
www.embedded-world.eu 

 

•  

Integrating Security and Safety with Systems 

Engineering: a Model-Based Approach

Matthias Bergler 

Technische Hochschule Nürnberg 

Nürnberg, Germany 

 matthias.bergler@th-nuernberg.de 

Juha-Pekka Tolvanen 

MetaCase 

Jyväskylä, Finland 

jpt@metacase.com 

 

Ramin Tavakoli Kolagari 

Technische Hochschule Nürnberg 

Nürnberg, Germany 

ramin.tavakolikolagari@th-nuernberg.de 

 
Abstract—Development of reliable systems requires that safety 

and security concerns are acknowledged during system 

development. Adding them afterwards is risky as many concerns 

are missed if not elicited together with the system requirements. 

Unfortunately, languages for systems engineering, like SysML, 

typically ignore security and safety forcing development teams to 

split the work into different formats, languages and tools without 

easy collaboration, with limited traceability, separate versioning 

and restricted use of automation that tools can provide. We 

present a model-based approach targeting automotive that 

integrates safety and security aspects with other system 

development practices. This is achieved via a comprehensive 

domain-specific modeling language that is extendable by language 

users. We demonstrate this approach with practical examples on 

how security and safety concerns are recognized along with 

traditional system design and analysis phases.  

Keywords—model-based development; security, safety, domain-

specific language; system engineering; software engineering 

I.  INTRODUCTION 

The development of reliable systems requires the 
consideration of safety aspects during system development. 
Adding them afterwards is difficult and error-prone, as 
important stakeholder concerns can be lost. Unfortunately, 
systems engineering languages such as SysML [12] typically 
ignore safety and security, forcing development teams to divide 
the work into distinct subsections: Safety and security are 
defined in different formalisms and languages, without clear 
traceability, collaborative work and use of other automations 
that tools can provide. 

We present a model-based approach targeting the 
automotive domain that integrates safety and security aspects 
into the rest of system development practices. This is achieved 
through a modeling language that combines systems engineering 
concepts with those of safety and security. Thus, modeling is not 
only about specifying a system with blocks, signal connections, 
etc., but at the language level, security-relevant aspects such as 
attacks and vulnerabilities as well as safety-relevant aspects such 
as hazardous events and feature flaws are considered too. Safety 
and security are thus directly present in the development 
language as first-class citizens, just like the other aspects 
relevant for the specification and modeling of systems. 

Our work on integrated language development is based on 
collaborative work over several years with automotive 
companies, researchers, and tool providers [2]. We demonstrate 
the approach with practical examples on how security and safety 
concerns are recognized with system design — covering 
traceability and automatically conducting several relevant 
safety-related methods such as ISO26262 [4], FTA [8] and 
FMEA [13], and security-related methods such as vulnerability 
scores [3]. The integrated model-based approach helps to ensure 
that safety and security is done for the intended system currently 
being developed and assists engineers with automation that tools 
can provide, covering editing, tracing, versioning and various 
analysis and reporting. 

We start by presenting our solution by describing how the 
modeling languages are defined and integrated with existing 
languages. This is followed by case studies demonstrating the 
approach with practical examples. First, we describe how an 
existing automotive language is extended with security 
modeling: covering both attacks from the social engineering side 
and from the technical side. This is followed by describing 
language extensions for safety following strictly the functional 
safety as defined in ISO26262. For both language extensions we 
show examples on their use. We conclude by sharing our 
experiences on defining languages for safety and security. 

II. DEFINING MODELING LANGUAGES AND THEIR 

INTEGRATION  

In this section, we give a brief overview of the possibilities 
of describing modeling languages (Section II-A) and the 
underlying modeling concepts that have been considered in the 
creation of safety/security aspects in the automotive context in 
the present language (Section II-B and II-C). The section 
concludes with a summary of the major benefits of an integrated 
modeling approach (Section II-D). 

A. Metamodelling: description of the allowed structure and 

syntax 

All computer-based languages, including programming 
languages and modeling languages, are defined with some 
formalism. For model-based development the languages are 
typically defined by metamodels [6]. A metamodel describes the 
allowed structure and syntax with which we can create models. 
Consider Fig. 1 illustrating a very small fragment of the 



metamodel taken from SysML: A ‘Block’ has one Boolean 
property called ‘isEncapsulated’ to define if a block is treated as 
a black box element [12]. Based on this metamodel, the ‘Block’ 
does not have any other properties as those that are defined by 
its supertype ‘Class’— and these ‘Class’-specific properties are 
omitted from this small metamodel.  

Language definition normally also includes constraints to 
ensure that the created models are syntactically complete, 
correct and consistent. Some of these constraints are expressed 
directly in the metamodel whereas others are defined with 
additional scripts or constraint definitions. An example of the 
former is that an attribute is mandatory and an example of the 
latter that an element must have a certain number of connections. 

Definition of a general-purpose modeling language, like 
SysML or UML, contains hundreds of elements like ‘Class’ and 
‘Block’ and their properties like ‘isEncapsulated’. Although 
they can be considered as large languages neither of them covers 

aspects relevant to safety or security. For example, a common 
practice for safety engineering is defining fault trees and 
performing Fault Tree Analysis (FTA) [8]. Fault trees is also a 
language having own metamodel that is independent and thus 
unrelated with SysML. Fig. 2 illustrates a metamodel of the fault 
tree. This metamodel contains just a few elements but it still 
defines the complete FTA language: There are two types of 
events: a ‘Component event’ acting as a root for the fault tree 
and a number of ‘Basic events’ causing an error with some 
probability. Both elements have ‘Event name’ and ‘Description’ 
properties that are inherited from the abstract supertype ‘Event’. 
In addition, ‘Basic event’ has a ‘Probability’ property to indicate 
how often the event can occur. Third element is a ‘Gate’ to 
indicate relationships among these three elements. Gate has a 
property ‘Gate kind’ with values like AND, OR for Boolean 
logic. Finally, a ‘Link’ element allows relating a root component 
event to a ‘Gate’ and those can be again linked with other gates 
or basic events. 

In addition to the definition of a metamodel and related 
constraints, modeling languages also have notation for humans 
to create and read the models. Once notational symbols are 
given, a modern tool can provide the desired modeling support. 
Fig. 3 shows an example of fault tree modeling in a tool based 
on the metamodel defined in Fig. 2. This modeling editor, and 
related functionality, is provided automatically based on the 
language definition. In the example model ‘flat burns down’ is a 
component event that is the single root element, and there are 
two different types of gates with five different basic events. As 
basic events have failure probabilities, the tool can subsequently 
calculate the probability of the component failure.  

 If fault tree modeling should support other aspects, like link 
to other subtrees of faults the metamodel could be extended. 
Therefore, tools giving access to the metamodel (as in Fig. 2) 
enable users to extend the modeling capabilities directly without 
any lock or waiting for features from the tool vendor. This gives 
engineers tooling that can fit exactly to the needs and gives 
control over the ways systems are specified. Engineers using the 
tool can dictate, not tool providers. 

In our example, the metamodel of fault tree and SysML are, 
however, disconnected which is understandable as capturing 
risks and safety concerns were not targeted when SysML was 
defined. However, we can identify connections between these 
two languages. For example, the root component of the fault tree 
most likely should refer to at least one of the blocks in SysML 
so that failure of the system block could be measured. Also, if 
working in automotive systems and on their functional safety the 
modeling support should be able to express ‘Item’, ‘Hazard’, 
‘HazardousEvents’ that are all defined in the safety standard [4]. 
In the modeling approach presented in this paper, this desired 
connection between systems and safety as well as security 
modeling is fully supported via the language definition.  

We present next language extensions that cover security and 
safety concerns related to automotive systems using EAST-ADL 
language that is made for developing automotive systems [2]. 
The principle of language extension and the practices described 
here are not limited to any particular modeling language though. 

 

Fig. 1. Small part of SysML metamodel 

 

Fig. 2.  Complete metamodel of Fault Tree modeling language 



www.embedded-world.eu 

 

B. Security related capabilities of this approach 

Security Abstraction Model (SAM) targets representing 
security-related properties in automotive software systems. This 
modeling language enables a security analysis of attack vectors 
in the automotive sector and allows for an in-depth risk analysis. 
With SAM both potential attacks and countermeasures against 
these attacks can be specified. This allows the connection of 
security management and model-based systems engineering on 
an abstract description level according to the principles of 
automotive security modeling. SAM was defined based on 
security requirements from common industrial scenarios. It aims 
to be a solution for representing attack vectors on vehicles and 
provide a thorough security modeling for the automotive 
industry. 

SAM has a close link to the system architecture description 
via the modeling entity ‘Item’ being part of the architecture 
model of EAST-ADL, an Architecture Description Language, 
aligned with the AUTOSAR automotive standard [2]. Item 
refers to a number of features of an automotive system. SAM 
tries to present all important criteria of the attack vectors, from 
the adversary's motivation up to the security breach. This allows 
a system to be represented from a security perspective in the 
early software development phase. In addition to the ‘Attack 
motivations’, SAM also describes all intrinsic and temporal 

characteristics of an ‘Attack’, e.g., effects on the security 
objectives (confidentiality, availability, integrity, etc.), the 
complexity of the attack, the affected object and the 
‘Vulnerability’. The latest version of SAM address also social 
engineering attacks [1].  

Fig. 4 describes the metamodel of SAM. SAM acts as an 
extension to the EAST-ADL, because the EAST-ADL addresses 
relevant aspects of automotive systems (being a major 
requirement for security modeling that is not offered by 
languages like SysML [12] or AADL [15], which only offers 
feature modeling); especially the features of a vehicle of any 
kind. In addition, the EAST-ADL speaks directly about 
functional safety and ISO 26262 in its Dependability Model. 
SAM identifies the same ‘Item’, ‘Requirement’ and ‘Hazard’ 
from architecture and dependability modeling and relates them 
to ‘Attacks’ and ‘Security Concepts’. 

Although SAM is developed as part of the EAST-ADL, it is 
not necessarily bound to EAST-ADL. SAM as a metamodel is 
independent of other languages but for connectivity links to 
‘Item’ and ‘Requirement’ of the EAST-ADL. In addition, SAM 
can also be used independently of the rest of the system model 
to provide an overview of safety critical system parts before or 
at the beginning of the system engineering process. For more 
information about SAM please see [16][17]. 

 
 

Fig. 3. Fault tree modeling based on the metamodel defined in Fig. 2. 



Models created according to SAM permit calculating a 
vulnerability score based on the Common Vulnerability Scoring 
System [3]. This scoring system allows a qualitative 
representation (such as low, medium, high and critical) of the 
severity of an attack enabling prioritization in the vulnerability 
management process. First attempts were to implement a 
generator that transfers the model data to an online tool. 
However, since this would have required a longer modeling time 
due to the transfer to the online tool and a permanent internet 
connection, this idea was rejected. In the current version, the 
CVSS calculator is integrated directly into the SAM modeling 
tool MetaEdit+. The advantage of this is that no internet 
connection is required and the results can be viewed in real time 
next to the rest models. During the integration, we oriented 

ourselves to the color scheme of the CVSS. In this way, other 
analysis tools can also be integrated [1]. We demonstrate the use 
of the security modeling extension and CVSS calculation with 
examples in Section III. 

C. Safety-related capabilities of this approach 

To integrate aspects of functional safety, we followed 
functional safety standard ISO 26262 applied in automotive [4]. 
As in ISO 26262 an ‘Item’ is related to ‘Hazards’ and these are 
related to ‘Hazardous events’, which in turn can be classified 
according to ‘Severity’, ‘Exposure’ and ‘Controllability’. All 
these elements are also elements in the metamodel, like 
modeling objects or their properties. Fig. 5 shows the overview 
of the complete metamodel for dependability modeling for 
safety as defined in EAST-ADL. 

 

Fig. 4. Security metamodel. View Online at https://www.in.th-nuernberg.de/professors/BerglerMa/SAM/ 



www.embedded-world.eu 

 

The dependability package includes support for defining and 
classifying safety requirements through preliminary Hazard 
Analysis Risk Assessment (HARA), tracing and categorizing 
safety requirements according to their role in the safety life-
cycle, as well as formalizing safety requirements using safety 
constraints. The dependability package itself is an extension to 
the automotive architecture modeling language EAST-ADL 
which already covers the modeling support for features, 
functions, hardware and related allocations. This full metamodel 
is described at http://east-adl.info/Specification.html along with 
the new version currently under review.  

The metamodel shows how the integration with system 
architecture specification is established: the ‘Item’ (as defined in 
ISO 26262) is connected to features of the vehicle. As illustrated 
in Fig. 5 also constraints for this connection are defined making 
it mandatory (multiplicity is 1..*). In the metamodel of EAST-
ADL, these individual features and their subfeatures are again 
connected via their context to any element in system 
architecture, such as to HardwareComponentTypes or 
FunctionTypes. Another form of connecting dependability 

modeling for safety is to apply ‘Requirement’ defined already in 
EAST-ADL and relate it with ‘Safety Goals’ and ‘Feature 
Flaws’.  

To formalize and assess fault propagation within the system, 
the dependability package also includes support for error 
modeling and organizing evidence of safety in a Safety Case. 
These are defined also via metamodels albeit not presented in 
Fig. 5. The integration of the system developed, the nominal 
system, and the error models is defined in the metamodel with 
trace links. Also, to minimize the modeling effort, automated 
error model generation based on system models is possible - and 
described with examples in Section IV.  

D. Benefits from integrated languages 

Integration of security and safety concerns with the language 
for system development offers several benefits over using 
separated languages — and tools and formats:  

 

Fig. 5. Dependability package of the metamodel 



• Trace and analysis: A change in system engineering 
models or in safety/security-related models can be traced 
and analyzed. For example, all elements in system design 
that the safety-related ‘Item’ and its ‘Hazard’ can be 
related with can be identified. Similarly, if the system 
design is changed, e.g., by removing a feature, the related 
security or safety models can be identified and removed 
too — as they have become obsolete.  

• Collaboration: Access to the system design as well as to 
security and safety aspects enables collaboration with 
fast feedback loop. If the modeling tools are not file-
based, but apply a shared repository, then collaboration 
is even possible real-time. It is also up to tool features if 
access and collaboration is managed in some form, like 
allowing safety engineers to view system designs but not 
change them. 

• Versioning: All models can be versioned together. There 
is no need to work with possible different formats, 
versioning systems, or collect data from different sources 
to get the complete picture at a particular point of time.  

• Once the models share the same metamodel it is possible 
to run model checking and model transformations, like 
automatically produce initial safety models for the 
currently designed system. This way safety engineers 
don’t need to manually create all safety models and they 
can better assure that their safety analysis is based on the 
planned system. With traces they can also follow what 
changes are made in the planned system too. Also, 

security aspects can be analyzed in the same way such as 
calculating vulnerability scores as described with 
example in Section III. 

• Last and most importantly, security and safety design 
become tightly related to system designs sharing the 
same model structure. 

III. SECURITY EXAMPLE 

To illustrate the practical application, we show two scenarios 
of malware injections as examples for possible attacks: One via 
social engineering attacks and one via vehicle-to-vehicle attacks. 
In the first example an attacker attacks vehicle-to-vehicle 
communication in autonomous vehicles to install malware. The 
second attacker uses a social engineering attack to trick the 
owner into installing malicious software. 

Fig. 6. shows the first case on how vehicle-to-vehicle 
communication is used in autonomous driving vehicles to 
infiltrate malware into the attacked vehicle via an attacking 
vehicle and what suitable countermeasures are available. 
Autonomous vehicles must know themselves and their 
surroundings very well in order to navigate through traffic as 
safely as possible. This requires not only many sensors and their 
evaluated data, but also the ability to communicate with other 
vehicles (Vehicle 2 Vehicle) or their environment (Vehicle 2 
Everything) in an emergency. Many development projects in the 
field of autonomous driving are already taking place and aim to 
increase driving safety. But it is precisely the additional 
communication interfaces here that give rise to the possibility of 
attacks from outside: the attacker only must pose as a 

 

 

Fig. 6. Injecting Malware via V2V communication 



www.embedded-world.eu 

 

trustworthy vehicle or environmental object and can thus 
establish a data connection to the attacked vehicle. The attacker 
can then use this data connection to install malware or steal 
sensitive user data. Therefore, it must be ensured that both the 
communication between the vehicles is sufficiently 
authenticated beforehand and that the transmitted data is 
checked for possible attacks such as the direct installation of 
malware or access to internal program structures through a 
memory overflow.  

In the second example Fig. 7 shows a social engineering 
attack with the aim of getting the vehicle owner to update the 
infotainment system with malicious software. Due to the 
advanced digitization worldwide, more and more things are 
being done online without meeting the person opposite in 
person. It is also possible to install updates for infotainment 
systems simply from a downloaded file on a USB. However, this 
is precisely where the danger lies that one becomes the victim of 
a social engineering attack and corrupted software is installed on 
one's system, which serves as a gateway to further attacks. Fig. 
7 shows such an example. The attacker first spies on the vehicle 
type, license plate number and other details of the intended 
victim. Contact is then made with information about a required 
service update for the vehicle's on-board computer, which the 
owner can easily install himself. If the victim is persuaded, the 
attacker will send them the software via a fake website, a CD or 
a USB stick. The victim installs the malicious software and the 
attacker gains access to the system via a back door and can, for 
example, listen to calls made by the victim via the hands-free kit 
or use the navigation system to track the victim's location. 

Countermeasures for this would be, for example, an update lock, 
which only official car workshops can bypass with special 
devices, but also a warning from the infotainment system itself 
that no new one is necessary and thus warns the victim well 
before something is installed. To model this, the latest extension 
of the SAM metamodel for social engineering attacks was used 
(https://www.in.th-nuernberg.de/professors/BerglerMa/SAM/). 

Modeling support for safety covers calculating and 
displaying CVSS score for the attacked components. In Fig 7 the 
base and temporal scores are both ‘high’ for the vulnerability 
with values 8.8 and 8.1 respectively. While the calculations can 
be omitted, showing them at modeling time helps security 
engineers easier to identify possible weak points and initiate 
countermeasures as early as the design phase.  

Since SAM supports comprehensive threat modeling that 
captures very detailed interrelationships between the properties 
of the attack and the vulnerability as well as their relationships 
to the architecture, some of which are not known in practice or 
should not be captured in all details for pragmatic reasons, a 
step-by-step approach to modeling with SAM makes sense. 
Therefore, we introduce different levels of modeling details, 
where Level 1 only models the motivation of the attacker, 
whereas Levels 2 and 3 are based on more details and 
information and thus enable a better representation of the threat 
situation; of course, this more detailed representation is 
accompanied by a higher development effort. Modeling tool also 
assist here security engineer to complete the specification by 
informing what elements can be considered next. 

 
 

Fig. 7. Injecting Maleware via Social Engineering Attack 



 

Level 1 is an entry level when working with SAM. It is to be 
used if only the motivation of the attacker is known about the 
attack(s) in question. This information already allows a 
pragmatic overview of the situation, a reference to the 
architecture of the automotive software system and an 
assessment of the severity of the attack, which is particularly 
relevant from a management perspective. As in Fig. 8, in Level 
1 only the motivation is specified; specifically, this is one (or 
more) of the subclasses of ‘AttackMotivation’, i.e. either 
‘Harm’, ‘InformationRetrieval’, ‘ProductModification’ or 
‘FinancialGain’. 

The link between attack motivation and item plays a central 
role here. It arises from considerations of which item(s) is/are 
endangered by the attack. In Level 1, no details are known yet, 
so the item can be an umbrella term. For example, it is known 
that the car's bus system needs to be attacked for a given attack. 
However, it is not yet possible to say exactly which items are 
affected. Therefore, a "bus system" item can be created that 
includes a group of items. However, the item must be specified 
because it forms the connection to the rest of the automotive 
software architecture. Without the item, the threat modeling 
would be detached and would have no context to the rest of the 
architecture. 

At Level 2, a more detailed threat analysis already takes 
place. The methodical orientation on Level 2 is recommended as 
soon as details about the attack are known, especially regarding 
the attribute ‘breaksSecurityGoal’. The collection of (selected) 
details about the attack(s) are on the one hand not very time-
consuming, but on the other hand offer a significantly better 
assessment of the threat situation compared to Level 1, since the 
focus of analysis is now no longer on human experience, but on 
technical feasibility. The entity Attack inherits the attribute 
breaksSecurityGoals of AttackMotivation. However, it is 
important to note that a single motivation for an attack can be 
divided into several subattacks, which can have different 
breaksSecurityGoals. 

In addition to the breaksSecurityGoals, the reference to the 
followUpAttacks must also be modeled and the reference to the 
affected item must be established. The risk associated with the 
attack can be assessed qualitatively (which SecurityGoals are 
broken) or quantitatively (how many SecurityGoals are broken); 
this represents an improved assessment compared to Level 1, 

where the analysis is only carried out based on the motivation of 
the attack. 

A better assessment of the severity of an attack results from 
the calculation of a score, for example analogous to the Common 
Vulnerability Scoring System (CVSS, see level 3). Level 2 is not 
detailed enough to calculate this score, but an initial assessment 
based on the experience of security experts can already be made 
and documented in the Score entity. To make it clear that this 
score is experience-based and has not been calculated, the 
attribute ‘calculationFormula’ is left empty in this case. Score 
can be omitted if no experience values are available. 

ISO/SAE 21434 has been in place since 2021 to ensure a 
complete risk assessment analysis of cyber-attacks on vehicle 
systems [5]. This standard was developed because of the need to 
counteract against cyber-attacks due to the increasing 
networking of vehicle systems. The standard is related to the 
UNECE regulation R 155 "Cyber security and cyber security 
management system". The application of ISO 21434 is 
considered as a building block to facilitate certification. 
However, ISO 21434 does not cover all the requirements of R 

 

Fig. 9. Level 2 Representation of an attack in SAM 

 

Fig. 8. Level 1 Representation of an attack in SAM 



www.embedded-world.eu 

 

155. To develop a reporting system for SAM that is 
understandable for different viewers, it makes sense to do this 
based on ISO 21434. The main steps in performing an ISO/SAE 
21434 compliant threat analysis and risk assessment are (in order 
of an idealized linear execution): 

1. Item Definition (Section 9.3) 

2. Asset Identification (Section 15.3) 

3. Identification of threat scenarios (Section 15.4) 

4. Impact Rating (Section 15.5) 

5. Attack Path Analysis (Section 15.6) 

6. Attack Feasibility Rating (Section 15.7) 

7. Risk Value Determination (Section 15.8) 

8. Risk Treatment Decision (Section 15.9) 

9. Cyber Security Goals (Section 9.4) [WP-09-03 & RQ-09-07] 

10. Cyber Security Claims [WP-09-04 & RQ-09-06] 

11. Cyber Security Concept (Section 9.5) 

Most of the points listed are already implemented by SAM, 
including points 1, 2, 3, 4, 9, 10 & 11. Therefore, only the 
following points 5, 6, 7 & 8 have to be added to SAM to be able 
to create a reporting system based on ISO 21434. The points 9 
to 11 are also fulfilled by the fact that they are applied 
holistically and not just domain-specifically and thus also cover 
the aspect of cybersecur1ity. 

IV. SAFETY EXAMPLE 

We focus next on safety and illustrate dependability 
modeling, error modeling and automated FTA/FMEA analysis 
that are possible due to metamodel extensions for safety. Fig. 10 
shows the dependability model for PowerWindowController. 
This dependability model closely follows functional safety 
standard ISO26262 as has been defined in the metamodel (see 
Fig 5). In top of Fig. 10, PowerWindowController is considered 
as an item. Next, a hazard ‘Window obstacle not detected’ is 
specified and related to HazardousEvent ‘Window does not 
stop’. This Hazardous event is related to the use case that 
window action is requested. It may also be linked - albeit not 
described in the Fig. 10 - to other scenarios linked to traffic 
situation, environment or to operating mode. In other words, the 
model follows the metamodel as defined based on ISO 26262. 

The example also describes the work on hazard analysis in 
which Severity, Exposure and Controllability and ASIL values 
are being defined. The dependability model also defines the 
safety goal with a safe state “PreventMovement”. It reduces the 
ASIL level to an acceptable level (B) with Requirements #7 and 
#9 that are already defined in the requirements model. 

Thanks to the integrated metamodel safety design is not 
separated from the rest of the systems modeling. The integration 
is achieved by an ‘Item’ called PowerWindowController that, 
according to the metamodel, can refer to one or more features. 
In our example the item refers to the PowerWindow feature of 
the vehicle. This feature is defined in the feature model of 
EAST-ADL and is illustrated in Fig. 11. 

The features of Power Window are defined by systems 
engineers along with its functional architecture (as illustrated in 
Fig 12). Features in the feature model map to individual 
elements in the functional architecture. This enables traceability 
between system designs and safety designs. 

System design as in Fig. 12, however, is not directly suitable 
for safety design as it does not identify and capture typical safety 
aspects like faults, failures or failure rates. Design models also 
include information that is not relevant for safety work adding 
unnecessary complexity for safety engineers. Consider for 
example the small system illustrated in Fig. 12. It shows the 
functional architecture of a PowerWindow controller: its 
functions, ports and connections among them. Functions are 
classified, have a more detailed internal hierarchical structure, 
and their ports have interfaces and data types. Some of these 
aspects, like classification of functions or data type definitions, 
are not directly relevant in safety design, but are necessary to 
generate the implementation (like AUTOSAR ARXML, 
Simulink models etc.). 

 
 

Fig. 10. Dependability model of PowerWIndowController 



Adding safety-related information, like faults or failure 
logic, directly to the design model is often not practical because 
it would quickly make the model complex with too many details. 
For safety analysis, unlike design, we also usually need several 
models covering different analysis scenarios. One solution is to 
generate the initial safety models from design specifications. For 
example, Fig. 13 shows the result of such a transformation: an 
initial error model produced from the system design shown in 
Fig. 12. The error model is then detailed for safety analysis 
focusing on failures, faults, and error types. Safety engineers 
may then add error behavior to this model or add other aspects 
of safety, like e.g., in Fig. 13 a FailureOut port is added to 
analyze an error on obstacle detection (top right in the model 
with blue thick border for propagation). 

With error modeling, safety engineers can specify various 
faults and failure logic without changing the actual system 
designs. Yet, there is a link from error models back to nominal 
planned system descriptions. As error models can specify failure 
logic (Boolean and temporal) the models also serve as the basis 

for automated Fault Tree Analysis (FTA) and Failure Modes and 
Effects Analysis (FMEA) [8][13]. This means that rather than 
creating fault tree diagrams manually (as in Fig. 3 earlier), they 
can be generated. For this purpose, we implemented model 
transformation that takes error models and translates them to the 
formats needed by FTA/FMEA tools. Since the transformations 
are fully automated the cost and effort to carry FTA and FMEA 
are greatly reduced. Fig. 14 shows the result of running the 
transformation from error models to analysis tools for FMEA.    

 Development of safety-critical functions with the model-
based approach starts with hazard analysis and risk assessment 
in the dependability model, is detailed with error models for 
FMEA, and ends with verification of safety goals and safety 
requirements. Since models contain the needed information, it is 
possible to generate the documents like functional and technical 
safety concepts as well as verification and validation of safety 
goals (as done e.g., in [14]).  

 

Fig. 12. Functional architecture of PowerWindow controller 

 

Fig. 11. Features of power window 



www.embedded-world.eu 

 

These automations make safety work easier and faster to do 
as well as reduce manual error-prone routine tasks. Perhaps most 
importantly, they enable feedback from safety analysis earlier to 
be acknowledged in the system design. 

V. EXPERIENCES ON THE LANGUAGE DEFINITION 

Our efforts on implementing security and safety modeling 
have been related to existing automotive system development 

language, namely to EAST-ADL. For this reason, the actual 
language implementation required us to only specify the 
extensions (as in Fig. 4 and 5) and link them to the existing 
metamodel. The effort and process would be largely the same as 
if these would be added to other languages, like to AADL or 
SysML - given that these languages would have language 
constructs (elements in the metamodel) that are suitable for 
extension and integration with safety and security. 

 

Fig. 13. Functional architecture of PowerWindow controller 

 

 
 

Fig. 14. Results of fault tree analysis and failure modes and effects analysis. 



The language definition steps consist of: 

1. Defining the metamodel for the extensions and linking 
them with the existing language definition. Linking 
enables reuse, references and traces between model 
elements. 

2. Setting constraints to keep specifications consistent and 
ensure syntactic completeness and correctness. 

3. Defining notation that fits or resembles the domain 
being addressed (e.g., safety, security). 

4. Implementing generators for model checking and trace 
as well as producing various kinds of artifacts like data 
for FMEA or CVSS. 

In this paper we described the first two steps via the 
metamodel in Section II. Defining the notation in step 3 deals 
with symbol definitions and the work by Moody [10] can be 
applied directly here. The actual implementation of notations 
then varies on tools as some require programming them whereas 
for others they can be imported as images without much 
additional work [9]. 

The last step on generators then brings in more automation 
possibilities for checking, tracing, reporting and generating 
code, simulations etc. In our case the generators targeted 
external tools for performing Failure Mode and Effects Analysis 
(FMEA) as well as calculating vulnerability scores. In both cases 
implementing the actual generators were straightforward as for 
both needs specifications of the formats to be generated were 
available. The second kind of generators were those reporting 
the work in trace reports or various other documents. These were 
performed in the same MetaEdit+ tool.  

The effort to create modeling support goes mostly to 
identifying and testing the suitable level of abstraction. We did 
not measure the effort on the safety side, but for the security side 
after having the initial metamodel (as in Fig. 4), its 
implementation into a modeling tool was done in the period of 
two calendar weeks by one person. Verification and validation 
were done by other people using the language for typical 
modeling cases. 

It is important to note that if the tools provide access to the 
language definitions the modeling support can be extended 
incrementally based on the needs. For example, both the 
metamodel definitions addressing security and safety have 
evolved because of the changes in the modeling requirements 
and because learning from the language usage. This makes the 
suggested approach also future proof as we already know that 
possible new requirements can be addressed. Access to the 
metamodel and generators also gives possibilities to adapt the 
support for company specific needs - as described in [14]. We 
are also aware of a case in developing ADAS systems in which 
modeling support of EAST-ADL is extended with concepts like 
Safety Measures. 

VI. CONCLUSIONS 

We have presented a model-based approach for integrating 
safety and security concerns with the rest of system 
development. This is achieved via an integrated modeling 
language that provides modeling support for safety and security 

at language level similarly we have got used to with traditional 
system and software modeling languages. We demonstrated our 
approach been applied with practical examples. The benefits of 
integration include: 

• Collaborative development: Access to the system design as 
well as to security and safety aspects enables collaboration 
with fast feedback loop. 

• Trace and analysis are possible — even at modeling time — 
between different aspects of the developed system.  

• All work items can be versioned together. There is no need 
to work with possible different formats, versioning systems, 
or collect data from different sources to get a complete 
picture. 

• Automated analysis and transformations: combined models 
can be used as input for checking and model transformations, 
like automatically producing initial safety models for the 
currently planned system design.  

• Security and safety design becomes tightly related to system 
designs sharing the same model structure. 

With EAST-ADL and its extensions these benefits are 
already available [2], but the same principles can be applied if 
other modeling languages would be extended. For example, 
extend SysML instead of EAST-ADL, or add metamodel of 
RAAML from [11] instead of the dependability metamodel of 
EAST-ADL. 

REFERENCES 

[1] Bergler, M. et al. Social Engineering Exploits in Automotive Software 
Security: Modeling Human-targeted Attacks with SAM. Proceedings of 
the 31st European Safety and Reliability Conference (ESREL 2021), 2021 

[2] EAST-ADL, 2021, http://www.east-adl.info/Specification.html 
[Accessed 21 April 2022]. 

[3] First, Common Vulnerability Scoring System version 3.1: Specification 
Document, 2019, https://www.first.org/cvss/specification-document 
[Accessed 21 April 2022]. 

[4] ISO Functional Safety, 26262-1, 2018  

[5] ISO/SAE 21434:2021 - “Road vehicles - Cybersecurity engineering” 
https://www.iso.org/standard/70918.html [Accessed 16 May 2022] 

[6] Kelly, S., Tolvanen, J.-P., Domain-Specific Modeling: Enabling full code 
generation, Wiley-IEEE Computer Society Press, 2008 

[7] Kritzinger, D., Fault tree analysis, in Aircraft System Safety, Elsevier, 
2017 

[8] Lee, W. S., Grosh, D. L., Tillman, F. A., Lie C. H., Fault Tree Analysis, 
Methods, and Applications - A Review. IEEE Transactions on Reliability, 
Volume: R-34, Issue: 3, Aug. 1985. 

[9] MetaCase, MetaEdit+ User’s Guide. [Online]. Available at: 
https://metacase.com/support/55/manuals/, 2018 [Accessed 21 April 
2022]. 

[10] Moody, D., The Physics of Notations: Toward a Scientific Basis for 
Constructing Visual Notations in Software Engineering, IEEE 
Transactions on Software Engineering, vol. 35, no. 6, 2009. 

[11] OMG, Risk Analysis and Assessment Modeling Language (RAAML), 
https://www.omg.org/spec/RAAML/1.0/Beta1/PDF, 2021 [Accessed 21 
Jan 2022]. 

[12] OMG, System Modeling Language, version 1.6. [online] Available at: 
https://www.omg.org/spec/SysML/, 2019 [Accessed 21 April 2022] 

[13] Reifer, D., Software Failure Modes and Effects Analysis, IEEE 
Transactions on Reliability, Volume: R-28, Issue: 3, 1979.  



www.embedded-world.eu 

 

[14] Sari, B., Fail-Operational Safety Architecture for ADAS/AD Systems and 
a Model-driven Approach for Dependent Failure Analysis. Springer, 
2020. 

[15] SEI, Architecture Analysis and Design Language (AADL), 
https://www.sei.cmu.edu/our-
work/projects/display.cfm?customel_datapageid_4050=191439,191439 
[Accessed 13 May 2022] 

[16] Zoppelt, M. Tavakoli Kolagari, R., SAM: A Security Abstraction Model 
for Automotive Software Systems, ISSA/CSITS@ESORICS, 2018. 

[17] Zoppelt, M., Tavakoli Kolagari, R., UnCle SAM: Modeling Cloud 
Attacks with the Automotive Security Abstraction Model, 2019. 

 

 


