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Abstract 
Monitoring the temperature of induction traction motors is crucial for the safe and efficient operation of railway 
propulsion systems. Several thermal models were developed to capture the thermal behaviour of the induction 
motors. With proper calibrating of the thermal model parameters, they can be used to predict the motor’s 
temperature. Moreover, calibrated thermal models can be used in simulation to evaluate the motor’s performance 
under different operating conditions and find the optimal control strategies. 
Parameterization of the thermal model is usually performed in dedicated labs where the induction motor is 
operated under predefined operating conditions and calibrating algorithms are then used to find the model’s 
parameters. With the development of digital tools, including smart sensors, Internet of Things (IoT) devices, 
software applications, and various data collection platforms, operational data can be collected and used later to 
calibrate the parameters of the thermal model. Nevertheless, calibrating the model’s parameters from operational 
data collected from different driving cycles is challenging as the model has to capture the thermal behaviour from 
all driving cycles’ data. 
In this paper, a data-driven reinforcement learning-based parametrization method is proposed to calibrate a 
thermal model in induction traction motors. First, the thermal behaviour of the induction motor is modelled as a 
thermal equivalent network. Second, a reinforcement learning (RL) agent is designed and trained to calibrate the 
model parameters using the data collected from multiple driving cycles. The proposed method is validated by 
numerical simulation results. The results showed that the trained RL agent came up with a policy that adeptly 
handles diverse driving cycles with different performance characteristics. 
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1. Introduction 
Traction motors are subjected to varying operating 
and environmental conditions due to the dynamic 
loads over the operation cycle. The transient loads 
may cause overloading of the drive components 
which causes extra heat load. Operations causing 
overheating of the motor parts are of significant 
concern as they may lead to stator winding failure 
and accelerated ageing. Furthermore, to be able to 
exploit the motor’s maximum utilization, it is 
essential that its operation is optimized to make it 
cost-effective. 
On the other hand, induction motors (IMs) are the 
most used motors in railway propulsion applications 
to date because of their mechanical robustness and 
high overload capabilities. The added advantages 
are their low cost and the possibility of employing 
multiple drives connected to a single converter 
(Nategh et al., 2020). However, their performance 
varies nonlinearly with temperature, frequency, 
saturation, and operating point which makes 

temperature monitoring essential for the safe and 
reliable operation of the motor. 
The thermal limits of these motors are associated 
with the winding insulation material which is 
classified based on its temperature withstanding 
capacity. There are several established direct or 
indirect means for estimating the temperature in 
motor parts. Direct methods such as installing 
contact-based sensors in the stator, and rotor are the 
simplest means for measurement. However, the data 
transmission in the rotating parts has to be carried 
out with the help of end slip rings, or telemetry 
means. Regardless, installing sensors requires 
integration effort and additional cost and adds 
complexity due to their inaccessibility for 
replacement in case of failures or detuning. Hence 
model-based measurement techniques have been 
rather focused in the past decade (Ramakrishnan et 
al., 2009; Wilson, 2010). Here the temperatures can 
be estimated from the temperature dependent 
electrical parameters both off-line and online 
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6. Conclusion and Future Work 
In the paper, a reinforcement learning framework is 
proposed for training an agent to find the parameters 
of the thermal model in induction traction motors. 
The framework has been applied to find the thermal 
conductance for the thermal network model from 
nine driving cycles. 
By running different driving cycles, the trained 
agent came up with a policy that produces the 
parameters for the different driving cycles. The 
model with the calibrated parameters showed a good 
estimation of stator and rotor temperature. 
In future work, other structures for the agent and the 
reward function will be considered to produce better 
temperature estimation. 
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