
i++) { factorials[i] = factorials[i - 1] * i; if (
factorials[i] < 0) { factorials[i] = Integer.MAX_VALUE; } }
k--; if (k > factorials[n - 1]) { k = k * 10; }
StringBuilder sb = new StringBuilder(); for (int i = n; i >
0; i--) { int index = k / factorials[i - 1]; k %= factorials
[i - 1]; sb.append(numbers.get(index)); numbers.remove(index
); } return sb.toString(); } }

Listing 3: Example of a prompt.

We saved the generated prompts in separate JSON files based on
programming language (Listing 41), and we organized each file to
facilitate further processing and analysis. Next, we established ro-

{
"id": 15,
"programming_problem_name": "Permutation Sequence",
"prompt": "\n Please help me solve ...
"extra error": ""

},

Listing 4: Excerpt of the JSON file containing the JAVA prob-
lems.

bust communication with the LLMs by developing custom Python
applications that interfaced with the models using APIs. To control
costs and expand access to multiple models, we used the Open-
Router API—an OpenAI-compatible completion API that connects
us to 318 models and providers. These APIs provided the neces-
sary endpoints to transmit prompts and capture responses. We
automated the entire process with Python scripts that sequentially
sent each prompt to the designated LLM and captured the result-
ing output (i.e., the corrected code). We stored each model’s out-
puts in dedicated JSON files and applied a naming convention that
clearly associated each file with its respective model. Listing 51
displays an excerpt from the JSON file generated for the Claude 3.5
Haiku model and for the Java programs, and shows the solution
for problem number 15, "Permutation Sequence." Building on the
example of problem number 15, "Permutation Sequence," Figure 2
presents a side-by-side comparison of the original Java program
and the version corrected by Claude 3.5 Haiku, clearly illustrating
the modifications performed by the LLMs. In the final phase, we im-

{
"id": 15,
"programming_problem_name": "Permutation Sequence",
"fixed_solution": "```java\nclass Solution ..."
}

Listing 5: Excerpt of the JSON file generated for the Claude
3.5 Haiku model and Java programs.

Figure 2: Comparison between the original JAVA program
and the JAVA program fixed by Claude 3.5 Haiku.

plemented the evaluation pipeline, where we rigorously tested each
corrected solution generated by the LLMs against LeetCode’s hid-
den test cases. We submitted each corrected solution individually to
the testing environment and carefully monitored and documented
its outcome. We deemed a solution successful only if it passed all
test cases. We systematically logged the results in a Google Sheet,
including metadata such as the problem name, programming lan-
guage, and difficulty level alongside the outcomes for each LLM’s
submission.

4 EXPERIMENTAL RESULTS AND ANALYSIS
In this section, we present and analyse the performance of the LLMs
in achieving autonomous code repair. We computed the success
rate by dividing the number of problems that an LLM successfully
resolved by the total number of problems it attempted. Expressed

Figure 3: Success rate across different LLMs and average suc-
cess rate

Benchmarking Large Language Models for Autonomous Run-time Error Repair: Toward Self-Healing Software Systems EASE 2025, 17–20 June, 2025, Istanbul, Turkey

Figure 4: Success rate per programming language across different LLMs and average success rate.

as a percentage, this metric enabled us to quantitatively compare
each model’s ability to correct run-time errors across different
programming languages. Figure 3 summarizes the overall success
rates for each LLM.

Among the evaluated models, Claude 3.5 Haiku emerged as the
top performer, achieving a success rate of 94.74%, while Claude
3.5 Sonnet also performed strongly with a success rate of 80.26%.
The ChatGPT series showed comparable results, with ChatGPT-4o
achieving 72.36% and ChatGPT-4o-mini reaching 71.11%. In con-
trast, Mistral Nemo, Command R+, and Jamba 1.5 Large exhibited
relatively lower performance, recording success rates of 53.95%,
55.26%, and 57.89%, respectively. Grok Beta and Gemini 1.5 Flash
achieved moderate results, both with success rates of 69.74%, while
Llama 3.2 was the lowest-performing model, with a success rate
of only 30.26%. When we analyse the distribution of success rates
across all models, we calculate an average success rate of 65.53%,
with performance ranging from a minimum of 30.26% (Llama 3.2)
to a maximum of 94.74% (Claude 3.5 Haiku).

Figure 4 further illustrates the distribution of success rates across
the two programming languages—Java and C++—for each LLM. We
observed that, overall, Java exhibits higher success rates compared
to C++ across most models, with the exception of Claude 3.5 Haiku.
In Java, Claude 3.5 Haiku achieved the highest success rate of 92.86%,
while models such as Claude 3.5 Sonnet, ChatGPT-4o, and ChatGPT-
4o-mini each reached 89.29%. For C++, the overall performance was
lower, with Claude 3.5 Haiku achieving 95.83% and Claude 3.5
Sonnet reaching 75%, whereas other models, including ChatGPT-4o,
Gemini 1.5 Flash, and ChatGPT-4o-mini, recorded success rates
around 60%. When we analyse the distribution across all models,
the average success rate for Java is 79.64% and for C++ is 57.3%,
with ranges from a minimum of 35.71% for Java and 27.08% for C++
(both observed in Llama 3.2) to a maximum of 92.86% for Java and
95.83% for C++ (both observed in Claude 3.5 Haiku).

Overall, these results not only demonstrate that the pipeline we
implemented effectively supports a comprehensive comparison of

LLMs for autonomous code repair, but also highlight the viability
of using LLMs for autonomous error correction.

5 DISCUSSION
Despite significant variation among the ten models, our experi-
ments show that LLMs exhibit promising potential for autonomously
repairing run-time errors, aligning with the self-healing princi-
ples of autonomic computing. Claude 3.5 Haiku emerged as the
top performer, achieving a success rate of 94.74%, while Llama
3.2 recorded the lowest at 30.26%. This disparity underscores the
effects of differences in model architecture, training data, and op-
timization strategies. Thus, a hybrid approach that leverages the
strengths of multiple LLMs may deliver more robust and reliable
performance—especially in critical systems where even a minor
failure in error correction could have severe consequences.

Our analysis also revealed variations in performance across pro-
gramming languages. Overall, Java problems tended to achieve
higher success rates compared to C++ problems. This may be at-
tributed to biases in training data or inherent differences in the
complexity of Java versus C++ problems. Furthermore, we observed
that several models, especially with C++ problems, occasionally
produced extraneous text in their code responses. This issue, likely
stemming from misinterpretations of additional key-value fields
in the prompts, sometimes led to failed submissions. Improving
prompt engineering to eliminate such extraneous outputs repre-
sents an important area for enhancing model performance.

We opted not to fully automate our testing pipeline because we
wanted to focus exclusively on problems that generated exceptions.
An alternative approach would have been to automate the entire
process, execute all problems, automatically identify those that
produce exceptions, and then consider only those for evaluation.
An automated testing pipeline, though currently unfeasible due to
Leetcode’s undisclosed test cases, would be a valuable enhancement
for future studies. Developing such an automated framework could
streamline evaluations and improve accuracy.

EASE 2025, 17–20 June, 2025, Istanbul, Turkey Bucaioni et al.

5.1 Threats to validity
Regarding internal validity, our manual approach to test and data
collection introduces the potential for human error. Moreover, the
limited number of problems in our dataset can create a bias in the
reported success rates. External validity threats may also arise
from our dataset’s limitations. Since our dataset is exclusively
sourced from Leetcode and focuses only on two programming
languages—C++ and Java—the findings may not generalize to other
languages such as Python or JavaScript, nor to more complex ap-
plications. In addition, the LLMs evaluated in our study represent
only a subset of available models, and their performance might not
reflect other LLMs or future iterations. Regarding conclusion valid-
ity, although the 76 programming problems provide a meaningful
sample, a larger dataset would enhance the generalizability of our
results and support more robust conclusions.

6 CONCLUSION AND LOOKING AHEAD
To the best of our knowledge, our study is the first peer-reviewed
research that explicitly benchmarks ten LLMs for run-time error
repair. The results confirm that LLMs hold significant promise
for autonomously repairing run-time errors, thereby contribut-
ing to the evolution of self-healing software. While challenges
remain—particularly in achieving consistent performance across
diverse models and programming languages—our work lays a solid
foundation for future research and practical implementations in
AI-driven, self-healing software systems.

By benchmarking a diverse set of LLMs, our study underscores
the importance of further research into hybrid approaches that
combine multiple models to overcome individual weaknesses. Such
integrated systems could be especially beneficial in safety-critical
domains, such as aerospace or medical software, where reliability
is of utmost importance. To this end, several technical approaches
warrant investigation. One possible direction is to develop ensemble
techniques and voting mechanisms, where outputs from different
LLMs are combined through weighted voting or consensus meth-
ods. In this context, researchers could focus on dynamic weighting
schemes or decision layers that adaptively prioritize outputs based
on e.g., context, confidence scores, or historical performance. An-
other direction is the integration of multiple LLMs into structured
pipelines. Such pipelines would allow for a multi-stage process
where different models have different roles (e.g., one model diag-
noses the error, another suggests a fix), possibly integrating feed-
back loops to achieve iterative refinement. Moreover, cooperative
reasoning among models presents an exciting avenue for explo-
ration. By employing chain-of-thought strategies, models could
collaborate—using sequential processing where one model’s output
informs the next or through protocols for inter-model communi-
cation—to synergize their reasoning processes and generate more
robust solutions. These directions not only aim to harness the com-
plementary strengths of multiple LLMs, but also address the chal-
lenges of achieving consistent, scalable, and reliable autonomous
code repair in real-world scenarios.

Building on the above results, future research could focus on
developing a comprehensive LLM-based agent that autonomously
monitors software execution, detects anomalies or failures, and

triggers a self-healing process. This process would involve captur-
ing contextual information about the failure, querying a LLM (or a
combination of them) for potential fixes, and then dynamically inte-
grating the generated code into the running system. Such an agent
would not only react to errors as they occur, but also continuously
learn from its environment, improving its repair strategies over
time. Researchers could further explore adaptive mechanisms for
error detection, where the agent uses historical data and real-time
metrics to predict potential failure points before they lead to run-
time errors. In parallel, developing robust methods for validating
the generated fixes—possibly through a combination of automated
testing and runtime monitoring—would be crucial to ensure that
the self-healing process does not introduce new issues.

In addition, future work could explore expanding the dataset
to include more diverse and complex software systems as well as
additional programming languages. Automating the testing process
would help reduce human error and improve evaluation efficiency.
Further analysis of model performance by error type could reveal
important insights, as different error categories may significantly
impact repair success. Finally, investigating the inference time of
each model across various problem types could inform trade-offs
between accuracy and responsiveness.

7 DATA AVAILABILITY
We provide a public replication package at the following repository
https://zenodo.org/records/14871706

REFERENCES
[1] Alessio Bucaioni, Hampus Ekedahl, Vilma Helander, and Phuong T Nguyen.

2024. Programming with ChatGPT: How far can we go? Machine Learning with
Applications 15 (2024), 100526.

[2] Yuxiao Chen, Jingzheng Wu, Xiang Ling, Changjiang Li, Zhiqing Rui, Tianyue
Luo, and Yanjun Wu. 2024. When Large Language Models Confront Repository-
Level Automatic Program Repair: How Well They Done?. In Proceedings of the
2024 IEEE/ACM 46th International Conference on Software Engineering: Companion
Proceedings. 459–471.

[3] McKinsey & Company. 2025. How an AI-enabled software product development
life cycle will fuel innovation. https://www.mckinsey.com/industries/technology-
media-and-telecommunications/our-insights/how-an-ai-enabled-software-
product-development-life-cycle-will-fuel-innovation Accessed: 2025-03-04.

[4] David de Fitero-Dominguez, Eva Garcia-Lopez, Antonio Garcia-Cabot, and Jose-
Javier Martinez-Herraiz. 2024. Enhanced automated code vulnerability repair
using large language models. arXiv preprint arXiv:2401.03741 (2024).

[5] Josu Diaz-de Arcaya, Juan López-de Armentia, Gorka Zárate, and Ana I Torre-
Bastida. 2024. Towards the self-healing of Infrastructure as Code projects using
constrained LLM technologies. In Proceedings of the 5th ACM/IEEE International
Workshop on Automated Program Repair. 22–25.

[6] David Garlan and Bradley Schmerl. 2002. Model-based adaptation for self-healing
systems. In Proceedings of the first workshop on Self-healing systems. 27–32.

[7] Vahid Garousi, Michael Felderer, Marco Kuhrmann, Kadir Herkiloğlu, and Sigrid
Eldh. 2020. Exploring the industry’s challenges in software testing: An empirical
study. Journal of Software: Evolution and Process 32, 8 (2020), e2251.

[8] Ridhi Jain, Nicole Gervasoni, Mthandazo Ndhlovu, and Sanjay Rawat. 2023. A
code centric evaluation of c/c++ vulnerability datasets for deep learning based vul-
nerability detection techniques. In Proceedings of the 16th Innovations in Software
Engineering Conference. 1–10.

[9] Franco Zambonelli, Nicola Bicocchi, Giacomo Cabri, Letizia Leonardi, and Mari-
achiara Puviani. 2011. On self-adaptation, self-expression, and self-awareness
in autonomic service component ensembles. In 2011 Fifth IEEE Conference on
Self-Adaptive and Self-Organizing Systems Workshops. IEEE, 108–113.

[10] Lan Zhang, Qingtian Zou, Anoop Singhal, Xiaoyan Sun, and Peng Liu. 2024.
Evaluating Large Language Models for Real-World Vulnerability Repair in C/C++
Code. In Proceedings of the 10th ACM International Workshop on Security and
Privacy Analytics. 49–58.

https://zenodo.org/records/14871706
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/how-an-ai-enabled-software-product-development-life-cycle-will-fuel-innovation
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/how-an-ai-enabled-software-product-development-life-cycle-will-fuel-innovation
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/how-an-ai-enabled-software-product-development-life-cycle-will-fuel-innovation

	Abstract
	1 Introduction
	2 Related Work
	3 The Pipeline for Benchmarking LLMs on Autonomous Code Repair
	3.1 Implementing the Pipeline

	4 Experimental Results and Analysis
	5 Discussion
	5.1 Threats to validity

	6 Conclusion and Looking Ahead
	7 Data availability
	References

