An Experiment in Requirements Engineering and
Testing using EARS Notation for PLC Systems

Mikael Ebrahimi Salari*, Eduard Paul Enoiu*, Wasif Afzal*, Cristina Seceleanu®
*Mailardalen University, Sweden
{mikael.salari, eduard.enoiu, wasif.afzal, cristina.seleceleanu} @mdu.se

Abstract— Regulatory standards for engineering safety-
critical systems often demand both traceable requirements and
specification-based testing, during development. Requirements
are often written in natural language, yet for specification
purposes, this may be supplemented by formal or semi-formal
descriptions, to increase clarity. However, the choice of notation
of the latter is often constrained by the training, skills, and
preferences of the designers.

The Easy Approach to Requirements Syntax (EARS) ad-
dresses the inherent imprecision of natural language require-
ments with respect to potential ambiguity and lack of accuracy.
This paper investigates requirement formalization using EARS
and specification-based testing of embedded software written in
the IEC 61131-3 language, a programming standard used for
developing Programmable Logic Controllers (PLC). Further, we
investigate, by means of an experiment, how human participants
translate natural language requirements into EARS and how they
use the latter to test PLC software. We report our observations
during the experiments, including the type of EARS patterns
participants use to structure natural language requirements and
challenges during the specification phase, as well as present the
results of testing based on EARS-formalized requirements.

Index Terms—EARS, PLC, Requirement Engineering, Testing

I. INTRODUCTION

Programmable Logic Controllers (PLCs) are used in engi-
neering embedded safety-critical software (e.g., in the rail-
way and automation control domains) [1]. Engineering such
systems commonly demands certification according to safety
standards [2] that impose specific constraints on require-
ments engineering, implementation-based and specification-
based testing. Several studies [3]-[6] have looked at how
to generate test input data to achieve high implementation
coverage for domain-specific PLC systems.

However, since requirements are often expressed in natural
language, using them in such form to create test cases while
keeping requirements and test cases aligned is a difficult task.
While such an alignment requires extensive domain knowl-
edge, a systematic process for requirements engineering —
including their translation into a semi-formal, non-ambiguous
form — combined with testing would facilitate linking require-
ments to tests. Generally, in industry, such translation is most
often being carried out manually, so manual processes are
used to model requirements by using structured notations,
and automatically create a set of tests that systematically
exercises the specification when fed to the system under
test [7]. Given that there is little evidence on the extent

to which humans can effectively model requirements using
semi-formal notations, and how the modeling impacts the
development and testing of reliable systems, in this paper,
we investigate the implications of applying semi-structured
requirements specification and test generation based on the
latter, for PLC systems. In this context, we study the behaviour
of human writing requirements in different modeling styles
using the Easy Approach to Requirements Syntax (EARS) [8],
a simple notation for writing textual requirements that were
first published at the IEEE Requirements Engineering 2009
Conference.

For requirement modeling, we chose the Easy Approach
to Requirements Syntax(EARS) and testing by experimenting
with human subjects. Ten individuals took part as subjects in
an experiment. The subjects were given three requirements and
were asked to rewrite these using EARS notation based on a
specification manually.

The results of this study show that humans create re-
quirements using semi-formal notations in distinct ways and
using different patterns. Completeness is the most common
issue when rewriting and using such requirements for testing.
Additionally, we found that test generation and execution using
these EARS requirements for PLC systems is applicable. Our
results highlight the need for more research into how different
requirement formalization and test design techniques for PLC
software can influence the efficiency and effectiveness of
requirements engineering and requirements-based testing for
this type of software.

II. PRELIMINARIES
A. Programmable Logic Controllers

Programmable Logic Controllers (PLC) are one of the most
used logic controllers in today’s automated industry [9]. PLCs
are being widely used in different industrial applications such
as supervisory systems in nuclear and power plants. Program-
ming a PLC device is usually done via one or a combination of
different programming languages that are proposed in the IEC
61131-3 standard [10]. The aforementioned PLC programming
languages are Function Block Diagram (FBD), Structured Text
(ST), Ladder Diagram (LD), Sequential Function Chart (SFC),
and Continuous Function Chart (CFC). Among all introduced
programming languages for PLCs, FBD and ST are our main
focus in this study because of two reasons. Firstly, these two
languages gained remarkable popularity in the industry during
the last couple of years [11]. Secondly, the industrial case

study that is provided to us for this study is a supervisory
PLC program that is developed in ST and FBD. ST is a text-
based programming language with a similar syntax to high-
level programming languages such as C, whereas, FBD is a
visualized programming language that is easy to use because
of its graphical interface. PLC programs are commonly devel-
oped in an Integrated Development Environment (IDE) and
are executed cyclically. Based on the provided concept in [EC
61131-3, each cycle loop of PLC program execution consists
of 3 main stages including read, execute, and write [10]. The
first stage reads all available inputs and stores them in the
memory while the second stage does the computation tasks
without any interruptions. The final stage (write), updates the
output values based on the completed computations in the
previous stage.

B. CODESYS Development Environment

Developing a PLC program and simulating its behavior
needs to be done in an IDE. Several different PLC IDEs have
been proposed by different vendors so far. One of the most
popular IDEs in the market is CODESYS ! which was initially
developed by CODESYS Group in 1994. CODESYS is a
manufacturer-independent IDE that has matured by releasing
numerous updates and the latest version at this moment is V3.5
SP18. Among all available PLC IDEs in the market, We have
chosen CODESYS as our preferred IDE because of several
reasons. Firstlyy, CODESYS is very popular among practi-
tioners and has almost full compatibility with the IEC61131-
3 standard and supports all proposed standard programming
languages of this standard [11]. Secondly, CODESYS is free to
use for personal use and is equipped with good support through
releasing different versions. Last but not least, CODESYS
can execute Python scripts directly inside the IDE and it is
also equipped with numerous automation add-ons such as test
automation tools.

C. EARS Semi-Structured Requirement Engineering Syntax

Writing the stakeholder requirements in unconstrained Nat-
ural Language (NL) is not accurate and can raise critical
problems in lower levels of system development [8]. Aiming at
mitigating the ambiguity problems and increasing the accuracy
in the process of requirements engineering, some practitioners
stand up for using other textual and non-textual notations [8].
Using non-textual notations demands translation of the original
requirement, which can be faulty sometimes. Training over-
head is another drawback of proposing a new type of notation.
EARS is a semi-structured requirement engineering syntax that
was proposed by Alistair et al. in 2009 [8]. EARS provides
a syntax for transforming all-natural language requirements
in one of the proposed five Generic requirements syntax
simple templates. The aforementioned five simple templates
of EARS are ubiquitous requirements, event-driven require-
ments, unwanted behaviours, state-driven requirements, and
optional features. Moreover, EARS supports writing complex

Thttps://www.codesys.com/

requirements using a combination of considered conditional
keywords, including Where, While, and When.

ITII. EXPERIMENTAL DESIGN

In this section, we report the description of the performed
experiment, including the details of the instruction material
and the artefacts used.

A. Research Questions

The main goal of this study is to investigate the process
of requirements creation when constraining the use of NL.
The EARS modeling notation has been adopted by other
organizations in different sectors and countries, so it is a
realistic model for requirements engineering and test creation.
Since these are intellectual activities in which humans allocate
a variety of cognitive resources (such as attention and effort)
that one needs to use when confronted with challenges as they
perform such tasks, our first step is understanding how human
practitioners write such requirements and how these can be
used for test creation.

The main goal of this study is to investigate the applicability
of the EARS semi-structured requirement engineering syntax
in the context of PLC programs. Aiming at achieving this goal,
we formulated the following research questions.

e« RQIl: How is the EARS semi-structured requirement
engineering syntax and test creation applied in the context
of PLC programs?

e RQ2: What EARS patterns are used during the writing
of requirements?

o RQ3: What challenges are perceived during the specifi-
cation of requirements and test creation using EARS?

B. Experimental Setup Overview

Aiming at achieving the goal of this study, we conduct
a controlled experiment that asks the participants to write 3
given requirements using EARS syntax. The participants are
free to choose their preferred EARS syntax template based on
their personal interpretation of the given requirements. The
subjects of this experiment are a group of 10 individuals
as follows: four experienced engineers at a large automa-
tion company in Sweden and Spain and six researchers and
managers from different universities and research institutions
across Europe.

C. Object Selection

The objects of study were chosen manually based on the
following criteria:

o The requirements should have a natural language specifi-
cation that is understandable and sufficiently rich in detail
for an engineer to write executable tests.

o The requirements should represent different types of real
testing scenarios in different areas where the IEC 61131-3
standard is used.

o The requirements should be simple to understand without
any domain knowledge.

TABLE I
THE NATURAL LANGUAGE REQUIREMENTS USED DURING THE
EXPERIMENT.

Requirement ID | Requirement Text
RI1 User account should be uniquely iden-
tified to a user.
RI2 The software shall warn the user of
malware detection.
RI3 Only authorised devices are allowed to
connect into the ICS network

o The resulting test cases should be executed in the
CODESYS environment.

We investigated the industrial libraries provided by a large-
scale company focusing on the development and manufac-
turing of control systems. We identified three candidate re-
quirements matching our criteria, shown in Table I. The
requirements should not be trivial, yet fully manageable to
use within 60 minutes and no domain-specific knowledge
should be needed to understand the requirements. We then
assessed the relative difficulty of the identified requirements
by manually writing and creating tests.

D. Operationalization of Constructs

Requirements Templates. In this experiment, we investigate
the effect of using the EARS approach for requirements
engineering and test creation. The proposed generic
requirements syntax of EARS we used in this experiment
works as follows:

<optional preconditions><optional trigger> the <system
name> shall <system response>

This simple syntax template forces the requirement engineer
to emphasise preconditions, triggers, and system responses in
their developed requirements. In EARS syntax, preconditions,
and triggers are both optional, and the order of the used
clauses is very important. The following briefly describes each
template of EARS.

1) Ubiquitous requirements (U): A ubiquitous requirement
is a type of requirement that is not bonded to any preconditions
or triggers and is always enabled in the system. The generic
structure of this template is as follows:

The <system name> shall <system response>

2) Event-driven requirements (ED): The event-driven
requirement is used only when an event is identified in the
system. This type of requirement uses When keyword. The
generic structure of this template is as follows:

WHEN <optional preconditions> <trigger> the <system
name> shall <system response>

3) Unwanted behaviours (UB): Requirements that are
related to Unwanted behaviors are defined using a structure

that is extracted from Event-driven requirements. Unwanted
behavior refers to covering all possible situations that are
not desirable and are usually a big source of omissions in
preliminary requirements. The reserved keywords for this
type of requirement in EARS are If and Then. The generic
structure of this template is as follows:

IF <optional preconditions> <trigger>, THEN the
<system name> shall <system response>

4) State-driven requirements (SD): The State-driven
requirement is only active if the system is in a specific status.
The reserved keyword for defining State-driven requirements
in EARS is While. The generic structure of this template is
as follows:

WHERE <feature is included> the <system name>
shall <system response>

5) Optional features (OF): The Optional feature
requirement is designed to be used when the author of
the requirement wants to include a specific feature in the
system. The keyword Where is considered for defining this
type of feature in EARS. The generic structure of this
template is as follows:

WHERE <feature is included> the <system name>
shall <system response>

Process Challenges. We are interested in two types of chal-
lenges encountered during the use of EARS templates and their
use for testing: challenges encountered during the specification
of requirements and problems when designing test cases
for PLC systems. We performed thematic analysis [12] for
qualitative data analysis to extract the main themes as reflected
by the input given by each participant.

E. Instrumentation

One session was organized for the sake of the experiment.
The subjects were given the task to use the three requirements
and rewrite these in EARS (to the extent they consider suffi-
cient based on the given specifications). They were instructed
to read the specification, create these templates and think
out loud. The subjects were not grouped and the document
needed for this experiment was provided digitally and in
written form. Before commencing the session, a short tutorial
of approximately 10 minutes on EARS syntax was provided
to the subjects in order to avoid further problems with the
subjects’ unfamiliarity with the concepts used. The tutorial
included screencasts demonstrating EARS requirements. De-
tailed information about the problem and instructions were
provided in the experiment session.

E Data Collection Procedure

As part of the instructions, subjects submitted their solutions
in the form of a record documenting their work. Data from

this experiment session was then used for quantitative and
qualitative analysis.

IV. EXPERIMENT CONDUCT

Once the experiment design was defined, the requirements
for executing the experiment were in place. The session
was held for one hour and preceded by a lesson on EARS
notation. The requirements specification and testing process
used during the conduct of this experiment corresponds to
the methodology in Figure 1. The first step corresponds to the
transformation of the requirement specified initially in Natural
Language (NL) into an EARS requirement using the EARS
syntax (Step 1 in Figure 1. In the next step, we are using
the resulting requirement to generate test cases that cover the
specified behaviour (Step 2 in Figure 1). The final steps in this
methodology are to execute these test cases (Step 3 in Figure
1) and to compare the actual behaviour with the expected result
to monitor whether the program works as expected (Step 4 in
Figure 1).

In total, fen individuals participated in our experiment.
Before starting the experiment, the participants were informed
that their work would be used for experimental purposes.
The participants had the option of not participating in the
experiment and not allowing their data to be used this way.

The subjects worked individually during the experiment; we
briefly interacted with the participants to ensure that every-
body had a sufficient understanding of the involved notations
without getting involved in the writing of the solution. All
subjects used the provided documents and their machines. The
experiment was fixed to one hour. To complete the assignment,
the subjects were given the same time to work on writing
these requirements according to the given instructions. For
collecting data, we provided a template to enforce the usage of
the same reporting interface. By having a common template for
reporting, we eased the data collection and analysis process.

To finish the assignment, we required the participants to
provide the produced results as soon as they finished writing
their responses. During the experiment, the subjects do not
directly communicate with others to avoid introducing bias.
After each individual finished their assignment, a complete
solution was saved containing the answers for each solution.
In addition, we separated the data provided by the participants
from their names.

V. EXPERIMENT ANALYSIS

This section provides an analysis of the data collected in
this experiment. In analyzing the qualitative data, we followed
the guidelines on qualitative analysis procedures provided by
Braun and Clarke [12]. For each requirement, each subject
in our study provided a set of EARS expressions. These ex-
pressions were used to conduct the experimental analysis and
testing. For each set of tests produced, we provide evidence for
their generation and execution in CODESYS. These metrics
form the basis for our analysis toward answering the research
questions.

EARS
NL Syntax EARS
Requirement (1) Requirement
Test
9 Generation
Test
CODESYS Test | Eexecution PLC PRG in
Manager (3] CODESYS
Expected
0 Output
Checking The
Results

Fig. 1. An overview of the EARS-based requirement specification and PLC
testing methodology used in this experiment.

TABLE I
RESULTS OF THE TEMPLATES USED FOR EACH REQUIREMENT USED IN
THE EXPERIMENT.

RI1 | RI2 | RI3 | Requirement ID/EARS Template
10 1 1 Ubiquitous (U)

0 5 4 Event-Driven (ED)

1 5 6 Unwanted Behaviours (UB)

0 0 3 State-Driven (SD)

0 0 0 Optional Features (OF)

A. Requirement Engineering Results

For each requirement, we have collected data about the type
of EARS template used by each participant, the approaches,
and the challenges participants experienced during requirement
representation using the EARS notation. The results are shown
in Table II, Table III, and Table IV.

Participants strictly adhered to one or multiple EARS tem-
plates. It seems that the ubiquitous template has been used
by all participants to model requirement RI1 and just in one
case when representing requirements RI2 and RI3 (as shown
in Table II). Participants explained that the “shall” statement is
clearly indicated and should be used to describe the required
behavior. Nevertheless, one participant decided to use the
unwanted behaviour template for RI1 to indicate the prohibited
behavior in such a form that can be used for testing.

TABLE III
RESULTS OF THE REQUIREMENTS WRITING IN TERMS OF THE TEMPLATES
USED BY EACH PARTICIPANT FOR EACH REQUIREMENT. EARS TEMPLATE
TYPES ARE SHOWN USING THEIR SPECIFIC ACRONYMS AS STATED IN
SECTION III-D AND TABLE II.

RI1 RI2 RI3 Requirement ID/Participants
U,UB | U, UB, ED U, SD, ED P1
U ED UB P2
U ED UB P3
U UB SD P4
U ED UB P5
U ED UB P6
U SD UB P7
U UB ED, UB, SD P8
U UB ED P9
U UB ED P10

RESULTS SHOWING THE MAIN THEMES IDENTIFIED RELATED TO APPROACHES AND CHALLENGES ENCOUNTERED DURING THE TRANSLATION PROCESS.

TABLE IV

Main Themes

Theme Descriptions

Requirements are not complete and clear
enough for EARS translation.

When starting with the translation, requirements in NL are not complete enough
to decide precisely which EARS template to use.

Using single or multiple EARS templates is not
clear enough, especially when using these for
testing.

There is a need, when using these patterns for testing, to use multiple and
separate templates for each requirement to cover both positive and negative
cases arising.

The system perspective is not easily identifiable
from the requirements.

It is difficult to decide which perspective to use when translating the EARS
requirement (e.g., system, subsystem level).

The optional feature template is not applicable
for the selected requirements

Even if the Option requirement is used for systems that include a particular
element and variants, this modeling form was not used during requirement
transformation using the EARS notation since the participants did not need to
handle system or product variation.

The event-driven and unwanted behaviour templates have
been used by participants to represent requirement RI2, while
some participants used the state-driven pattern (as shown in
Table III). Participants chose to do this since they drafted
requirements in several increments. Firstly, they considered
how the system behaves typically (also called sunny-day
behaviour). For some participants using EARS, this results
in requirements in the state-driven and event-driven patterns.
Secondly, some participants decided to specify what the sys-
tem must do in response to the unwanted behaviour, which
produced requirements in the unwanted behaviour pattern.

In addition, the thematic analysis of the notes taken by
participants when performing these steps in requirement repre-
sentation resulted in several main themes related to approaches
and challenges experienced during the translation process.
Several participants mentioned that the initial NL requirements
are not complete and clear such that these can be used directly
for testing. One participant mentioned the following: “What
happens if the device is not authorized, missing failure models,
startup/default/safe state...?”. This resulted in issues when
starting with the translation process, especially when deciding
which templates to use. Several participants had issues in
deciding when to use single or multiple EARS templates
to cover both positive and negative behaviours that need to
be tested. One participant stated the following: “We could
possibly use event-driven type requirement. At the same time,
it is unwanted we could use, this one is quite complicated”.
Some participants preferred the use of the “shall not” form,
which has been observed by some participants as having an
impact on the test case created since only a set o test cases
involving the unwanted behaviour would need to be created
to show satisfaction with the requirement. Another observation
relates to the use of an optional feature template, which for
the given requirements was not used by any of the participants
since there was no need to specify any product variation or
specific features.

B. PLC Testing Results

Aiming at evaluating the applicability of using EARS semi-
structured syntax when creating test cases for PLC programs,
we used three programs that implement the behaviour stated
in the three provided natural language requirements used in
this experiment. All these three PLC programs are developed

PROGRAM UniqueUserAccount

VAR
user : ARRAY[1..10] OF WSTRING;;
user_account : ARRAY[1..10] OF DINT;
i,j : INT;
K : INT;
UniqueID : BOOL; (*Non mnter*
Result_Unique: BOOL :

END_VAR

Fig. 2. PRGI1 PLC interface program written in the ST language in CODESYS
IDE corresponding to the evaluation of the RI1 requirement.

in CODESYS IDE using the Structure Text (ST) programming
language. In this paper, we refer to these programs as PRGI,
PRG2, and PRG3.

After generating the EARS-based test cases for each pro-
gram, we execute these automatically using the CODESYS test
automation framework named CODESYS Test Manager?. The
final step in this methodology is to compare the actual output
with the expected output to observe whether the program
works as expected.

We used the concretization steps of the EARS expres-
sions as stated by Flemstrom et al. [13]. This happens by
mapping the system response, condition, and events to the
actual implementation in PLC. This contains information about
the implementation elements of a system and its interfaces.
An engineer needs to consider this information and identify
the given signals and their characteristics. In this way, we
define a set of signals related to the feature under test. In
these cases, the next step for the selected requirements would
need to design test cases to show that requirement has been
met. In our experiment, we could directly use a subset of
positive and negative cases by randomly choosing values from
an equivalence class. Nevertheless, in a general case, the
translation and concretization steps are not easy and one would
need to decide how to automate such steps and if we are to
use exhaustive testing, equivalence class testing, combinatorial
testing, or any other test selection technique for designing test
cases.

1) Test Results of PRGI: PRGI is the PLC program we
considered for testing the RI1 requirement in the PLC envi-
ronment. This program is using the values of the user account
and user lists. Then it checks for unique IDs and returns an

Zhttps://store.codesys.com/en/codesys-test-manager.html

A2 rrldm

EARS.RQ1.UniqueUserAccount [0.0]
= EARS_RQ1_Unique_User_Account
user
Expected Output
=12 EARS_RQ1_Non_Unique_User_Account

- TestAction Extended Settings

Title: [user_account Action: |WriteVariable (TestManager.h

Configuration parameters (0/0)

Variable: \ Device. Application.UniqueUser Account. user_account[2]

Value: |555

user
user_account
Expected Output

Fig. 3. The generated test cases for PRG1 based on the EARS syntax for
RI1 as shown in CODESYS IDE

Summary Details

Overview

Date 1/25/2023 2:38 PM
Seript EARS.RQ1.UniqueUserAccount (0.0)
Tester msit1

Test seftings: Verbose;

Summary

Execution time 00:00:00.3191599
Pinned scripts ~ 0/1

Total test cases 2
Succeeded 2
Failed 0
Skipped 0

Version information

Details

| Collapse all H Collapse succeeded “ Expand all H Show parameters H Hide parameters

+ [EARS.RQ1.UniqueUserAccount [0.0] - Succeeded
1. [1EARS_RQ1_Unique_User_Account - Succeeded
1. Action: user - Succeeded
2. Action: user_account - Succeeded
3. Action: Expected Output - Succeeded
2. []EARS_RQ1_Non_Unique_User_Account - Succeeded
1. Action: user - Succeeded
2. Action: user_account - Succeeded
3. Action: Expected Output - Succeeded

Fig. 4. Test execution results for PRG1 PLC program based on the EARS-
based generated test cases for RI1

indication of whether each user account is uniquely identified
to a user or not. A snippet of the PRG1 PLC program is shown
in Figure 2.

To design and execute the required test cases to test the RI1
Requirement in PRG1, we use the transformed requirement
from the NL requirement shown in Table V.

Based on the EARS requirement we use two test cases to
cover the identification of the user and the case when the user
is not identified. Each test case includes the following three
test actions: two WriteVariable test actions to alter the user
and user account inputs and one CompareVariable test action
that compares the actual output with the expected one. The
generated test cases for PRG1 used to test the adherence of
the program to RI1 requirement are shown in Figure 3.

After designing the required test cases, we execute them
automatically on PRG1 to investigate the adherence of the
mentioned PLC program to the RI1 requirement. As can be
observed in Figure 4, all test cases have been executed in 0.3
seconds. All executed test cases have successfully passed on
the PRG1 program.

2) Test Results of PRG2: The PLC program we use for
executing the generated test cases for (RIS in Table I is
named PRG2. This program is shown as a black-box malware
detection system in the PLC environment that can be used
for investigating the context of RI2. PRG2 consists of the
following interfaces: two input signals named MaliciousAc-
tivity and NormalActivity as well as one output signal named

PROGRAM MalwareDetection
2 VAR
3 MalwareDetected: BOOL;
4 MaliciousActivity: BOOL;
NormalActivity: BOOL;
END_VAR

Fig. 5. A snapshot showing the PRG2 PLC interface program written in the
ST language in CODESYS IDE corresponding to the evaluation of the RI2
requirement.

PROGRAM SearchID
= VAR

id to find :
found : BOOL;
array of ids :

INT = 111;

ARRAY[0..9] OF INT :=
1 5 N
END_VAR

Fig. 6. A snapshot showing the PRG3 PLC program written in the ST
language in CODESYS IDE corresponding to the evaluation of the RI3
requirement.

MalwareDetected. When MaliciousActivity and NormalActiv-
ity signals have divergent information, the Malware Detection
system is triggered, and the value of the MalwareDetected
signal becomes True. An interface snippet of PRG2 is shown
in Figure 5.

Considering the results of the experiment we use the result-
ing EARS Event-driven requirement pattern as the most suited
type of template for transforming the requirement from NL to
EARS in the form shown in Table V.

Based on the developed EARS requirement for RI2 require-
ment, we generate two test cases for PRG2. Each test case
consists of two test actions(MaliciousActivity and NormalAc-
tivity) that alter the value of the inputs, as well as one test
action (Expected Output that compares the actual behaviour
with the expected one. The first test case checks if a(Malware
is Detected) while the second test case checks if a (Malware
is Not Detected)

The generated test cases for PRG2 based on the RI2
requirement are then automatically executed using CODESYS
Test Manager in 1.71 seconds. All developed test cases have
successfully passed.

3) Test Results of PRG3: PRG3 is the PLC program
used to execute the generated test cases for RI3 in Table I
(”Only authorised devices are allowed to connect into the ICS
network”. This program consists of the following units: /) a
database of authorised device IDs, which is implemented using
an array of IDs, 2) an input signal corresponding to the device
ID that needs to be authorised, and 3) a boolean output signal
(i.e., found) which returns True in the case of the authorised
device being allowed to connect given the ID is known. We
show a snapshot of this PLC program in Figure 6.

As discussed in Section V-A, different individuals trans-
formed the NL requirement into the EARS requirement in

msi11
Highlight
RI2

TABLE V
EARS REQUIREMENTS EXAMPLES OBTAINED FROM THE EXPERIMENT AND THE RESULTING CONCRETIZED EARS REQUIREMENTS.

Requirements | EARS Requirements Concretized EARS Requirements

The <user account system>> shall <identify the user>

RI1 If <the user is not identified> then <user account system> if <uniqueID=FALSE> then <UniqueUserAccount> shall
shall <alert> <Result_Unique=FALSE>

RI2 When <malware is detected> the <system> shall <warn the | When <NormalActivity =~ 7# MaliciousActivity> the
user> <MalwareDetection>> shall <MalwareDetected=TRUE>

RI3 When <the device is authorised> the <system>> shall <grant | When <tound=TRUE> the <SearchID> shall
access to the device> < ConnectionAllowed=TRUE >

different forms. We use the most common form developed by
the participants to transform RI3 to an EARS Event-Driven
syntax pattern in the following form shown in Table V.

Based on the aforementioned EARS requirement for RI3,
we develop 2 test cases for Successful Authorization and
Unsuccessful Authorization. Each developed test case consists
of two actions, including the provision of a new Input ID
and Comparing the actual output with the expected output.
The generated test cases have been automatically executed on
PRG3 using CODESYS Test Manager in 1.14 seconds. Both
test cases have successfully passed after being executed on the
PRG3 PLC program.

C. Limitations of the Study and Threats to Validity

External Validity. All of our subjects are individuals that have
limited experience with EARS. Furthermore, because these
practitioners have experience in requirements engineering, we
see no reason the use of professionals with deep knowledge of
EARS in our study would yield a completely different result.
Professionals with experience in EARS would intuitively write
better requirements than the ones written by our subjects.
Our study has focused on three relatively brief with reduced
complexity, but these requirements represent relevant samples
they would encounter in practice. We have used the CODESYS
tool for automated test creation and execution. There are many
tools for developing and executing tests, and these may give
different results. Nevertheless, CODESYS is one of the most
used development environments for PLCs, and its output in
tests is similar to the output produced by other tools.
Internal Validity. All subjects were assigned to perform the
experiment at the same time. This was dictated by the way
the experiment was organized, with a presentation followed
by practical work. Subjects without sufficient knowledge of
EARS may affect the final result. To avoid this problem,
the session was structured to follow the corresponding EARS
lesson. Another threat to internal Validity could arise from
using unclear objectives given to the subjects. To address this,
we tested the material ourselves.

Construct Validity. Capturing the challenges of requirements
engineering and testing is a difficult problem. We rely on
human feedback by using a think-out-loud method that gives
a rough measure of the challenges encountered.

Conclusion Validity. The results of this study are based on an
experiment using 10 participants and three requirements. For
each requirement, all participants performed the study, which

is a relatively small number of subjects. Nevertheless, this was
sufficient to obtain various results showing an effect between
the modeling of these different types of requirements.

VI. RELATED WORK

Mavin and Wilkinson [14] reflected on the ten years of
EARS [8] and shared some lessons learned in their review
paper. For example, they have discovered that users of EARS
manage to author more useful draft requirements as they
incrementally work to find the appropriate EARS pattern. They
recommend that new engineers write several requirements
and seek expert review with the application of EARS being
more useful if one can apply the following activities: training,
thinking, semantics, syntax, and review. In our study, we
confirm some of these results even if we do not cover all
these activities stated.

Mavin et al. [15] report on the understanding of four
experienced EARS practitioners and their reflections on their
experiences of applying EARS in different projects and do-
mains over six years. They report the following EARS-specific
lesson learned: training should be short, use EARS with or
without a tool, use coaching to embed learning, challenge
the EARS Patterns, and question if the EARS clauses are
necessary and sufficient.

Mintyld et al. [16] performed a controlled experiment on
test case development and requirement review and the effects
of time pressure. They saw no statistically significant evidence
that time pressure would lower effectiveness or provoke neg-
ative influences on motivation, frustration, or performance.

Dalpiaz et al. [17] investigated the adequateness, complete-
ness, and correctness of use cases and user stories for the
manual creation of a static conceptual model. They performed
a controlled experiment with 118 subjects, and their results
show that for creating conceptual models, user stories work
better than use cases. Furthermore, user story repetitions and
conciseness contribute to these results. However, as we aim
with our study, more evidence needs to be provided regarding
the aspects that must be considered when selecting and using
a modeling and requirement notation.

Weninger et al. [18] report the results of a controlled ex-
periment in which they compared two approaches for defining
restricted use case requirements from multiple perspectives,
including misuse, understandability, and restrictiveness. Their
results indicate the usefulness of the restricted use case mod-
eling approach.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have conducted an experiment in re-
quirements engineering and testing using EARS notation for
PLC systems. In the requirement engineering part of our
experiment, we found out that most participants preferred the
EARS ubiquitous pattern for transforming the RI1 requirement
from NL to the EARS syntax, whereas the unwanted behaviour
and event-driven patterns were the most popular types for
RI2 and RI3 requirement transformations. It was observed
that different individuals used different EARS patterns for
transforming the same requirement based on their personal
interpretation, which shows an acceptable level of flexibility
in EARS syntax. In the testing part of our experiment, we
investigated the applicability of using the EARS patterns in
terms of PLC testing, which has been done by using three PLC
programs in the ST language and testing them by executing
the test cases. The gathered test execution results show that
using EARS in creating requirement-based test cases for PLC
programs is promising and can benefit the PLC testers by
establishing an easy-to-understand way of expressing test
specifications.

In future work, we want to investigate the applicability of
using EARS in PLC requirement engineering on other levels of
testing and by including more PLC programs. Inspection of the
impact of choosing different EARS templates for describing
the requirements over the quality of the generated test cases
can be another future direction of our work. Moreover, we
want to automate our solution and generate test cases from
the created EARS requirements based on existing functional
and non-functional requirements.

ACKNOWLEDGMENT

This work has received funding from the EU’s H2020
research and innovation program under grant agreement No
957212 and from Vinnova through the SmartDelta project.

REFERENCES

[1] Moses D Schwartz, John Mulder, Jason Trent, and William D Atkins.
Control System Devices: Architectures and Supply Channels Overview.
In Sandia Report SAND2010-5183. Sandia National Laboratories, 2010.

[2] CENELEC. 50128: Railway Application—Communications, Signaling
and Processing Systems—Software for Railway Control and Protection
Systems. In Standard Report. 2001.

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Eduard P Enoiu, Adnan éauievic’, Thomas J Ostrand, Elaine J Weyuker,
Daniel Sundmark, and Paul Pettersson. Automated Test Generation using
Model Checking: an Industrial Evaluation. In International Journal on
Software Tools for Technology Transfer, volume 18, pages 335-353.
Springer, 2014.

Yi-Chen Wu and Chin-Feng Fan. Automatic Test Case Generation for
Structural Testing of Function Block Diagrams. In Information and
Software Technology, volume 56. Elsevier, 2014.

E. Jee, J. Yoo, S. Cha, and D. Bae. A data flow-based structural testing
technique for FBD programs. In Information and Software Technology,
volume 51, pages 1131-1139. Elsevier, 2009.

Kivanc Doganay, Markus Bohlin, and Ola Sellin. Search Based Testing
of Embedded Systems Implemented in IEC 61131-3: An Industrial Case
Study. In International Conference on Software Testing, Verification and
Validation Workshops, pages 425-432. IEEE, 2013.

Vahid Garousi and Junji Zhi. A Survey of Software Testing Practices in
Canada. In Journal of Systems and Software, volume 86, pages 1354—

1376. Elsevier, (2013).
Alistair Mavin, Philip Wilkinson, Adrian Harwood, and Mark Novak.

Easy approach to requirements syntax (ears). In 2009 17th IEEE
International Requirements Engineering Conference, pages 317-322.
IEEE, 2009.

David M Auslander, Christopher Pawlowski, and John Ridgely. Recon-
ciling programmable logic controllers (plcs) with mechatronics control
software. In Proceeding of the 1996 IEEE International Conference on
Control Applications, pages 415-420. IEEE, 1996.

Michael Tiegelkamp and Karl-Heinz John. IEC 61131-3: Programming
industrial automation systems, volume 166. Springer, 2010.

Dag H Hanssen. Programmable logic controllers: a practical approach
to IEC 61131-3 using CODESYS. John Wiley & Sons, 2015.
Virginia Braun and Victoria Clarke. Thematic analysis.
Psychological Association, 2012.

Flemstrom Daniel, Enoiu Eduard, Azal Wasif, Sundmark Daniel,
Gustafsson Thomas, and Kobetski Avenir. From natural language
requirements to passive test cases using guarded assertions. In 2018
IEEE International Conference on Software Quality, Reliability and
Security (QRS), pages 470—481. IEEE, 2018.

Alistair Mavin Mav and Philip Wilkinson. Ten years of ears. [EEE
Software, 36(5):10-14, 2019.

Alistair Mavin, Philip Wilksinson, Sarah Gregory, and Eero Uusitalo.
Listens learned (8 lessons learned applying ears). In 2016 IEEE 24th
International Requirements Engineering Conference (RE), pages 276—
282. IEEE, 2016.

Mika V Mintyld, Kai Petersen, Timo OA Lehtinen, and Casper Lasse-
nius. Time pressure: a controlled experiment of test case development
and requirements review. In Proceedings of the 36th International
Conference on Software Engineering, pages 83-94, 2014.

Fabiano Dalpiaz and Arnon Sturm. Conceptualizing requirements using
user stories and use cases: a controlled experiment. In International
Working Conference on Requirements Engineering: Foundation for
Software Quality, pages 221-238. Springer, 2020.

Markus Weninger, Paul Griinbacher, Huihui Zhang, Tao Yue, and
Shaukat Ali. Tool support for restricted use case specification: Findings
from a controlled experiment. In 2018 25th Asia-Pacific Software
Engineering Conference (APSEC), pages 21-30. IEEE, 2018.

American

