
Understanding Problem Solving in Software
Testing: An Exploration of Tester Routines and

Behavior?

Eduard Paul Enoiu[0000−0003−2416−4205]1, Gregory Gay[0000−0001−6794−9585]2,
Jameel Esber1, and Robert Feldt[0000−0002−5179−4205]2

1 Division of Networked and Embedded Systems, Mälardalen University, Sweden
firstname.lastname@mdu.se

2 Department of Computer Science and Engineering, Chalmers | University of
Gothenburg, Sweden

greg@greggay.com, robert.feldt@chalmers.se

Abstract. Software testing is a difficult, intellectual activity performed
in a social environment. Naturally, testers use and allocate multiple cog-
nitive resources towards this task. The goal of this study is to understand
better the routine and behaviour of human testers and their mental mod-
els when performing testing. We investigate this topic by surveying 38
software testers and developers in Sweden. The survey explores testers’
cognitive processes when performing testing by investigating the knowl-
edge they bring, the activities they select and perform, and the challenges
they face in their routine. By analyzing the survey results, we provide
a characterization of tester practices and identify insights regarding the
problem-solving process. We use these descriptions to further enhance a
cognitive model of software testing.

Keywords: Test Design · Problem Solving · Software Testing

1 Introduction

During software testing, test cases—sequences of input and expectations on the
resulting behavior of the system-under-test (SUT)—are designed and executed as
a method of determining whether the SUT is functioning correctly [15]. Testing is
the most common verification technique [15], and consequently, one of the most
researched topics in the software engineering field [14]. However, a significant
portion of past research has focused on improving the tools that testers use—
there is a lack of investigation of and, consequently, evidence regarding human
aspects of software testing.

To that end, in previous research, we proposed a cognitive model of soft-
ware testing based on how problem solving is conceptualized in cognitive psy-
chology [5]. This model mapped software testing to a cyclical problem solv-
ing model, consisting of activities related to four major phases of the testing
? Support provided by Software Center Project 30: “Aspects of Automated Testing”,

H2020 under grant agreement No. 957212 and Vinnova through SmartDelta project.

2 Enoiu et al.

process—understanding testing goals, planning testing strategy, executing tests,
and checking test results.

The purpose of this study is to gain a deeper understanding of the personal
routines of testers, including both their external behaviors and internal pro-
cesses. While our general knowledge of software testing is vast, there is a lack
of clear understanding of the personal decision-making processes of testers and
developers—e.g., how they reason, which test design techniques they apply, what
kind of difficulties they face, how they decide which test cases to create, and how
they decide to stop testing in different testing situations.

As a step towards narrowing this knowledge gap, in this study, we utilize
our earlier cognitive model as a foundation for collecting data on the testing
process [5]. We have surveyed 38 developers and testers working in the Swedish
software development industry, focusing on the activities performed, knowledge
utilized, and challenges encountered during each major phase of the testing pro-
cess, as defined in the cognitive model. We utilize thematic analysis of the survey
results to characterize how testers approach each of these phases. In turn, we
use this characterization to deepen the cognitive model.

Closing this knowledge gap has implications for both researchers and practi-
tioners. The development of a realistic cognitive model enables the formulation
of clear guidance on performing effective and efficient testing. In addition, a
cognitive model can benefit future approaches to automated test generation,
potentially leading to the development of more human-like generation tools [4].
This study provides a foundation for this future research on both human testing
practices and human-like test generation.

2 Background and Related Work

The field of Behavioral Software Engineering (BSE) focuses on understanding
the mental, social, and behavioral aspects of software engineering performed
by individuals, teams, and organizations [11]. As an example, Hale et al. [7]
created a model of the mental abilities required by programmers during software
maintenance. This cognitive process model of debugging combines declarative
models, such as a program understanding model, with problem-solving models,
based on the idea of structural learning. The proposed model was later tested
by Hale et al. [8] through a controlled experiment where participants debugged
a program with an unknown fault, and their verbal protocols were analyzed.

Robillard et al. [18] studied the thought processes of developers in mixed
teams comprised of engineers and psychologists to develop best practices. The-
matic analysis was utilized to define cognitive behaviors. This research showed
that software review involves three mental activities—review, alternative solu-
tion development, and synchronization.

Letovsky [12] delved into the cognitive processes behind program compre-
hension, with a focus on specific moments that occur within seconds or minutes,
such as understanding the purpose behind a line of code. This investigation led
to the creation of a categorization system for questions and hypotheses, along

Understanding Problem-Solving in Software Testing 3

related work

author
experience

ite
ra

tio
ns

ex
pe

rt
re

vi
ew

pi
lo

t

su
rv

ey

dataquestionnaire

Related Work
Problem-Solving Models

Author
Experience

Survey

Data

Collection

Thematic
Analysis

Test
Design
Model

Fig. 1. Overview of the method used for collecting data and developing the problem-
solving model of test design.

with a theory of the mental images and processes that produced them. The
questions were defined as procedures that evaluate the coherence and accuracy
of a person’s developing mental model, while the hypotheses were identified as
a planning process that draws on various forms of knowledge.

Recently, Aniche et al. [1] investigated the thought processes and decision-
making developers experience when manually engineering test cases. Using ob-
servations from developers and survey data, it provides a broad framework for
understanding developers’ approach to test case development.

Despite the diverse range of approaches, it is essential to examine software
testing as part of a problem-solving process to identify commonalities and gain
insights into the processes involved in problem-solving. These processes seem to
vary [5, 1, 10] depending on the specific testing problem/activity and how the
goal is mentally represented. As a first step towards investigating the problem-
solving perspectives, we previously hypothesized [5] that a cognitive test design
model could be represented as a cyclical problem-solving process and conducted
a pilot study with five students. As an initial approach, the software testing
cycle, considered as a traditional problem-solving process, contains the following
phases where a human tester needs to: (i) understand the test goal, (ii) formulate
the test strategy, (iii) execute the tests, and (iv) check the test results.

3 Method

In this research, we are interested in addressing the following questions: (1) How
do testers utilize cognitive resources, knowledge sources, and problem-solving
processes during testing? (2) What are the main challenges testers face in their
testing routine?

To address these questions, we followed a mixed-methods research approach
outlined in Figure 1. This approach combines both qualitative and quantitative
data analysis using a survey, allowing us to develop a more comprehensive under-
standing of the problem-solving processes involved in software testing. We uti-
lized survey research to explore the opinions and decisions of individuals during
testing. We developed an exploratory cross-sectional survey, utilizing both qual-
itative and quantitative descriptive methodology, and distributed it. We then
performed a thematic analysis of the qualitative data to obtain an extended
problem-solving model of software testing.

4 Enoiu et al.

Table 1. Survey questions.

Survey Question Format

1. How many years of experience do you have with development? Choice
2. How long have you been working with testing? Choice
3. What is the size of the company you work in? Choice
4. What role are you presently working in? Choice
5. Can you summarize what you typically do in your current role? Text
6. What programming languages do you use in your company? Choice

7. What activities do you perform when understanding the testing purpose/goal? Text
8. What knowledge do you bring when trying to understand the purpose/goal? Text
9. What kinds of purposes/goals do you use during testing? Choice
10. What are the difficulties you face when you try to understand the purpose/goal? Text

11. What activities do you perform when planning test strategy and/or creating tests? Text
12. What knowledge do you bring when you plan test strategy and/or create tests? Text
13. What difficulties do you face when planning test strategy and/or creating tests? Text
14. What test design techniques do you use to create tests? Text

15. What activities do you perform when executing test cases? Text
16. What knowledge do you bring when executing test cases? Text
17. What automated tools/frameworks do you use during testing? Text

18. What activities do you perform when checking test results? Text
19. What knowledge do you bring when checking test results? Text
20. What software testing tools do you use to check results? Text
21. Provide your top three challenges when checking test results. Text
22. What criteria are used in your projects to decide to stop testing? Text

23. Do you agree with the purpose of this survey? Likert
24. Were there questions that were not clear? Text
25. Do you have any feedback on the survey topic? Text

3.1 Survey Development

We started by identifying the related work on problem-solving models that have
been developed based on Polya’s phases in solving mathematical problems to rep-
resent problem-solving processes [16] on which our earlier model of test creation
and execution [5] was based. Psychologists have also described problem-solving
as a cyclical process, as noted by Bransford et al. [2], Hayes [9], and Pretz et
al. [17]. We used the overall phases previously outlined by Enoiu et al. [5] to
understand how this model of test creation happens in practice, and we focused
on the overall activities, knowledge, and other human aspects of different steps.
Based on these steps, we developed the questionnaire questions by concentrat-
ing on the activities that participants perform when performing software testing
according to the initial problem-solving model of Enoiu et al. [5]. To start the
questionnaire, a brief explanation was provided about the survey’s objective.
In addition, participants were informed of ethical and social considerations and
were assured that all collected data would be anonymized.

The survey questions are listed in Table 1. The questions were split into
several sections, starting with demographic information. It then asked about
the activities that participants undertake when understanding the testing goal,
when planning a testing strategy, when executing testing activities, and when
checking their results. We then allowed participants to provide feedback.

Understanding Problem-Solving in Software Testing 5

20
7

4

7
10+
18.4%
5-10
10.5%
2-5
18.4%

0-2
52.6%

Dev. Experience

16

11

4

7
10+
18.4%
5-10
10.5%
2-5
28.9%

0-2
42.1%

Test Experience

0

4

8

12

C C++ C# Jav
a
Pyt

hon Oth
er

Languages

238

7
Other
18.4%

QA/Tester
21.1%

Developer
60.5%

Role

19

6

13
Large (1000+)
34.2%

Medium (100-1000)
15.8%

Small (1-99)
50.0%

Company Size

Fig. 2. Demographic information on survey participants.

3.2 Survey Population and Sampling

We targeted professionals in the software development industry. Our primary
distribution method was convenience sampling. Connections with organizations
were utilized to reach a large number of testers, developers, and practitioners in
Sweden to gather diverse opinions and perspectives. A total of 38 responses were
submitted. To ensure anonymity, we do not report the identities of respondents.

Demographic information is provided in Figure 2. The participants had a
strong knowledge of software development, with all reporting at least one year
of experience. The participants work for companies of all sizes, with half work-
ing for small companies and in various roles—with the majority identifying as
developers. The most common programming language reported was Java, but
many different languages were reported as being in use3.

3.3 Thematic Analysis

The open-ended questions in the questionnaire were subjected to thematic anal-
ysis, a qualitative technique for analyzing data [3]. This approach involves an-
alyzing a collection of text—in this case, participants’ responses to open-ended
questions—to identify common themes, patterns, and topics that arise frequently.
We carried out our thematic analysis using a six-step process: becoming familiar
with the data, coding the responses, identifying themes, checking the themes,
naming the themes, and reporting our findings.

To begin with, we familiarized ourselves with the data by gathering and
reading the responses and making preliminary notes to obtain a comprehensive
understanding of the obtained data. The next step involved coding, which en-
tailed identifying specific words or sentences in the responses and assigning them
short labels or “codes” to describe their content.

After coding the responses, we reviewed and identified connections between
the codes and grouped them into broader themes. This involved combining mul-
tiple words and sentences to form cohesive themes. We then verified that the
3 The “other” languages include PHP, MATLAB, Flutter, JavaScript, and Simulink.

6 Enoiu et al.

Table 2. Themes and sub-themes related to participants’ activities, knowledge, and
challenges when understanding testing goals/purpose.

Theme Important Sub-themes

T1. Activities when understanding goals.

T1.1. Understanding software requirements.
T1.2. Document analysis.
T1.3. Identifying the correct behavior of the system.
T1.4. Finding bugs and faults.
T1.5. Inspecting the architecture of the SUT.
T1.6. Using experience from previous testing sessions.

T2. Knowledge used in understanding goals.
T2.1. Documentation, Specifications, Requirements.
T2.2. Code. , T2.3. Memory., T2.4. Experience.
T2.5. Discussions with colleagues., T2.6. Web resources

T3. Challenges when understanding goals. T3.1. Incomplete or unclear requirements.
T3.2. Complex and highly configurable scenarios.

themes accurately reflected the data by comparing them to the responses and
making modifications if necessary. Finally, we gave each theme a descriptive and
concise name. These themes were then used to extend our problem-solving model
of software testing.

4 Results and Discussions

This section presents the findings of the thematic analysis and introduces the
extension of the problem-solving model of software testing.

4.1 Survey Results

This section summarizes the results of analyzing the survey data. The results
are organized based on the sections of the survey, as explained in Section 3.1.
Understanding Testing Goals/Purpose: We asked participants to describe
their activities when understanding the purpose or goals of testing. As shown
in Table 2, their answers revolved around understanding software requirements
and identifying the precise correct behavior of the SUT. This information was
needed to understand the recognition, definition and representation of goals be-
fore creating test cases.

Our thematic analysis revealed that, during the process of understanding
testing goals, participants follow a set of steps, including examining the archi-
tecture of the SUT, followed by identifying the interfaces (e.g., hardware, soft-
ware, and user interfaces) and determining which levels to test them on. Finally,
testers identify the responsibilities for the different test levels, if applicable.
One participant emphasized the value of conversations with colleagues:

“Firstly, I turn to the other team members since they ... have developed the new
functionality. Then if needed, I turn to code and/or documentation.”

Our thematic analysis yielded several sub-themes related to the knowledge
utilized during this step (Table 2). 61% of participants selected documents as a
source of knowledge. However, multiple sources are often required. The majority
of the same participants also chose code as another source of knowledge:

Understanding Problem-Solving in Software Testing 7

Table 3. Themes and sub-themes related to participants’ activities, knowledge, and
challenges when planning a test strategy.

Theme Important Sub-themes

T4. Activities while planning test
strategy.

T4.1. Identify the SUT., T4.2. Identify the test level.
T4.3. Gather information from sessions in “previous” test levels.
T4.4. Identify the requirements.
T4.5. Identify the interfaces and create test cases.
T4.6. Define the test environments., T4.7. Prepare documentation.

T5. Knowledge used in planning
test strategy

T5.1. Documents (Documentation, Specifications)
T5.2. Code., T5.3. Knowledge and Memory.
T5.4. Experience., T5.5. Web resources.

T6. Challenges when planning
test strategy

T6.1. Difficulty in coming up with edge cases/out-of-bound bugs.
T6.2. Correctly selecting the test steps.
T6.3. Handing ambiguous/not clear requirements.
T6.4. Lack of time., T6.5. Communication.
T6.6. The use of testing documents created by others.
T6.7. Unstable environment.
T6.8. Test automation tooling understanding.

“I use multiple resources such as documents, code, and my memory, and consult
experts whenever necessary.”

A small number of participants indicated that they utilize knowledge from
previous testing experience, familiarity with the software and hardware, com-
prehension of the implementation and testing guidelines, web resources, their
memory, or conversations with colleagues. For example:

“I rely on my previous experience, as well as discussions with architects and devel-
opers, and an inspection of the architecture and requirement specifications.”

We inquired about whether test goals were discovered, created, or presented.
Most participants reported a blend of options. 66% (25) discovered goals, 47%
(18) created their own goals, and 61% (23) utilized test goals that were defined
by someone else. One participant noted:

“The testing goals are already pre-defined as part of the company’s test strategy.
When creating test cases, we apply different test design techniques such as BVA
and equivalence partitioning.”

When examining the challenges faced when comprehending the purpose/goals
of testing, most participants identified incomplete or unclear requirements as
one of the most common difficulties encountered during this phase. One partici-
pant noted that vague requirements “cannot be developed and cannot be tested.”
Additionally, some participants reported facing challenges related to complex or
highly configurable scenarios, often exacerbated by communication gaps between
developers, testers, and clients.
Planning a Testing Strategy: Table 3 presents the activities involved in test
strategy planning and test case creation. For example, analyzing the application
before creating test cases based on experience or test specifications. Before com-
mencing testing activities, testers strive to gain an understanding of the SUT
by learning everything they can about it, obtaining detailed requirements, and
comprehending the developed solution.

Regarding knowledge that participants use when planning a test strategy, we
observed that most rely on documentation and the code. Additionally, testers

8 Enoiu et al.

Table 4. Themes and sub-themes related to participants’ activities, knowledge, and
tool use when executing test cases.

Theme Important Sub-themes

T7. Activities when executing a test case.

T7.1. Test environment setup.
T7.2. Selecting and running test cases.
T7.3. Validate the test coverage.
T7.4. Continously observe and analyze outcomes.

T8. Knowledge used when executing tests.

T8.1. Documents (Documentation, Specifications)
T8.2. Code., T8.3. Knowledge and Memory.
T8.4. Experience
T8.5. Knowledge of administering the tests

T9. Automated tools/frameworks used.

T9.1. Selenium., T9.2. Pytest., T9.3. Azure pipelines
T9.4. Xunit., T9.5. IntelliJ., T9.6. Apache JMeter.
T9.7. MATLAB., T9.8. Eclipse., T9.9. Ranorex
T9.10. Laravel

draw on previous testing experience, knowledge of testing guidelines, and speci-
fications from earlier versions of the SUT. Participants who had been testing for
more than ten years mentioned that they preferred to use test strategy templates,
knowledge of the SUT’s architecture, their own experience, and regulatory re-
quirements during the planning phase. One participant provided the following:

“Knowledge of the software and hardware, previous testing knowledge, knowledge
of the testing guidelines, and review of relevant documentation.”

Regarding challenges while planning test strategy or creating test cases, many
struggled with understanding complex or ambiguous requirements:

“Lack of clear requirements is the most common difficulty.”
Participants also identified limitations of testing tools, such as forced tool use

leading to an unstable environment. Additionally, participants mentioned that
lack of time for planning or tight deadlines were significant difficulties.

We also examined the test design techniques that participants employ. 26%
of participants (10) design test cases based on specifications, 29% (11) use code
as a basis for test design, and 24% (9) rely on their prior experience. 45% (17)
employed a combination of experience, specification, and code. One participant
provided a brief description of their creation techniques:

“We ensure that each public interface has at least some tests, and we also consider
code coverage. If a module has insufficient coverage, we add tests there. We also
consider different levels of testing and aim to conduct both unit tests, module-
integration tests, and system-level tests.”

Executing Test Cases: Participants were asked to describe their activities
during test case execution (Table 4). Responses indicated that activities include
reviewing test specifications, writing test scripts, executing test scripts, and re-
viewing results.

Multiple tasks were performed by participants during test case execution,
such as test environment setup, test case execution (including fulfilling pre-
conditions), log-file gathering, archiving of execution and log files, documen-
tation, and analysis of any found discrepancies. Automation of the test envi-
ronment was also discussed, with one participant stating that they try to auto-
mate everything, including the setup of the test environment, running test cases,

Understanding Problem-Solving in Software Testing 9

Table 5. Themes and sub-themes related to participants’ activities, challenges, and
criteria when planning to check test results.

Theme Important Sub-themes

T10. Result checking activities.
T10.1. Compare test specifications with results obtained.
T10.2. Discuss results with the development team.
T10.3. Modify requirements, test cases, or code-under-test.

T11. Challenges in checking re-
sults.

T11.1. Communication and interaction with other roles.
T11.2. Lack of skilled testers skilled in test result analysis.
T11.3. Lack of easy-to-use test analysis tools.
T11.4. Lack of automation in test result checking.
T11.5. Lack of historical test trends.
T11.6. Difficulty understanding if the result is correct.
T11.7. Challenging debugging process.
T11.8. Misunderstanding of test specifications and requirements.
T11.9. Incomplete historical record of test reports.
T11.10. Unstable environment.
T11.11. Challenging test selection based on result analysis.
T11.12. Missing links between sources of documentation and logs.

T12. Completion criteria.

T12.1. When testing done on all items in the testing plan.
T12.2. Coverage of edge case scenarios and “normal” scenarios.
T12.3. UI functionality is covered.
T12.4. All specified tests and exploratory test sessions executed.
T12.5. All found discrepancies are analyzed.
T12.6. Human judgment., T12.7. Experience., T12.8. Budget.

and observing the output. Some participants focused on debugging and defect
identification when software bugs appeared during test execution, while others
emphasized the importance of regression testing.

When executing test cases, participants often rely on documents and code
to review specifications, report bugs, and document test results. However, one
participant claimed that documentation is unnecessary once the tests are ready
to be executed, except for instructions on how to report the results. Another
participant mentioned that they only require knowledge of administering tests
for automated test runs.

The most popular tools used by testers and developers during test execu-
tion were Selenium and Pytest, as they provide frameworks for automating web
application testing and scalable and straightforward tests, respectively. Some
participants perform tests manually, while others use custom-made tools.
Checking Test Results: Participants were asked to describe their routine for
checking test results (Table 5). Their answers largely centered around comparing
test specifications with the results they obtained. Testers undertake several ac-
tivities while checking test results, e.g., comparing the requirements with the test
results. One participant emphasized that, during this process, it is important to
keep an eye on any events not specified in the test case. Some participants also
discussed the results with the development team or other testers, examined test
scripts, or provided feedback to the designers.

In the event of a test failure, testers and developers iteratively modify either
the tests or code until achieving the desired outcome. One participant shared:

“We rerun the test multiple times to confirm if it’s a fluke. We then proceed to fix
the test, the code being tested, or even the testing environment. This may involve
checking for errors in parameters when setting up dockers or regenerating test data.”

10 Enoiu et al.

In terms of the knowledge utilized when checking test results, documents
and code remain the most common sources. One participant emphasized the
significance of documentation testing:

“When tests fail, we almost always refer to the test case documentation. Though
sometimes insufficient, we write at least one sentence about the test’s purpose. Since
the test cases are usually small, this is usually adequate.”

However, one participant stated that the tests alone are adequate:
“The tests created contain all the necessary information to check the results.”

Participants identified the three primary challenges encountered while check-
ing results that they would like to see addressed in software testing research. One
participant highlighted some challenges that arise when tests fail:

“1: It can be difficult to recognize that a failed test already has an open bug report.
2: Multiple failed tests may be caused by the same underlying error. 3: It can be
challenging to differentiate between failing test cases due to actual software errors
versus test environment issues.”

Another also mentioned lack of observability into the causes of SUT behavior:
“The primary challenge is understanding whether the obtained result is correct by
chance or if the application is performing as intended.”

Other challenges identified include the need for test selection (due to having
too many tests to execute) and challenges that emerge from having to make
this selection—e.g., the time between executions and lack of certainty in SUT
correctness—visualization of test results over time, establishing traceability be-
tween documentation sources, and the difficulty of knowing who is responsible
for dealing with test results (e.g., the test case creator, the feature developer, or
the test environment developers).

We also asked about the criteria participants utilized to determine whether
testing activities had been completed. One of the criteria that participants
used was ensuring that all the tests were executed successfully and met the
desired coverage levels of code and functionality requirements. Another partici-
pant stated that all planned tests must be executed without any stopping errors.
Other participants mentioned budget and deadline constraints. Another partic-
ipant indicated that the stopping criterion is when all test steps in the test
specification have been executed and assigned a pass/fail grade.

4.2 The Extended Problem Solving Model

Analyzing the survey results, we augmented our test design model [5] using a
detailed human problem-solving process model [13]. It operationalises the steps
testers take, clarifies the multiple sources of knowledge used and the internal
representations the activities are based on and updates. The extended model
is depicted in Figure 3, with the new, process model in the inner circle of the
original problem solving model (outer two circles). The extension can be applied
throughout the problem-solving phases (mid circle) of the original model [5].
Below we provide further details, overall and per phase.

Understanding Problem-Solving in Software Testing 11

Identify Test Goal

Define Test Goal

An
aly

ze
 K

no
wl

ed
ge

Form StrategyOrganize Information

Allocate Resources

Mon
ito

r P
ro

gr
es

s

Evaluate

UNDERSTAND TEST GOAL

PLAN TEST STRATEGY
EXECUTE TESTS

CHECK TEST RESULT

Given Test Goal
Found Test Goal

Discovered Test Goal

Internal Representation
- select problem space-

Environment

select
method

apply method change representation

Knowledge
domain specific/general

code/documentation

succed
fail

Fig. 3. The extended problem-solving model of software testing.

The Overall Problem-Solving Process: To initiate the testing process, the
tester first analyzes the test goal and divides the goal into manageable compo-
nents, then creates a generic solution for each component—known as a test case.
These individual solutions are then combined to form a full test scenario that
covers the initial test goal. In Table 6 we consider a specific test goal of security
testing and go through the steps outlined in the process, providing practical
examples. It is important to note that the testing cycle is not always a linear
process, and skilled testers are able to remain flexible. Often, the completion
of the cycle leads to the identification of a new test goal, which requires the
repetition of the process itself as well as its phases.

In Figure 3, we depict the interaction between the problem solver and a
testing environment. Initially, the tester inspects the environment and gener-
ates an internal representation based on the context of the test goal (e.g., a
flowchart that illustrates potential SQL injection attacks and vulnerabilities).
This representation involves selecting a problem space to define the test goal’s
representation, the context of problem-solving, and the inferences that can be
drawn from it based on general knowledge and past experience (e.g., understand-

12 Enoiu et al.

Table 6. An example of the steps outlined in the problem-solving process for a specific
test goal in security testing.

Overall Steps Practical Examples

Understand the Test Goal

Identify the Test Goal: Recognize potential security vulnerabilities in
the login mechanism of a web application.

Define the Test Goal: Design a test case that bypasses the login mech-
anism using SQL injection and brute-force attacks.

Plan Test Strategy

Analyze Knowledge: Analyze the login mechanism’s code and infras-
tructure, review security guidelines and understand common attack
vectors used to exploit login vulnerabilities.

Form Strategy: Craft a test case that attempts to inject malicious SQL
statements into the login form fields to check if the application has
implemented proper input validation to prevent SQL injection attacks.

Execute Tests

Organize Information and Allocate Resources: Document the different
attack scenarios, list the expected outcomes, and prepare the necessary
tools, such as automated security testing tools or proxy servers, to
capture and analyze network traffic during the test.

Check Test Results

Monitor Progress: Execute the test case, observe if the application
properly rejects the malicious input, and monitor if any unauthorized
database queries or errors occur.

Evaluate: Analyze the test results, identify any successful security
breaches or vulnerabilities.

ing where the system might be vulnerable and what signs might suggest a failing
test case). Equipped with this representation, the tester selects a problem solv-
ing method associated with each phase of software testing. For instance, in the
solution-searching phase, the tester may revisit the mental representation (e.g.,
fault trees, checklists), apply different methods for test design (e.g., boundary
value analysis), and employ heuristic strategies to facilitate the creation of test
cases. The results of these steps are then monitored, and feedback is provided,
which may lead to modifications in the representation of the test goal. The sur-
vey results suggest that testers rely on multiple and varied sources of knowledge
when creating and executing test cases. Among these, documentation is the most
commonly used across all testing activities. Testers refer to documents such as
specifications, project requirements, and testing guidelines to ensure that needs
are met, defects are identified, quality and risk are assessed, confidence is estab-
lished, and defects are prevented. In practice, code is the most crucial knowledge
that testers and developers use during the testing process. It is used to inspect
and verify the SUT and detect faults throughout the testing process. Finally,
experience and skills are also fundamental sources of knowledge that testers and
developers leverage in their routines.

During the testing process, testers engage in different activities at each phase
specified by the mid-circle. The process model of the inner circle thus applies
throughout the phases of the mid-circle. For example, when understanding the
test goal, testers mainly focus on comprehending the software requirements and
outlining the acceptable behavior of the system. Some of the primary activities
they perform include inspecting the system’s architecture, identifying the various
interfaces (hardware, software, and user), determining the appropriate testing
level, and clarifying the responsibilities for the different test levels.

Understanding Problem-Solving in Software Testing 13

Identify the Test Goal: This is the phase when a tester understands and
defines the test objective as a problem that requires a solution. Getzels [6] iden-
tifies three types of problems—those that are given, those that are discovered,
and those that are created or generated. A given test goal is presented to the
tester (e.g., a pre-defined criteria-based test goal, such as applying particular
input partitions). A discovered test goal, however, must be identified. Such a
test goal exists but has not been clearly stated to the tester, which has to seek
out the knowledge gap to discover what the test goal is. In contrast to given and
discovered test goals, a created test goal must first be recognized and formulated.
In these cases, testers may use exploratory test methods and develop new test
objectives based on their knowledge, skills, and interactions with the SUT.
Define the Test Goal: This relates to how one can mentally define the test
goals and what the linked tests must accomplish. The test goal definition phase of
testing is when the scope and objectives of each test are established and defined
precisely. A test goal presents a collection of “givens”. When dealing with these
constraints, a tester performs certain procedures to achieve the desired state
(i.e., creating a test fulfilling a test goal). A test goal can be expressed in many
ways, including graphically or audibly. For example, to achieve pairwise coverage,
one must describe the objective as the task of generating all available pairs of
parameter values that may be applied by at least one test case.
Analyze Knowledge: This phase structures the tester’s knowledge concerning
testing scenarios. Every tester addresses a particular scenario with a different
set of knowledge. For example, someone familiar with test design techniques
will assess their past knowledge and use various methods and representations
of the test goal to clearly state the needed strategies. To develop test cases, we
might have to use broad abilities such as inference, case-based logic, and gener-
alization to organize the data gathered throughout the various processes. On a
broader level, higher cognitive abilities such as inspiration and allocating men-
tal resources such as awareness and effort must be used. Additionally, domain
expertise, such as electrical, mathematics, computer science principles, program-
ming concepts, and regulations, would be required. We discovered that testers’
primary activities involve acquiring a deep understanding of the SUT, obtain-
ing the exact requirements that led to its development, and comprehending the
generated test solution. They also develop tests that cover a distinct portion of
the system or algorithms.
Form Strategy: In this step, one needs to create a solution approach for gener-
ating the required test cases using certain operators. These operators are cogni-
tive frameworks of the operations that a tester may conduct on the “givens.” For
instance, some computations require the use of mental operators. The activities
required to reach the target state are the set of actions required to construct
test cases that satisfy a particular test goal. While the operators are often not
listed in the test goal, we may infer them based on our past knowledge (e.g.,
mathematical operators, cognitive operators).
Organize Information and Allocate Resources: After defining the test
goals, the next step for the tester is to manage their cognitive and physical

14 Enoiu et al.

resources to develop and execute test cases. Testers can use automation tools
to develop test cases as executable scripts and allocate computer resources to
run test cases. Alternatively, when tests are performed manually, testers allocate
physical resources and document the test outcomes. We found that testers’ pri-
mary activities include reviewing test specifications, documenting test scripts,
and running these tests. Testers also archive test cases and log files and monitor
test execution to constantly document and analyze the SUT.
Monitor Progress and Evaluate: In the end, it is crucial for testers to mon-
itor the advancement towards the test objective(s). This phase involves tracking
the results of the test generation and execution procedures. In cases where the
correct output cannot be easily defined, test oracles are incorporated into scripts
or results are manually monitored. This allows for the evaluation of test case
quality. If testers determine that a test goal is not being met, they investigate
the issue and make adjustments. Testers analyze the sequence of procedures to
determine if the test cases fail to validate the test objective. Our results suggest
that the testers’ main activity in this step involves comparing the software re-
quirements and specifications with the obtained test results. Testers also discuss
the results with the development team or other testers to obtain feedback about
the outcomes. If the test fails, testers modify the test cases multiple times to
achieve the desired result. The primary activities testers and developers perform
include comparing test specifications with test results, discussing the results with
the team, and modifying the test cases.

5 Discussion
Based on our previously proposed problem solving model of testing we surveyed
38 professionals in the software development industry. The 25 questions of the
survey focused on the activities and knowledge they use and the challenges they
face in their daily test design, creation, and execution. The thematic analysis
then allowed us to extend the problem solving model with a process model
that can be instantiated in the phases of the overall process. While the specific
method changes between the phases, the extension clarifies that an internal
representation, formed based on knowledge about the environment and specific
test goals, first helps select and apply a phase-specific activity which in turn
leads to the internal representation being updated. Our results also clarify the
information that is used in this external-action-internal-refinement loop. Specific
challenges that testers face during the process were also identified.

In practice, companies can use the extended model as a basis for discussions
among testers and thus create a higher awareness of both the importance of
internal representations, the information and knowledge needed during the pro-
cess, and how to overcome or mitigate specific challenges. Researchers can use
the extended model as a basis for further data collection but also as a basis for
further theoretical refinement. They can also consider how their proposed new
testing technologies and methods fit with the problem-solving methods of testers
and how it addresses existing challenges.

Understanding Problem-Solving in Software Testing 15

In comparison to most related works (e.g., [1, 10]), our research proposes a
broader perspective on software testing as a problem-solving activity, emphasiz-
ing the cognitive processes involved. The study of Aniche et al. [1] aligns with
our model as it also acknowledges the presence of a mental model in test case de-
velopment. They also found that this mental model is updated when failures and
unexpected behavior surface during testing. However, our results also highlight
that the internal representations affect not only the test case that is developed
but help select the specific activity the tester uses during test creation and ex-
ecution. Our extended model also places the detailed inner updating process
in the context of an outer, general problem-solving process which guides which
activities are appropriate.

5.1 Threats to Validity

A survey method was chosen because it allowed us to contact potential partici-
pants directly, and they could respond anonymously at their convenience. How-
ever, as the survey was conducted digitally and anonymously, we were unable to
follow up with participants for clarifications or further questions regarding their
responses. Consequently, it is possible that our survey participants misunder-
stood the questions or that we did not have a clear understanding of the testers’
perspectives when formulating the questions. To mitigate this risk, an expert in
software engineering reviewed the material provided and guided the respondents.
To prevent confusion during the survey, we provided brief explanations for each
attribute included in the questionnaire.

The survey garnered 38 responses which limit generalizability. To enable
comparisons and statistical evaluation, such as based on company size and years
of experience, a larger sample would be necessary. We thus focused only on
general trends across the entire dataset.

6 Conclusions

This study aimed to understand the routine and behavior of software testers
when performing testing, to improve software testing tools and environments
to better serve their needs. We surveyed software testers with an average of
five years of experience in the field and used thematic analysis to identify main
themes, including knowledge, activities, and challenges related to software test-
ing. Through this analysis, we gained insights into how testers use different
sources of information and perform various activities, such as understanding
software requirements, learning about the software, and discussing results with
other team members to get feedback. We refined an existing test design model
to show how knowledge and internal representations help select activities that
develop test cases that in turn, after execution, then lead to refined internal rep-
resentations. Overall, our study provides insights into the routine and behavior
of software testers during testing, which can inform the development of better
software testing advice, tools, and environments.

16 Enoiu et al.

References

1. Maurício Aniche, Christoph Treude, and Andy Zaidman. How developers engineer
test cases: An observational study. IEEE Transactions on Software Engineering,
48(12):4925–4946, 2021.

2. John D Bransford and Barry S Stein. The ideal problem solver. new york: W. h,
1984.

3. Virginia Braun and Victoria Clarke. Using thematic analysis in psychology. Qual-
itative Research in Psychology, 3(2):77,101, 2006-01-01.

4. Eduard Enoiu and Robert Feldt. Towards human-like automated test generation:
Perspectives from cognition and problem solving. In International Workshop on
Cooperative and Human Aspects of Software Engineering, pages 123–124, 2021.

5. Eduard Enoiu, Gerald Tukseferi, and Robert Feldt. Towards a model of testers’
cognitive processes: Software testing as a problem solving approach. In Interna-
tional Conference on Software Quality, Reliability and Security Companion, pages
272–279. IEEE, 2020.

6. Jacob W Getzels. The problem of the problem. New directions for methodology of
social and behavioral science: Question framing and response consistency, 11:37–49,
1982.

7. David P Hale and Dwight A Haworth. Towards a model of programmers’ cogni-
tive processes in software maintenance: A structural learning theory approach for
debugging. Journal of Software Maintenance: Research and Practice, 3(2):85–106,
1991.

8. Joanne E Hale, Shane Sharpe, and David P Hale. An evaluation of the cognitive
processes of programmers engaged in software debugging. Journal of Software
Maintenance: Research and Practice, 11(2):73–91, 1999.

9. John R Hayes. Cognitive processes in creativity. In Handbook of creativity, pages
135–145. Springer, 1989.

10. Juha Itkonen, Mika V Mäntylä, and Casper Lassenius. The role of the tester’s
knowledge in exploratory software testing. IEEE Transactions on Software Engi-
neering, 39(5):707–724, 2012.

11. Per Lenberg, Robert Feldt, and Lars Göran Wallgren. Behavioral software engi-
neering: A definition and systematic literature review. Journal of Systems and
software, 107:15–37, 2015.

12. Stanley Letovsky. Cognitive processes in program comprehension. Journal of
Systems and software, 7(4):325–339, 1987.

13. Allan Newel and Herbert A Simon. Human problem solving. Englewood Cliffs, NJ,
1972.

14. Alessandro Orso and Gregg Rothermel. Software testing: A research travelogue
(2000–2014). In Proceedings of the on Future of Software Engineering, FOSE 2014,
pages 117–132, New York, NY, USA, 2014. ACM.

15. M. Pezze and M. Young. Software Test and Analysis: Process, Principles, and
Techniques. John Wiley and Sons, October 2006.

16. George Polya. How to solve it, 1957.
17. Jean E Pretz, Adam J Naples, and Robert J Sternberg. Recognizing, defining, and

representing problems. The psychology of problem solving, 30(3), 2003.
18. Pierre N Robillard, Patrick d’Astous, Françoise Détienne, and Willemien Visser.

Measuring cognitive activities in software engineering. In Proceedings of the 20th
international conference on Software engineering, pages 292–300. IEEE, 1998.

