
Requirement or not, that is the question:
A case from the railway industry

Sarmad Bashir1,2, Muhammad Abbas1,2 Q, Mehrdad Saadatmand1, Eduard
Paul Enoiu2, Markus Bohlin2, and Pernilla Lindberg3

1 RISE Research Institutes of Sweden, Väster̊as, Sweden, {first.last}@ri.se
2 Mälardalen University, Väster̊as, Sweden, {first.middle.last}@mdu.se

3 Alstom, Väster̊as, Sweden, {first.last}@alstomgroup.com

Abstract. [Context and Motivation] Requirements in tender doc-
uments are often mixed with other supporting information. Identifying
requirements in large tender documents could aid the bidding process and
help estimate the risk associated with the project. [Question/problem]
Manual identification of requirements in large documents is a resource-
intensive activity that is prone to human error and limits scalability.
This study compares various state-of-the-art approaches for requirements
identification in an industrial context. For generalizability, we also present
an evaluation on a real-world public dataset. [Principal ideas/results]
We formulate the requirement identification problem as a binary text
classification problem. Various state-of-the-art classifiers based on tradi-
tional machine learning, deep learning, and few-shot learning are evalu-
ated for requirements identification based on accuracy, precision, recall,
and F1 score. Results from the evaluation show that the transformer-
based BERT classifier performs the best, with an average F1 score of
0.82 and 0.87 on industrial and public datasets, respectively. Our results
also confirm that few-shot classifiers can achieve comparable results with
an average F1 score of 0.76 on significantly lower samples, i.e., only 20%
of the data. [Contribution] There is little empirical evidence on the use
of large language models and few-shots classifiers for requirements iden-
tification. This paper fills this gap by presenting an industrial empirical
evaluation of the state-of-the-art approaches for requirements identifi-
cation in large tender documents. We also provide a running tool and
a replication package for further experimentation to support future re-
search in this area.

Keywords: Requirements identification · Requirements classification ·
tender documents · NLP

1 Introduction

Like many other industries, the project acquisition in the railway industry also
starts with a call for tender. A tender document is a formal request calling for
competing offers from different potential suppliers or contractors. A tender doc-
ument typically consists of chunks of English text in the form of high-level tech-
nical specifications, supporting information, and contractual obligations. The



2 S. Bashir et al.

2. Train Requirements

ABC are seeking to procure trains that, as a minimum, provide a high quality and safe
 passenger environment consistent with modern passenger rolling stock in the ABC  
and ABC  and which is fully PRM-TSI compliant.

The Train Technical Specification (TTS) is provided below and bidders are requested
to provide a Train Proposal for the fleet which describes the FLUs it proposes to 
supply and demonstrates how the requirements of TTS will be addressed.

2.1 AC Current Limit

2.1.1 The maximum power draw of a Unit in any Train formation shall be compatible 
with the Network Rail infrastructure.

2.2.2 It shall be possible for the maintainer to easily change the defined current 
limits via software parameters.

2.2 Noise and Vibration

2.2.1 Noise generated by railway operations can be a source of annoyance to
neighbours of the railway and the minimisation and control of noise is important. In 
addition to the general requirement for compliance with the TTS, consideration needs
to be given to the requirements in respect of exterior noise and noise measurement 
guidance in – Noise-TSI.

2.2.2 The interior of the Unit shall be free from rattles, whistles, banging doors as a 
result of pressure pulses from passing trains or lineside structures, or other annoying 
sound disturbances to passengers.

Requirement Information Condential

Fig. 1: Motivating example of requirements mixed with supporting text

very competitive market of railway vehicle manufacturing necessitates a quick re-
sponse to such a call for tender. This requires estimating the risk associated with
the call and the time required to deliver the end product. Extracting high-level
technical specifications (requirements) from the tender document becomes cru-
cial to estimate the risk and time required for a call. The high-level requirements
are used to derive low-level requirements to be agreed upon. Furthermore, the
requirements in the tender document are compared with already delivered prod-
ucts to estimate risk based on the novelty of the requirements. Therefore, identi-
fying technical specifications from tender documents becomes a pre-requisite to
enable project acquisition and later Requirement Engineering (RE) tasks. More-
over, errors and inaccuracies in this phase can have cascading effects on the rest
of the development process.

Figure 1 shows a motivating example from a real tender document showing
requirements mixed with technical specifications. Manually identifying the re-
quirements in large tender documents could be time-consuming and prone to
human error. Requirement identification in a large document can be automated
by formulating it as a binary text classification problem. According to Berry [7],
the automated solutions for RE tasks should ideally have a 100% recall rate; how-
ever, this is not often achieved in Machine learning (ML)-based solutions. Despite



Requirement or not, that is the question 3

this, utilizing automated solutions could still accelerate the process since human
input would only be required to sanitize the final output. The ultimate goal must
be to optimize the performance of these automated classification solutions to al-
leviate the workload in practical settings. In RE, requirement classification is
one of the most prominent activities, as reported in literature [39]. Related work
on distinguishing requirements from other information often experimented with
traditional ML-based approaches for classification [35, 4, 13]. Furthermore, the
work of Abualhaija et al. [4, 3] considers single sentences as a unit of classifica-
tion. However, requirements and information could range over multiple sentences
in our case. Nevertheless, the same approaches could be modified to take multi-
sentence input. However, the performance of large transformer-based language
models and few-shot classifiers in the task is still unclear. On the other hand,
work on distinguishing functional and non-functional requirements [20, 29, 5, 15]
is a different use case, and studies in the domain often use public datasets with
some exceptions.

This study is conducted in close collaboration with Alstom, Sweden (Alstom),
a world-leading railway vehicle manufacturing company. The main objective of
this study is to find a practical solution to the requirements identification prob-
lem at Alstom. Therefore, this study reports an empirical evaluation of 20+
different classification pipelines for distinguishing requirements from supporting
text in large documents. The selected seminal pipelines include approaches from
traditional ML, deep learning, and transformer-based classifiers. In addition,
we leverage new approaches based on few-shot learning to address the common
challenge of data scarcity in the RE domain. Furthermore, to support further
research on the topic, we evaluated the same pipelines on a public dataset and
provided a replication package with a running tool4. This paper may also refer
to requirements identification as distinguishing requirements or classification.

The rest of the paper is structured as follows. Section 2 provides a brief
overview of the related work and background. Section 3 presents the study design
and the selected classification pipelines for requirements identification. Section 4
presents and discusses the results. Section 5 presents potential validity threats
and limitations. Finally, Section 6 concludes the paper with future directions.

2 Related Work & Background

Related Work. This paper focuses on identifying requirements through auto-
mated classification. Binkhonain and Zhao [8] performed a systematic literature
review on one aspect of the RE process, i.e., automated requirements classifi-
cation, specifically providing solutions to distinguish between functional (FRs)
and non-functional requirements (NFRs). Often FRs are related to the core
functionality, and NFRs describe the properties and constraints of the system.
The distinction between FRs and NFRs impacts the handling of requirements
elicitation, documentation, and validation process [12]. Therefore, the task of au-
tomatic extraction and classification of requirements has been the focus of RE

4 Replication package and Tool: https://github.com/a66as/REFSQ2023-ReqORNot



4 S. Bashir et al.

researchers. Within this group of studies, Jindal et al. [20] employs an automated
approach to extract and classify security requirements. They use term-frequency
inverse document frequency (tfidf) weight vectors to analyze the security require-
ments with the goal of further classifying into sub-categories of security based
on the Decision Tree (DT) algorithm. Moreover, Varenov et al. [32] proposes
a sentence-level classifier based on fine-tuned DistilBERT [29] to allocate secu-
rity requirements into predefined groups. Recently, Alhoshan et al. [5] leverages
a Zero-Shot Learning (ZSL) technique on a subset of the PROMISE dataset
to classify NFRs into two categories, i.e., Usability and Security. Furthermore,
Herwanto et al. [15] propose an automated approach to identify privacy require-
ments in user stories based on the Named Entity Recognition (NER) model,
trained on Bi-directional Long Short Term Memory Networks (BI-LSTM) with
conditional random field [18].

The other more related thread of work is distinguishing requirements from
other information. Similar to our use case, Winkler et al. [35] propose a deep
learning (DL) classifier based on Convolution Neural Networks (CNNs) to iden-
tify requirements from additional material stored in IBM DOORS. Falkner et
al. [13] propose a Naive Bayes (NB) classifier—trained on unique words—to
identify requirements from Request of Proposal (RFP) documents within the
railway safety domain. Furthermore, Abualhaija et al. [4] proposes an auto-
mated ML-based approach to demarcate requirements in textual specifications
by considering one sentence as a unit of classification. They empirically evaluate
ML classifiers on the industrial dataset consisting of 12 documents. In addition,
Sainani et al. [28] defines a two-step methodology to first extract requirements
from 20 Software Engineering (SE) contracts and then allocate them to their spe-
cific types. For identification and extraction of requirements, Bi-LSTM yields the
best results compared to ML algorithms. To allocate identified requirements in
sub-classes, BERT (Bi-directional Encoder Representations from Transformers)
performed better in terms of F-1 score.

While our work shares the same general objective as the above-mentioned
approaches, we address the need for extensive empirical evaluation in automated
requirements identification and classification on industrial and public datasets.
Furthermore, we evaluated a new approach, namely a few-shot classifier, to iden-
tify requirements based on a limited dataset, a well-known problem in the RE
domain.

Background. Most of the ML or DL algorithms for classification do not work
with raw text but instead require transformed data as feature vectors. The fea-
ture vectors can be generated with information retrieval (IR)-based lexical ap-
proaches or with semantic approaches. In our work, we utilize tfidf vectors—a
lexical approach—to represent and train data on classical supervised ML algo-
rithms. We further apply the dimensionality reduction technique, i.e., principal
component analysis (PCA), on tfidf vectors to increase interpretability through
the creation of newly uncorrelated features with maximum variance.

Traditionally, Language Models (LMs) capture regularities, morphological
and distributional properties of a language. For DL algorithms, we consider state-



Requirement or not, that is the question 5

of-the-art semantic strategies based on LMs and neural networks. The semantic-
based LMs are coupled with a statistical classifier to perform classification. We
use FastText (FT) [9] and GloVe (GLV) [24] semantic representations to train
LSTM neural network for the identification of requirements in large documents.
Furthermore, we fine-tuned multiple token-based BERT LM variations based on
transformer architecture [33]. Originally, token-based BERT LM comes in two
variants for language representation, BERT base and large, pre-trained on 16 GB
data from Toronto BookCorpus and English Wikipedia dataset. With the advent
of transfer learning, token-based BERT LMs have been widely used for different
downstream tasks—in our case, classification to distinguish requirements.

Additionally, we perform few-shot fine-tuning on different variations of Sen-
tence Transformers [25] (ST)—a modified version of the pre-trained BERT LM
based on the siamese network. Specifically, we fine-tuned Sentence-BERT [25]
(S-BERT) and MiniLM-L12-v2 [34] (Mini-LM) on our datasets. Originally, ST
LMs are pre-trained for tasks like clustering and semantic search. However, we
can fine-tune ST LMs through Sentence Transformer Fine-Tuning [31] (SETFIT)
framework with a small number of examples for our requirements classification
task. Few-shot methods are an attractive solution and can address the long-
standing problem of data shortage in the RE domain.

3 Study Design

This work can be regarded as an exploratory case study oriented towards im-
proving the project acquisition process at Alstom. Following the guidelines of
Runeson and Höst [26], this section outlines the context, objectives, data collec-
tion, and analysis procedure.

3.1 Case Context

Rail vehicle manufacturing is a globally competitive market. Like many other in-
dustries, customers in the railway industry also publish a call for tender to which
companies respond. The tender document often contains contractual obligations,
supporting information, and technical specifications of the required product. In
response to the call for tender, in addition to understanding the contractual
obligations, companies must also identify potential requirements from the doc-
uments to achieve the following objectives.
a) The extracted technical specifications must be reflected in deriving the cus-
tomer requirements to be agreed upon. This can aid the project acquisition
process.
b) The risk associated with the new project must be estimated to enable the
project resource and time management. This is done by comparing the extracted
technical specification to the already delivered projects, currently based on ex-
perience.
Alstom is continuously looking for ways to improve the process of project acqui-
sition with tool support. As a first step, automated approaches for distinguishing



6 S. Bashir et al.

requirements from other supporting information are investigated in this study.
In this regard, for this paper, the case under study is the performance of various
classification pipelines in requirements identification. The units under analysis
are five tender documents from Alstom and the public dronology dataset [10].

3.2 Objective and Research Questions

Our main goal is to improve the project acquisition phase in the studied context.
As an initial step (this study), we first need to identify the requirements within
the tender documents. Requirements identification problem can be formulated
as a binary text classification problem. There have been a number of approaches
proposed for binary classification over the years. Therefore, this work is not
“reinventing the wheel” but instead aims to find an already existing practical—
in terms of execution time—solution for the problem in the studied context. As
discussed in the following sections, we consider seminal state-of-the-art classi-
fiers for this study. In addition, since the considered approaches for classifica-
tion might react differently to text pre-processing, we also study the impact of
pre-processing on classification performance. To this end, we pose the following
research questions (RQs):

– RQ1: What is the performance of different classification pipelines in require-
ments identification?

– RQ2: What is the impact of pre-processing on classification performance?
– RQ3: What is the execution time of each classification pipeline?

Table 1: Datasets
Dataset Reqs. Info. Sent. AW pAW TRD TSD

Industrial 1680 1293 8332 39 20 2378 595
Public 99 280 533 25 13 303 76

* AW= Avg. words, pAW= Avg. words when
pre-processed, TRD= Avg. training dataset rows,

TSD= Avg. test dataset rows

3.3 Data collection

Industrial case. We had access to five already annotated tender documents from
our industrial partner. The tender documents contain multi-sentence chunks of
text explaining the technical specifications, contractual obligations, and support-
ing information. The requirements among the documents were already tagged,
and the projects were already delivered to customers. Therefore, the ground truth
on whether a chunk of text is a requirement or not is already available in the



Requirement or not, that is the question 7

dataset. Note that the selected pipelines (see coming sections) for distinguish-
ing requirements require annotated input for training only. We selected all the
requirements and non-requirements among these five documents using the follow-
ing steps. First, we removed all the duplicates across the five files and considered
unique chunks of text. To avoid selecting potential non-requirements as require-
ments, we selected only the requirements that were also allocated to a team for
development. A total set of 1680 requirements and 1293 non-requirements from
the industrial documents was reached, as shown in the first row of Table 1.

Public dronology dataset. The dronology public dataset consists of 398 entries
of various types such as “components”, “requirements”, “design definitions”,
and “sub-task”. Among these entries, 99 entries are tagged as requirements. We
prepared the dronology dataset for this study as follows. First, we considered all
the requirements as requirements and components, design definitions, and sub-
tasks as non-requirements. Then, we dropped (19 entries) entries with no text.
A total set of 99 requirements and 280 non-requirements was reached, as shown
in the last row of Table 1. Note that this dataset does not directly represent the
studied context; however, we argue that evaluating the pipelines on this similar
dataset would support replication and reproducibility of our results.

All the considered classification pipelines (see the coming section) are fed the
data with and without pre-processing. As shown in the Sent. column, the total
number of sentences in the considered datasets are 8,332 and 533, respectively.
On average, each of the entries consists of 39 and 25 words. After pre-processing
and stop word removal, the average words across all entries drops to 20 and 13 for
the industrial and public datasets, respectively. Due to the uneven distribution
of data over the labels, the p-fold cross-validation method is not employed for
evaluation [11]. As typical, we used stratified five-fold cross-validation to evaluate
the selected pipelines. The average number of entries per fold in the training set
and the test are 2378 and 595, respectively.

3.4 Pipelines for distinguishing requirements

For this study, we considered the most seminal text classification approaches
for evaluation in distinguishing requirements from ordinary text. As typical in
the NLP domain, pre-processing of the input text might impact classification
performance. Therefore, we also consider the datasets both with and without
pre-processing. In addition, we also consider a baseline random pipeline (W.
Rand.) that classifies input as a requirement or not based on their frequency
distribution in the dataset.

Pre-processing: Our pre-processing pipeline consists of tokenization, stop-
words removal, part-of-speech (POS) tagging, and lemmatization of the input
text using spaCy [17]. An output of the pre-processing pipeline for the require-
ment ‘6.3.1’ from Figure 1 is presented as follows. “maximum power draw unit
train formation compatible network rail infrastructure”.

Traditional ML-based classifiers: For lexical classifiers, we considered widely
used and recommended ML algorithms, e.g., Support Vector Machines (SVM),



8 S. Bashir et al.

Logistic Regression (LR), DT, Random Forest (RF), and NB. For a fair com-
parison and tuning, we applied random multi-search optimization [6] to select
the optimal hyperparameters. SVM and LR achieved better results on evalua-
tion metrics when trained with normalized and reduced tfidf vectors using PCA.
However, the rest of the ML pipelines—RF, DT, and NB—performed better
with normalized TF-IDF vectors without PCA-based dimensionality reduction.

Deep semantic representation based classifiers: For the training and evalua-
tion of DL-based LSTM networks, we use FT and GLV LMs—pre-trained and
custom (self-trained)—embeddings for semantic representation. To generate the
custom embeddings, we train the FT LM on 20 epochs, with word embeddings
(WE) dimension size set to 100 and window size set to three. For custom GLV
embeddings, we get the best results when the window size is set to 10, the learn-
ing rate is set to 0.05, the WE dimension size is 100, and the epochs are set to
30. We defined a two-layer LSTM network to train on custom and pre-trained
WEs. To minimize the training loss function, we used Adam [21] optimizer with a
learning rate of 0.001. Furthermore, we prevent the over-fitting of the network by
appending a dropout layer—randomly dropping units with their connections—
with a rate of 0.1 after every LSTM layer. The batch, epochs, and maximum
sequence sizes are set as 32, 10, and 128, respectively.
We selected widely used BERT variants, i.e., SciBERT, RoBERTa, BERT base,
XLMRoBERTa (XRBERT), DistilBERT (DisBERT), and XLNet. To fine-tune
different variations of the token-based BERT family, we employ a BERT Word-
Piece [37] tokenizer to prepare the datasets. The WordPiece tokenizer splits the
words of a text into one word per token or into word pieces—where one word
is tokenized into multiple words. We use the AdamW-optimizer, an adoption
of Adam with a weight decay of 0.01, to optimize the weights while fine-tuning
the token-based BERT network [23]. Furthermore, we select a maximal learning
rate of 2e-05 instead of aggressive learning rates with the purpose of avoiding
catastrophic forgetting of BERT pre-trained knowledge [30]. We set a practi-
cal batch and maximum sequence size as 16 and 128 across all the token-based
BERT pipelines. We set the epoch size as 10 to iterate the datasets over the
BERT’s network. The reason behind selecting a higher number of epochs on rel-
atively smaller datasets is that BERT’s common one-size-fits-all is sub-optimal
and needs more training time to stabilize the network [38]. However, some stud-
ies in the literature have set an even higher number of epochs (e.g. [16]), but we
argue it may lead to over-fitting.

Few-shot learning based on sentence transformers: To fine-tune different vari-
ations of pre-trained ST, we utilize the SETFIT framework for our downstream
requirements classification task. SETFIT consists of a two-step training ap-
proach. In the first step, we fine-tuned ST on a limited dataset—few shots—
with a contrastive training approach—frequently used for image similarity [22].
In a few-shot scenario, contrastive fine-tuning enlarges the training dataset by
creating positive and negative pairs through in-class and out-class selection. In
the second step, we train an LR (Logistic Regression) model as a classification
head on the embeddings—encoded through fine-tuned ST—with original labeled



Requirement or not, that is the question 9

training data. For evaluation, fine-tuned ST generates the sentence embeddings
of unseen examples, and then the LR model predicts the class label of the input
sentence embeddings. To fine-tune the ST model, we use the cosine-similarity
loss function with a learning rate of 2e-5 and a batch size of 16. We set the
number of iterations for the generation of text pairs for contrastive learning to
20 with one epoch.

3.5 Metrics for Evaluation

We use the standard evaluation metrics for text classification, as follows. Ac-
curacy (A) is the ratio of the number of correct predictions and the total pre-
dictions. Precision (Prec.) is the ratio of correct positive predictions and the
total number of positive predictions. Recall (Rec.) quantifies the number of cor-
rect positive predictions from all possible positive predictions. F1 score (F1) is
the harmonic mean of precision and recall. We report the macro and weighted
average across the fold for all our evaluation metrics. However, to answer our
research questions, we use weighted averages of the metrics for simplicity.

3.6 Execution Procedure

Both datasets’ tagged requirements and information are moved to two separate
files. Using random stratified five-fold sampling [19], we created five folds from
each dataset for cross-validation. As mentioned, each fold consists of 80% of the
randomly sampled data in the training set and 20% of the data in the holdout
set. All the selected pipelines were fed with the five folds for training the models,
and the holdout sets were used to compute the evaluation metrics. In the case
of the few-shot classification pipelines, we only selected 10% and 20% of the
training set as folds to train the model and evaluated it using the entire holdout
set. We executed all the experiments on a local server using parallel computing.
The server is configured with four Nvidia Tesla M10 graphics processing units,
an Intel Xeon Gold 5122 processor @ 3.60GHz, and primary memory of 256 GB.

4 Results & Discussion

Table 2 and Table 3 show the experiment’s results. The names of Pipelines
starting with a ‘p’ indicate that our pre-processing pipeline was coupled with
the classification pipeline. The Weighted Average and Macro Average columns
show the weighted and macro averages of our evaluation metrics across the five
folds. Avg. A. shows the average accuracy of the pipelines.

RQ1: Performance. As shown in Table 2, among the traditional machine
learning-based approaches, SVM slightly outperformed the others in terms of F1
score. Regarding accuracy, RF and LR slightly outperformed all other require-
ment identification pipelines based on ML. A similar trend can also be observed
in the public dataset. This is in line with the results in the literature. Interest-
ingly, the deep-learning-based LSTM model combined with the word embeddings



10 S. Bashir et al.

Table 2: Performance and execution time of the pipelines on industrial case
Pipeline Setup Weighted Average Macro Average Avg. A. Time (mins)

Prec. Rec. F1 Prec. Rec. F1 A Tr Ts

W. Rand. Freq. based .49 .49 .49 .49 .49 .48 .49 - -

SVM Norm., PCA .79 .79 .79 .80 .78 .78 .78 .70 .02
pSVM Norm., PCA .78 .78 .78 .79 .77 .77 .78 .74 .09

NB Norm. .74 .69 .69 .73 .71 .69 .69 <.01 <.01
pNB Norm. .74 .68 .67 .72 .70 .68 .68 .29 .07
DT Norm. .72 .72 .72 .71 .71 .71 .71 <.01 <.01

pDT Norm. .71 .71 .71 .71 .71 .71 .71 .29 .07
LR Norm., PCA .79 .79 .78 .79 .77 .78 .79 .30 <.01

pLR Norm., PCA .78 .78 .78 .79 .76 .77 .78 .41 .07
RF Norm. .79 .79 .79 .79 .78 .78 .79 <.01 <.01

pRF Norm. .79 .78 .78 .79 .77 .77 .78 .38 .07

LSTM FT custom .77 .77 .77 .76 .76 .76 .77 1 .02
pLSTM FT custom .75 .75 .75 .75 .75 .74 .75 1 .08
LSTM FT pre-train .75 .75 .75 .74 .74 .74 .75 2 .02

pLSTM FT pre-train .72 .72 .72 .72 .72 .72 .72 1.2 .08
LSTM GLV custom .77 .77 .77 .77 .76 .76 .77 2 .02

pLSTM GLV custom .76 .76 .76 .76 .75 .76 .76 1.2 .09
LSTM GLV pre-train .78 .78 .78 .78 .77 .78 .78 2 .02

pLSTM GLV pre-train .78 .78 .78 .78 .77 .78 .78 1.3 .08

SciBERT uncased .82 .81 .81 .82 .80 .80 .81 34 .25
pSciBERT uncased .80 .78 .76 .81 .75 .75 .78 32 .30
RoBERTa base .81 .81 .81 .82 .80 .80 .81 39 .27

pRoBERTa base .80 .79 .79 .81 .78 .78 .79 37 .32
BERT base, cased .82 .82 .81 .82 .81 .81 .82 35 .29

pBERT base, cased .79 .79 .79 .79 .79 .79 .80 32 .32
BERT base, uncased .82 .82 .82 .82 .81 .81 .82 34 .29
pBERT base, uncased .80 .80 .80 .80 .79 .79 .80 32 .33

XRBERT base .82 .81 .81 .82 .80 .81 .81 57 .29
pXRBERT base .78 .77 .77 .78 .76 .76 .77 41 .25
DisBERT base, cased .81 .81 .81 .81 .80 .80 .81 31 .13

pDisBERT base, cased .80 .80 .80 .80 .79 .79 .80 25 .18
DisBERT base, uncased .81 .81 .81 .81 .81 .80 .81 31 .15

pDisBERT base, uncased .80 .80 .70 .81 .78 .79 .80 29 .21
XLNet base .81 .81 .80 .81 .80 .80 .81 47 .36

pXLNet base .81 .80 .80 .81 .79 .79 .80 47 .42

S-BERT 10% train .75 .75 .75 .75 .74 .75 .75 24 .14
pS-BERT 10% train .73 .73 .73 .72 .72 .72 .73 18 .20
Mini-LM 10% train .74 .74 .74 .74 .74 .74 .74 7 .04

pMini-LM 10% train .72 .72 .72 .72 .72 .71 .72 6 .10
S-BERT 20% train .77 .77 .76 .76 .76 .76 .77 45 .17

pS-BERT 20% train .74 .74 .74 .74 .74 .74 .74 37 .20
Mini-LM 20% train .75 .75 .75 .75 .74 .74 .75 14 .03

pMini-LM 20% train .72 .72 .72 .72 .72 .72 .72 11 .10



Requirement or not, that is the question 11

Table 3: Performance and execution time of the pipelines on the Dronology
public dataset
Pipeline Setup Weighted Average Macro Average Avg. A. Time (mins)

Prec. Rec. F1 Prec. Rec. F1 A Tr Ts

W. Rand. Freq. based .60 .58 .59 .48 .48 .48 .58 - -

SVM Norm., PCA .78 .79 .75 .76 .63 .64 .78 .18 < .01
pSVM Norm., PCA .78 .77 .70 .80 .57 .55 .77 .03 <.01

NB Norm. .70 .55 .58 .58 .61 .54 .55 <.01 <.01
pNB Norm. .71 .56 .58 .60 .62 .55 .56 .03 <.01
DT Norm. .74 .74 .74 .67 .66 .66 .74 <.01 <.01

pDT Norm. .72 .72 .72 .64 .63 .63 .72 .03 <.01
LR Norm., PCA .74 .75 .67 .73 .54 .51 .75 .14 .02

pLR Norm., PCA .70 .75 .64 .67 .52 .46 .74 .03 < .01
RF Norm. .76 .78 .75 .72 .64 .65 .78 .01 <.01

pRF Norm. .77 .78 .75 .74 .63 .65 .78 .04 <.01

LSTM FT custom .75 .78 .73 .72 .61 .61 .78 .24 .01
pLSTM FT custom .76 .77 .75 .71 .66 .67 .77 .18 .02
LSTM FT pre-train .74 .76 .75 .67 .66 .66 .76 .23 .01

pLSTM FT pre-train .67 .68 .68 .58 .57 .58 .68 .17 .02
LSTM GLV custom .73 .75 .73 .65 .66 .63 .75 .23 .01

pLSTM GLV custom .77 .78 .77 .72 .69 .69 .78 .17 .02
LSTM GLV pre-train .80 .80 .79 .74 .73 .73 .80 .26 .01

pLSTM GLV pre-train .74 .75 .74 .68 .65 .66 .75 .18 .02

SciBERT uncased .84 .84 .83 .79 .78 .78 .83 5 .03
pSciBERT uncased .87 .87 .86 .84 .80 .82 .87 5 .03
RoBERTa base .82 .86 .84 .76 .78 .77 .86 5 .03

pRoBERTa base .80 .81 .79 .77 .69 .70 .81 5 .04
BERT base, cased .88 .88 .87 .85 .83 .83 .88 3 .01
pBERT base, cased .83 .84 .82 .81 .74 .76 .84 3 .03
BERT base, uncased .88 .88 .87 .84 .84 .83 .88 3.5 .02
pBERT base, uncased .83 .84 .83 .80 .75 .77 .84 3 .03

XRBERT base .86 .86 .86 .82 .83 .82 .86 7 .03
pXRBERT base .86 .86 .86 .82 .83 .82 .81 7 .04
DisBERT base, cased .85 .85 .85 .80 .81 .80 .85 3 .01

pDisBERT base, cased .83 .83 .82 .79 .75 .76 .83 3 .02
DisBERT base, uncased .85 .86 .85 .81 .81 .80 .86 3 .01

pDisBERT base, uncased .82 .83 .82 .79 .74 .75 .83 3 .02
XLNet base .88 .87 .87 .85 .83 .83 .87 6 .04

pXLNet base .82 .83 .83 .78 .76 .77 .83 6.5 .05

S-BERT 10% train .75 .65 .66 .64 .67 .62 .65 3 .04
pS-BERT 10% train .68 .59 .61 .57 .58 .55 .59 2 .04
Mini-LM 10% train .76 .67 .69 .66 .70 .64 .67 1 <.01

pMini-LM 10% train .70 .56 .58 .58 .60 .54 .56 .40 .01
S-BERT 20% train .75 .65 .66 .64 .67 .62 .67 4 .03

pS-BERT 20% train .74 .65 .67 .63 .66 .62 .65 4 .04
Mini-LM 20% train .79 .68 .70 .68 .73 .66 .68 2 <.01

pMini-LM 20% train .77 .71 .72 .67 .72 .67 .71 1 .01



12 S. Bashir et al.

model does not exhibit a significant improvement compared to traditional ML
algorithms for classification in both public and industrial cases. Our results in-
dicated that SVM is closely followed by LSTM coupled with the pre-trained
GLV WE model. We argue that this could be because of the impact of feature
engineering in SVM. Generally, SVM’s performance is similar or better com-
pared to artificial neural networks (ANN) when there is less training dataset.
On the other hand, on average, the BERT family slightly outperformed all other
pipelines with traditional fine-tuning. The BERT base uncased-based pipeline
for requirements identification slightly outperformed all other pipelines across
all evaluation metrics, with an average F1 score of 0.82 for the industrial dataset
and 0.87 on the public dataset. This could be explained by BERTs’ ability to
capture the long-range dependencies in sequential data through its so-called
self-attention mechanism. Additionally, the capability of fine-tuning BERT pre-
trained parameters on task-specific datasets allows the model to better incor-
porate domain-specific knowledge than other traditional approaches. All other
sub-families of BERT—SciBERT, RoBERTA, XRBERT, and DisBERT—closely
followed the BERT base uncased-based pipeline. In addition, the performance
of XLNet is also close to the performance of the BERT family. The architecture
of XLNet and BERT family models are different, but they share a similar pre-
training objective to capture the contextual relationships in natural language
data. Therefore, when fine-tuned on a similar dataset for a classification task,
there is not a significant difference in terms of evaluation metrics.

The lack of larger datasets in the RE domain is a commonly highlighted
problem in the literature [5, 14, 39]. Therefore, evaluating few-shot learning ap-
proaches for requirements identification is equally important. Our results show
that our selected sentence transformer-based few-shot classification pipelines for
requirements identification achieved comparable results with as little data as
20% of the training set used for training the models. The few-shots classifica-
tion pipelines also performed very well when only 10% of training data was used
for training. In our industrial case, the best-performing few-shot classification
pipeline is the pipeline based on the S-BERT model. For comparison, fine-tuned
S-BERT achieves an F1 performance score of 0.76, which is only 0.06 less than
the best-performing fined-tuned BERT uncased pipeline on a complete dataset.
This is a significant step in the RE domain because S-BERT only requires a
few samples to fine-tune the model, and it can address the standing challenge of
insufficient annotated RE datasets. Furthermore, this can help RE researchers
to completely exploit DL classifiers’ usage in various phases of the RE.

Based on the presented results, we summarize an answer to RQ1.

Answer to RQ1. The BERT base uncased-based pipeline for distinguish-
ing requirements from general text slightly outperformed all other pipelines
across the two datasets with an average F1 score of 0.85. However, no signif-
icant difference in the performance of the BERT family is observed. Results
further indicate that few-shot classification pipelines for distinguishing re-



Requirement or not, that is the question 13

quirements perform well (with an F1 score of 0.76) on significantly fewer
samples.

Note that the current performance evaluation of the pipelines is based solely on
the results obtained from the already annotated datasets. However, to further
assess and validate the effectiveness of the pipelines in practice, it is necessary
to conduct a controlled experiment in an industrial setting. This is because the
real-world efficiency of the automated pipelines for such tasks is also dependent
on the environment in which it will be used [7]. Additionally, the evaluation of
automated pipelines must consider the context for its performance evaluation
relative to the task manually performed by humans. Therefore, following the
study of Winkler et al. [36], in the future, we plan to perform an empirical study
to further validate our solution in practice. The findings of such an experiment
would lead to further improvements in the pipelines and would highlight the
avenues for future research in the studied context.

RQ2: Impact of pre-processing. Table 2 and 3 also contains the evalu-
ation results of the pipelines with pre-processing. Based on our experience and
literature in NLP, traditional ML-based approaches typically improve perfor-
mance when pre-processing is applied [2, 1]. However, we found a general trend
in the task of distinguishing requirements; on average, pre-processing has a neg-
ative impact on classification performance. Particularly among the traditional
approaches, all pipelines (except LR and NB) show a decrement of up to .02
in the F1 score when pre-processing is applied. The LSTM family also shows a
negative relationship between pre-processing and F1 score. However, the LSTM
pipeline based on the GLV word embedding model for distinguishing require-
ments shows no impact on performance when pre-processing is applied. Finally,
as expected for all the transformer-based models, pre-processing has a negative
impact on the model performance. Based on these results, we summarized the
answer to RQ2 as follows.

Answer to RQ2.Generally, we observed a negative impact of pre-processing
(with stop words removal and lemmatization) on model performance in the
task of distinguishing requirements from general text.

RQ3: Execution time. The Time (mins) column in Table 2 and Table 3
also shows the average execution time of the pipelines per fold both in training
(Tr) and in inference mode (Ts). Pipelines with pre-processing—both in train-
ing and inference mode—also report an average pre-processing time added to
the overall time. In other words, the Time (mins) column shows the pipeline’s
average end-to-end execution time per fold.

As expected, the traditional ML-based and LSTM-based approaches con-
verge faster, with an average end-to-end execution time of under two minutes
in training. Likewise, the average end-to-end execution time in inference mode
across the folds—with 595 and 76 entries per fold in the industrial and public
dataset—is also under a minute. In addition, for fine-tuning the BERT family,
the end-to-end execution time is under an hour in the worst case. Note that the



14 S. Bashir et al.

pre-processing for LSTM and BERT family does add an overhead. However, in
some cases, the same pipeline with pre-processing takes even less time than the
one without pre-processing. This could be explained by the fact that the same
model has to train on less vocabulary than when the data was not pre-processed.
Nevertheless, the reported execution time in training still shows a trend of in-
crease as the size of the model increases. BERT family averaged an inference
time of under a minute per fold. As fine-tuning is done only once per task and
can be done at night, the engineers do not have to wait for more than a minute in
inference mode—which is how end-users use these models. Based on the results,
we summarised an answer to RQ3 as follows.

Answer to RQ3. Pipeline for distinguishing requirements produces re-
sults for input (500+ entries as input) in under two minutes in the worst
case. Fine-tuning large language models for classification tasks could take
hours on high-compute units when training on a dataset with 2300 entries.
However, fine-tuning is often done once per task. Therefore, the approaches
could still be practical in a real-world context and can aid the project ac-
quisition process.

5 Threats to Validity

This section presents validity threats according to Runeson et al. [26].
Construct validity. As typical, we cast the requirement identification as a

binary text classification problem. Our unit of classification ranges over multiple
sentences. However, in some cases, the input might contain some sentences that
are requirements and others that are not. We do not tackle such cases. We argue
that considering already delivered projects’ tender documents where experts
tagged requirements and allocated them to teams for implementation resolves
such issues.

Internal validity. Internal validity threats affect the validity and credibility of
our results. We based our implementation on open-source libraries and publicly
available language models to address potential internal validity threats. Further-
more, we shared the replication package and a running tool to support future
research.

External validity. Our results are obtained from five representative docu-
ments from one company that might not represent the whole railway domain.
Therefore, for the generalizability of our results, we also include a public dataset
for evaluation. However, as typical for case studies, we do not claim the gener-
alizability of our results beyond the studied context.

6 Conclusion and Future Work

Requirements identification in larger documents enables a quick response to
the call for tenders and could help later RE tasks such as retrieval for reuse
and deriving low-level requirements. This study is oriented toward finding a



Requirement or not, that is the question 15

practical solution to the requirements identification problem in a large railway
company using classification. Therefore, the study evaluates a variety of classifi-
cation approaches in the requirements identification contexts. Our results show
that the transformer-based approaches slightly outperform all other approaches
in the requirements identification task. Particularly, the BERT base uncased-
based pipeline performs the best in terms of F1 score and produces results in
practical time. Finally, results also indicate that few-shot classifiers can achieve
comparable performance with as little as 20% of the training data. We argue
that the use of few-shot learning in RE tasks should be investigated further.

In the future, we plan to conduct a controlled experiment in the studied set-
tings to evaluate the effectiveness of the developed solution for comparison to
manual requirements identification. Additionally, we aim to pre-train large lan-
guage models on railway industry-specific documents and compare the results
in two classification tasks, i.e., requirements identification and allocation of re-
quirements to different teams. Extending the current tool to estimate the risk
associated with a tender call is also planned for future work.

Acknowledgement. This work is partially funded by the AIDOaRt (KDT)
and SmartDelta [27] (ITEA) projects.

References

1. Abbas, M., Ferrari, A., Shatnawi, A., Enoiu, E., Saadatmand, M., Sundmark, D.:
On the relationship between similar requirements and similar software. Require-
ments Engineering pp. 1–25 (2022)

2. Abbas, M., Saadatmand, M., Enoiu, E., Sundamark, D., Lindskog, C.: Automated
reuse recommendation of product line assets based on natural language require-
ments. In: International Conference on Software and Software Reuse. pp. 173–189.
Springer (2020)

3. Abualhaija, S., Arora, C., Sabetzadeh, M., Briand, L.C., Traynor, M.: Automated
demarcation of requirements in textual specifications: a machine learning-based
approach. Empirical Software Engineering 25(6), 5454–5497 (2020)

4. Abualhaija, S., Arora, C., Sabetzadeh, M., Briand, L.C., Vaz, E.: A machine
learning-based approach for demarcating requirements in textual specifications.
In: 2019 IEEE 27th International Requirements Engineering Conference (RE). pp.
51–62. IEEE (2019)

5. Alhoshan, W., Zhao, L., Ferrari, A., Letsholo, K.J.: A zero-shot learning approach
to classifying requirements: A preliminary study. In: International Working Con-
ference on Requirements Engineering: Foundation for Software Quality. pp. 52–59.
Springer (2022)

6. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. Journal
of machine learning research 13(2) (2012)

7. Berry, D.M.: Empirical evaluation of tools for hairy requirements engineering tasks.
Empirical Software Engineering 26(6), 111 (2021)

8. Binkhonain, M., Zhao, L.: A review of machine learning algorithms for identi-
fication and classification of non-functional requirements. Expert Systems with
Applications: X 1, 100001 (2019)



16 S. Bashir et al.

9. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with
subword information. Transactions of the association for computational linguistics
5, 135–146 (2017)

10. Cleland-Huang, J., Vierhauser, M., Bayley, S.: Dronology: An incubator for cyber-
physical systems research. In: 2018 IEEE/ACM 40th International Conference
on Software Engineering: New Ideas and Emerging Technologies Results (ICSE-
NIER). pp. 109–112 (2018)

11. Dell’Anna, D., Aydemir, F.B., Dalpiaz, F.: Evaluating classifiers in se research: the
ecser pipeline and two replication studies. Empirical Software Engineering 28(1),
1–40 (2023)

12. Eckhardt, J., Vogelsang, A., Fernández, D.M.: Are” non-functional” requirements
really non-functional? an investigation of non-functional requirements in practice.
In: 38th International Conference on Software Engineering. pp. 832–842 (2016)

13. Falkner, A., Palomares, C., Franch, X., Schenner, G., Aznar, P., Schoerghuber, A.:
Identifying requirements in requests for proposal: A research preview. In: Interna-
tional Working Conference on Requirements Engineering: Foundation for Software
Quality. pp. 176–182. Springer (2019)

14. Ferrari, A., Dell’Orletta, F., Esuli, A., Gervasi, V., Gnesi, S.: Natural language
requirements processing: A 4d vision. IEEE Softw. 34(6), 28–35 (2017)

15. Herwanto, G.B., Quirchmayr, G., Tjoa, A.M.: A named entity recognition based
approach for privacy requirements engineering. In: 2021 IEEE 29th International
Requirements Engineering Conference Workshops (REW). IEEE (2021)

16. Hey, T., Keim, J., Koziolek, A., Tichy, W.F.: Norbert: Transfer learning for require-
ments classification. In: 2020 IEEE 28th International Requirements Engineering
Conference (RE). pp. 169–179. IEEE (2020)

17. Honnibal, M., Montani, I.: spacy 2: Natural language understanding with bloom
embeddings, convolutional neural networks and incremental parsing. To appear
7(1), 411–420 (2017)

18. Huang, Z., Xu, W., Yu, K.: Bidirectional lstm-crf models for sequence tagging.
arXiv:1508.01991 (2015)

19. Hubert, M., Rousseeuw, P.: International encyclopedia of statistical science (2010)
20. Jindal, R., Malhotra, R., Jain, A.: Automated classification of security require-

ments. In: 2016 International Conference on Advances in Computing, Communi-
cations and Informatics (ICACCI). pp. 2027–2033. IEEE (2016)

21. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

22. Koch, G., Zemel, R., Salakhutdinov, R., et al.: Siamese neural networks for one-
shot image recognition. In: ICML deep learning workshop. vol. 2, p. 0. Lille (2015)

23. Loshchilov, I., Hutter, F.: Fixing weight decay regularization in adam (2018)
24. Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word repre-

sentation. In: Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP). pp. 1532–1543 (2014)

25. Reimers, N., Gurevych, I.: Sentence-bert: Sentence embeddings using siamese bert-
networks. arXiv preprint arXiv:1908.10084 (2019)

26. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empirical Software Engineering 14(2), 131–164 (2009)

27. Saadatmand, M., Enoiu, E.P., Schlingloff, H., Felderer, M., Afzal, W.: Smartdelta:
Automated quality assurance and optimization in incremental industrial software
systems development. In: 25th Euromicro Conference on Digital System Design
(DSD) (September 2022)



Requirement or not, that is the question 17

28. Sainani, A., Anish, P.R., Joshi, V., Ghaisas, S.: Extracting and classifying re-
quirements from software engineering contracts. In: 2020 IEEE 28th International
Requirements Engineering Conference (RE). pp. 147–157. IEEE (2020)

29. Sanh, V., Debut, L., Chaumond, J., Wolf, T.: Distilbert, a distilled version of bert:
smaller, faster, cheaper and lighter. arXiv:1910.01108 (2019)

30. Sun, C., Qiu, X., Xu, Y., Huang, X.: How to fine-tune bert for text classification?
In: China national conference on Chinese computational linguistics. pp. 194–206.
Springer (2019)

31. Tunstall, L., Reimers, N., Jo, U.E.S., Bates, L., Korat, D., Wasserblat, M., Pereg,
O.: Efficient few-shot learning without prompts. arXiv:2209.11055 (2022)

32. Varenov, V., Gabdrahmanov, A.: Security requirements classification into groups
using nlp transformers. In: 2021 IEEE 29th International Requirements Engineer-
ing Conference Workshops (REW). pp. 444–450. IEEE (2021)

33. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
 L., Polosukhin, I.: Attention is all you need. Advances in neural information pro-
cessing systems 30 (2017)

34. Wang, W., Wei, F., Dong, L., Bao, H., Yang, N., Zhou, M.: Minilm: Deep self-
attention distillation for task-agnostic compression of pre-trained transformers.
Advances in Neural Information Processing Systems 33, 5776–5788 (2020)

35. Winkler, J., Vogelsang, A.: Automatic classification of requirements based on con-
volutional neural networks. In: 2016 IEEE 24th International Requirements Engi-
neering Conference Workshops (REW). pp. 39–45. IEEE (2016)

36. Winkler, J.P., Grönberg, J., Vogelsang, A.: Optimizing for recall in automatic
requirements classification: An empirical study. In: 2019 IEEE 27th International
Requirements Engineering Conference (RE). pp. 40–50. IEEE (2019)

37. Wu, Y., Schuster, M., Chen, Z., Le, Q.V., Norouzi, M., Macherey, W., Krikun,
M., Cao, Y., Gao, Q., Macherey, K., et al.: Google’s neural machine translation
system: Bridging the gap between human and machine translation. arXiv preprint
arXiv:1609.08144 (2016)

38. Zhang, T., Wu, F., Katiyar, A., Weinberger, K.Q., Artzi, Y.: Revisiting few-sample
bert fine-tuning. arXiv preprint arXiv:2006.05987 (2020)

39. Zhao, L., Alhoshan, W., Ferrari, A., Letsholo, K.J., Ajagbe, M.A., Chioasca, E.V.,
Batista-Navarro, R.T.: Natural language processing for requirements engineering:
A systematic mapping study. ACM Computing Surveys (CSUR) 54(3), 1–41 (2021)


