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Abstract—Context: Federated Learning (FL) has emerged as
a promising, massively distributed way to train a joint deep
model across numerous edge devices, ensuring user data privacy
by retaining it on the device. In FL, Hyperparameters (HP)
significantly affect the training overhead regarding computation
and transmission time, computation and transmission load, as
well as model accuracy. This paper presents a novel approach
where Hyperparameters Optimization (HPO) is used to optimize
the performance of the FL model for Speech Emotion Recognition
(SER) application. To solve this problem, both Single-Objective
Optimization (SOO) and Multi-Objective Optimization (MOO)
models are developed and evaluated. The optimization model
includes two objectives: accuracy and total execution time.
Numerical results show that optimal Hyperparameters (HP)
settings allow for improving both the accuracy of the model and
its computation time. The proposed method assists FL system
designers in finding optimal parameters setup, allowing them to
carry out model design and development efficiently depending
on their goals.

Index Terms—Federated Learning, Hyperparameters Opti-
mization, Speech Emotion Recognition

I. INTRODUCTION

Traditional Machine Learning (ML) approaches require
training data gathered at a central location where the learning
algorithm runs. In real-world scenarios, however, training data
is often subject to privacy or regulatory constraints restricting
how data can be shared, used, and transmitted. Federated
learning (FL), first proposed in [1], has recently become a
popular approach to address privacy concerns by allowing
collaborative training of ML models among multiple parties
where each party can keep its data private.

In the context of deploying the SER model on-device and
emphasizing user privacy, we investigate the feasibility of
using FL to train speech models directly on users’ devices. FL
is a decentralized training approach that eliminates the need
to transmit raw user data to central servers. Instead, user data
is stored in an on-device training cache, allowing local train-
ing iterations. FL optimization occurs through synchronous
training rounds, where a group of clients (devices) contributes
updates to a central model. FL has already demonstrated suc-
cessful deployment in various large-scale production systems
for tasks such as emoji prediction [2], next-word prediction
[3], and query suggestion [4].

Since FL involves training models across multiple decen-
tralized devices, careful selection of hyperparameters becomes
essential for effective coordination and optimization. The
choice of hyperparameters, such as learning rate, batch size,
and regularization strength, directly impacts the convergence
speed, communication efficiency, and model accuracy in FL
settings.

While HPO is extensively researched in the centralized
ML context, it introduces distinct challenges when applied to
the FL environment. Firstly, most HPO techniques designed
for centralized training harness the entire dataset, which is
inaccessible in FL due to clients only having their local data.
Secondly, these techniques entail training multiple models
across various HP configurations. This approach can be ex-
orbitantly costly in terms of both communication and training
time within FL scenarios. The selection of an appropriate HPO
algorithm is often contingent on the specific use-case, with
notable algorithms including grid and random search, Bayesian
optimization, evolutionary algorithms, reinforcement learning,
gradient-based optimization, and multi-fidelity optimization.
For a detailed review of HPO strategies, their classifications,
and applications, especially in the context of FL, refer to [4]–
[9].

This paper seeks to automate the selection of optimal
hyperparameters for the FL model, targeting enhancements in
both accuracy and total computation time. Our approach in-
volves tackling both Single-Objective Optimization (SOO) and
Multi-Objective Optimization (MOO) problems, considering
constraints on predefined hyperparameters. These constraints
encompass client-specific training parameters like learning
rate, local epochs, batch size, and global FL system design
parameters, including the number of global epochs and the
client division factor.

We propose a novel method that simultaneously fine-tunes
hyperparameters across two categories: local training param-
eters and global FL system design parameters. The presented
outcomes stem from a constrained model concerning its fea-
sibility space and the deterministic optimization algorithm
employed. The primary objective was to authenticate and
evaluate this fresh approach, utilizing HPO to amplify the
performance of an SER FL model. It’s worth noting that the
scope of this study does not encompass the selection of the



most proficient optimization algorithm, which is earmarked for
future exploration.

The remainder of this paper unfolds as follows: Section
II delves into foundational concepts surrounding SER, FL,
and HPO. In Section III, we delineate the system design.
Experimental results from our proposed method are presented
in Section IV. We wrap up with conclusions and potential
avenues for future work in Section V.

II. BACKGROUND

This section aims to provide a general overview and back-
ground of SER, FL, and HPO.

A. Speech Emotion Recognition
Speech Emotion Recognition (SER) was proposed for the

first time in [10] and has attracted much attention since then.
Several factors contribute to definitions of emotion, including
personal experiences, physiologic reactions, and behavioural
responses. According to these definitions, two types of SER
models have been developed: discrete emotional models and
dimensional emotional models. Discrete emotions are cate-
gorized into six categories: sadness, happiness, fear, anger,
disgust, and surprise. A majority of existing SER systems are
based on discrete emotion categories.

Generally, SER consists of three components: speech signal
acquisition, feature extraction, and classifiers to identify emo-
tions. Building SER classifiers require significant amounts of
data, including sensitive personal information such as speech
signals. However, centralized storage of this data presents
privacy risks. To mitigate these risks, FL is a promising
solution that allows models to be trained collaboratively on
decentralized devices without the need to transfer raw data
[11].

B. Federated Learning
Federated Learning (FL) is a distributed ML technique that

trains the model on a large dataset distributed among multiple
devices or clients rather than on a centralized server [1]. This
allows training the models on large datasets that would not fit
on a single device and also helps protect the data’s privacy by
keeping it on the device. According to Fig. 1, the FL system
for SER application is composed of clients {C1, ..., Cn} like
mobile phones, laptops, and TV, which perform SER models
on devices without sharing speech data {D1, ..., Dn} with the
central server. As shown in Fig. 1, three steps are generally
involved in FL training.

• Step 1: Central server shares the initialized global SER
model and assigns it to selected clients by specifying
training parameters.

• Step 2: Clients update their local SER model parameters
using their own speech data and the global model. When
the client’s loss function is minimized, Wi is sent to the
server for updates.

• Step 3: Server aggregate the local models Wi and return
the updated global model WG to clients.

Steps 2-3 are repeated until a satisfactory level of accuracy
has been achieved, or the global loss function has converged.

C. Hyperparameters Optimization

In general words, Hyperparameter Optimization (HPO) for
ML is the process of finding a set of hyperparameters to
achieve minimum loss or maximum accuracy of the objective
network. The rigorous definition of the HPO in the general
case could be found at [5]. The problem of HPO for ML has
a long history, and it was also established early that different
hyperparameter configurations tend to work best for different
datasets [5], [12]. Besides that, HPO can be used to adapt
general-purpose pipelines to specific application domains, and
it is also widely acknowledged that tuned hyperparameters
improve over the default setting provided by common ML
libraries.

As Fig. 1 shows, FL models have complex structures
based on several parameters and computationally demanding
algorithms. Training of underlying ML models, which is done
locally using the dataset of each client, is quite a challeng-
ing and computationally heavy task. Besides this local step,
sending model parameters to the central server and receiving
the updated parameters in each round of training, in addition
to the aggregation process, are contributing to complexity. FL
models’ performance and complexity are partly affected by
the choice of a certain set of parameters.

HPO is used in FL as an instrument for enhancing its
performance. While Federated Optimization is one known
case, a literature search suggests some recent studies where
HPO was used to optimize hyperparameters of FL systems of
different kinds: neural architectural and non-architectural hy-
perparameters. Regarding optimization of NN architecture, [9]
gives a rather comprehensive survey on parameters and neural
architecture search (NAS) approaches based on reinforcement
learning, evolutionary algorithms, and gradient-based methods.
Concerning non-architectural parameters, since the learning
rate has a great impact on the accuracy of the NN algorithms,
it is mostly used as an optimization variable in current research
in this field, [13]–[15], etc. Besides that, the number of
iterations in the Stochastic Gradient Descent (SGD) method
[15], weight decay, momentum, and patch drop-out, [13] are
optimized. In paper [13], both types of hyperparameters are
optimized simultaneously: non-architectural and those related
to cell-based architecture, which is a significant contribution.

In a vein similar to the work of Seng et al. [13], this
paper proposes a method that optimizes two categories of
hyperparameters, illustrated in Fig. 1. These are the training
or non-architectural parameters (like learning rate, batch size,
and the number of local epochs) and the global FL system
design parameters (such as the number of global epochs and
client division factor). It is essential to highlight that while
there are parallels, discernible differences exist between the
two studies regarding the hyperparameters considered. Unlike
[13], our second set of parameters does not pertain to the
neural architecture and even our roster of non-architectural
parameters exhibits variation.

In this study, we singularly address the HPO problem, striv-
ing to pinpoint the ideal harmony between local training and



Fig. 1: A schematic diagram of FL in SER applications.

global FL design parameters. After this optimization phase,
the hyperparameter values stabilize at their optimum. These
hyperparameters, crafted for optimal accuracy and computa-
tional efficiency, persist within the FL system until changes in
local client data or other influencing factors necessitate adjust-
ments. While our approach hinges on deterministic single and
multi-objective optimization, alternative studies have explored
techniques, including reinforcement learning.

III. SYSTEM DESIGN

This section delves into the optimization of hyperparameters
within an FL system tailored for addressing the SER challenge.

A. Hyperparameters Optimization for SER Model in Feder-
ated Learning

In this work, we propose the method that optimizes hyper-
parameters of the FL model to achieve better accuracy and
lower execution time:

NGE Number of global epochs refers to the number of rounds
in which the global model is trained and aggregated with
the local models of clients.

NLE Number of local epochs refers to the number of times a
client device performs local training using its own local
data before sending the updated model parameters to the
central server for aggregation.

LR Learning rate refers to the parameter that controls how
quickly the model parameters are updated during training
in FL. It determines the step size that the model takes
in the direction of the gradient during the optimization
process. The central server sets the learning rate; it can be
used to control the overall training speed and the stability
of the model updates.

BS Batch size refers to the number of samples from the
clients’ local datasets that are used in each iteration of

the model training in FL. Unlike traditional centralized
ML where a fixed batch size is chosen for each iteration,
FL has some unique considerations when selecting the
batch size.

CD Clients division refers to the proportion of clients that are
selected for model training in each round of the learning
process. The performance and efficiency of FL systems
are affected by the number of client rates.

Acc Accuracy is commonly used as a performance metric that
measures the overall performance of the federated model
in terms of correctly classified or predicted data points.

CT Total computation time required for training the FL
model. Typically, most of the computation time in FL
is devoted to training the local models on the clients.
This process involves executing the forward and back-
ward passes of the model on the local data. A smaller
portion of the computation time is allocated to parameter
aggregation and model validation during each round of
training on the server side.

As highlighted previously, hyperparameters, also referred to
as optimization variables, come in two varieties, as depicted
in Fig. 1. The learning rate, batch size, and the number of
local epochs are training parameters employed individually on
each device. Under this framework, all devices utilize identical
neural network models, encompassing both the network ar-
chitecture and training parameters. Consequently, optimization
outcomes prescribe hyperparameters universally applicable to
models on local clients. The number of global epochs and the
client division factor act as global parameters, shaping the FL
system design. These parameters oversee the communication
between the central server and the local devices.



B. Formulation of Hyperparameters Optimization Problems

In this context, we introduce three optimization problems.
The first two are single-objective problems, focusing on opti-
mizing accuracy and computation time respectively, while the
third addresses a multi-objective challenge, aiming to optimize
both the aforementioned objectives concurrently.

Optimization variables, or hyperparameters, are introduced
above. The limits on the variables constrain this problem
according to (2)- (6) in the formulation below. Formally, the
first problem is formulated as:

max Acc(NGE,NLE,LR,BS,CD) (1)
s.t.

NGE = {50, 100, 150, 200} (2)
NLE = {1, 3, 5} (3)

LR = {0.1, 0.01, 0.001} (4)
BS = {8, 16, 32, 64} (5)

CD = {0.10, 0.50, 0.75, 1.0} (6)

As the formulation above shows, the feasibility region (2)-
(6) is a discrete 5-dimensional grid. Thus, a simple grid search
is used to solve the problem. The maximum of the objective
function (1) is found across the 5-dimensional grid consisting
of 4× 3× 3× 4× 4 points, using the brute force search.

The secondary problem is the minimization of computation
time. The formulation of this problem is similar to the problem
(1) -(6). The difference is the objective function:

min TotalComputationT ime(NGE,NLE,LR,BS,CD)
(7)

Finally, we present a bi-objective optimization that ad-
dresses the two preceding challenges simultaneously. Due to
the inherent conflict between these objectives, maximizing
accuracy can potentially lead to prolonged computation time;
a singular point does not represent the solution. Instead, it
is captured by the Pareto frontier. The subsequent section
provides a detailed formulation of this problem, which is
approached within the framework of the previously established
constraints.

{max Acc, min TotalComputationT ime} (8)

IV. EVALUATION

This section will explain the industrial use case and simula-
tion setting. Next, the experimental result of tuning hyperpa-
rameters to optimize the accuracy and computation time will
be presented as single-objective and multiobjective problems.

A. Use case description and simulation setting

DAIS 1 (Distributed Artificial Intelligent Systems) [16] is
a pan-European project that aims to improve interoperability
and trustworthiness by leveraging the Internet of Things (IoT)
and artificial intelligence (AI) to develop a distributed edge
intelligence system. The project encompasses a range of

1DAIS Project Website: https://dAIS-project.eu

industry-driven use cases in domains such as Digital Life,
Digital Industry, and Smart Mobility.

In the Digital Life domain, SER is a critical use case.
SER is employed in home entertainment recommendation
systems, such as smart TVs, where digital content, such as
movies, is recommended based on user emotion. FL setup
meets these requirements to ensure privacy, efficiency, and a
distributed system of SER. Hyperparameters greatly influence
the performance of SER models in FL setups. The choice
of hyperparameters significantly impacts the accuracy of the
models, and the optimal hyperparameters may vary depending
on the data characteristics and task requirements. It is imper-
ative to identify the appropriate hyperparameters to optimize
performance in SER using an FL setup.

We evaluated our method on one of the most widely
used SER datasets, namely CREMA-D [17]. The CREMA-
D dataset contains 7, 442 original speech recordings from
91 actors. These recordings were made by 48 males and
43 females with different accents. To train the SER model,
we chose the four most commonly occurring emotion labels
(neutral, sad, happy, and angry) based on the possible emotions
expressed in the sentences. Each speaker serves as a unique
client for the FL training on the CREMA-D dataset since there
are 91 distinct speakers in the dataset.

We use the multilayer perceptron (MLP) as the SER model
architecture. The model has two dense layers with layer sizes
of [256, 128], ReLU as an activation function, and a 0.2
dropout rate. We employed 80% of the clients (73 clients)
for local training as edge nodes and reserved the remaining
20% (18 clients) for validation. We considered the average
accuracy of these 18 clients for the optimization problem
(1). For the computation time optimization problem (7), we
reported the training time of the FL system for the 73 clients.
As all the clients were created on one laptop with equal
computation power, our simulated FL system did not have
device heterogeneity. At the same time, we considered the
Non-IID dataset, and our research worked well considering our
challenging data distribution. The experimental environment
is Windows 10 Enterprise, processor Intel(R) Core(TM) i7-
9850H CPU @ 2.60GHz 2.59 GHz and RAM 32,0 GB.

B. Experimental Result

As mentioned, the optimization problem (1) - (6) is solved
using the direct search across the 5-dimensional grid by brute
force method. This means the objective function is evaluated
on all grid points constituting the feasibility set. This approach
confirms that global optimality is achieved. The optimal solu-
tion is compared with the standard setup of hyperparameters
used in the FL model; see Table I. Results obtained show
improvement both in terms of accuracy and computation time.
The solution to the problem of maximization of accuracy
gives an optimal accuracy of 0.771, while it was 0.751 in
the default setup. At the same time, this solution gives a
sufficient decrease in computation time, too: it takes around
97 sec against 351 sec for the standard setup. The solution to
the second problem, computation time minimization, shows a



TABLE I: Solutions of single objective optimization problems.

Results Acc NGE NLE LR BS CD Time
Default
Setup 0.751 200 3 0.001 32 1.0 352

Optimal
Accuracy 0.771 50 5 0.01 16 0.50 97

Optimal
Comp. Time 0.729 50 1 0.001 16 0.10 25

TABLE II: Pareto Optimal points (POP).

POP Acc NGE NLE LR BS CD Time
Point 1 0.729 50 1 0.001 16 0.10 25.55

Point 2 0.737 50 1 0.001 32 0.10 25.66

Point 3 0.743 50 5 0.001 32 0.10 33.52

Point 4 0.760 50 1 0.01 8 0.50 59.41

Point 5 0.771 50 5 0.01 16 0.50 96.98

significant decrease in time, which is around 25 sec, and it
is in order of magnitude better than the one for the standard
setup. Table I below summarizes numerical results obtained
by solving problem (1) - (6) and (7), (2) - (6).

MOO problem (8), (2) - (6) is solved by the posterior
method. This means that the approximate Pareto frontier is
calculated first and then the decision maker chooses one or
several alternative Pareto optimal solutions. These solutions
will be used further to build an optimal FL model. Two
single objective problems were used to sample dominated
and non-dominated points to create the Pareto frontier. Non-
dominated points are those which have at least one multiobjec-
tive function value better than other points, which are called
as dominant. In fact, all dominated points were filtered out
from the set of grid points, and the remaining non-dominated
points constitute optimal Pareto Frontier, see Fig.4. In other
words, the convex hull was created from the set of all grid
points (2) - (6). It consists of 5 points, where the first and last
points are optimal solutions to the single objective problems.
Information about the points constituting the Pareto frontier is
gathered in Table II.

Another important aspect is that solutions to optimization
problems help identify significant variables (model param-
eters) affecting objective functions. This could be done by
analyzing the dependencies of the objective function on certain
model parameters. As an example, see Fig. 2, where the
accuracy is plotted as a function of LR, the learning rate of
the model. Three accuracy curves correspond to LRs equal to
0.1, 0.01, and 0.001. This plot shows that LR = 0.1 produces
the lowest accuracy for all experiments, while the other two
LR values overperform the case with LR = 0.1. This means
that fixing this parameter, for example, to 0.01, increases the
accuracy of the FL model irrespective of the values of other
parameters. The rest of the parameters do not affect accuracy
a lot.

On the contrary, total computation time is affected by mul-
tiple parameters, see Fig. 3. The number of global epochs and
the client division factor contribute most to the computation

timing. Fig. 3 confirms the trend that a lower number of global
epochs and client division factor gives shorter computation
time. This is easily explained by the fact that the complexity
of the FL model grows as these parameters increase. Except
for these parameters, the number of local epochs should be
mentioned, too.

Fig. 2: Accuracy in each round of training

Fig. 3: Total Execution time in each round of training

Finally, analysis of the Pareto optimal solutions shows
that the optimal number of global epochs is equal to 50 in
all cases. The optimal values of the rest of the parameters
vary. This means that accuracy and computation time are not
conflicting concerning the number of global epochs. Thus,
the size of the MOO problem could be reduced by fixing
this parameter. This information should be used when the
MOO is extended to include more optimization variables.
These results provide valuable information that should be used
while building optimal FL models providing high accuracy and
efficient CPU time.



Fig. 4: Pareto Frontier.

V. CONCLUSION AND FUTURE WORK

Conclusions This paper presents a novel approach to create
a flexible framework for solving FL model for SER applica-
tion. This is done by introducing an extra step to optimize the
training, further FL model development and parameter design
in an automatic way. To this end, HPO is used to maximize
the performance of the FL model in terms of model accuracy
and computational time.

The strong feature of this approach is its flexibility, since
it could be applied for any type of FL model. Optimization
is created and solved based upon FL model and delivers
optimal hyperparameters set. This fixed HP setup is used
further in training and model development as long as other
FL model parameters stay unchanged. Thus, optimization
problem, which is quite computationally expensive, is solved
once for each predefined model setup. If model designer alters
the choice of hyperparameters, their ranges or any other model
setup, the new optimization problem should be solved.

The optimization problem itself could be formulated and
solved as a discrete SOO and MOO, including different
hyperparameters. Implementation of MOO is an important
feature since it finds parameters optimizing several objectives
simultaneously, which boosts the performance of FL models.

Presented optimization model includes two objectives: accu-
racy and computation time with 5 discrete variables. Optimiza-
tion problems were solved by the simplest grid search, where
all feasible points belonging to the 5 - dimensional grid were
inspected. While the SOO solution finds a single optimal point
for the accuracy or computation time and correspondent values
for hyperparameters, the MOO solution is presented as Pareto
Frontier, including all non-dominated points or alternative
solutions. This Pareto Frontier is used by the decision maker,
who chooses a proper alternative solution to set up the FL
model. Numerical results show that optimal HP settings allow
for significantly improved both accuracy of the model and its
computation time.

Future work This approach has a great potential and will
be developed further. Firstly, the optimization model should
be extended to consider the FL system’s stochastic nature
due to the Stochastic Gradient Descent method used by local
clients. This could be done in different ways, such as using
other algorithms as e.g. reinforcement learning or creating
more complex models, where optimization is done as a part of
training. The choice of an appropriate optimization algorithm
was not the focus of this paper and is a subject of separate
research.

Secondly, additional objectives such as differential privacy
and communication should be included concerning the model
complexity. The solution to such a problem will regulate the
trade off between model accuracy, privacy, and communication
costs. This gives extra flexibility to the model when researchers
can work with the different HP setups depending on their
research questions. That is, if, for example, the model is
to be trained for better accuracy, the parameters setup for
optimal accuracy is relevant. When the FL model itself is to be
revised by including new parameters/features, the setup with
the computation time is highly relevant. Thus, Pareto Frontier
could be used to find the most efficient parameters setting
depending on the research question.
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