
Mälardalen University Press Dissertations
No. 347

SPACE COMPUTING USING COTS HETEROGENEOUS PLATFORMS

INTELLIGENT ON-BOARD DATA PROCESSING IN SPACE SYSTEMS

Nandinbaatar Tsog

2021

School of Innovation, Design and Engineering

Copyright © Nandinbaatar Tsog, 2021
ISBN 978-91-7485-528-9
ISSN 1651-4238
Printed by E-Print AB, Stockholm, Sweden

Abstract

Space computing is growing due to the technological advances of high perfor-
mance commercial off-the-shelf (COTS) computing platforms. Space offers a
complex and challenging environment, with size, weight, power, and timing
constraints, communication limitations, and radiation effects.

The research presented in this thesis aims at investigating and supporting
intelligent on-board data processing using COTS heterogeneous computing
platforms in space systems. We investigate platforms with at least one Cen-
tral Processing Unit (CPU) and one Graphics Processing Unit (GPU) on the
same chip. The main goal of the research presented in this thesis is twofold.
First, investigate the heterogeneous computing platforms to propose a solution
to tackle the above-mentioned challenges in space systems. Second, to com-
plement the proposed solution with novel scheduling techniques for real-time
applications that run on COTS heterogeneous platforms in harsh environments
like space.

The proposed solutions are based on the system model that considers the
use of alternative executions of parallel segments of tasks. Although offload-
ing a parallel segment to a parallel computation unit (such as GPU) improves
the best-case execution times of most applications, it can increase the response
times of tasks in some applications due to the overuse of GPU. Hence, us-
ing the proposed task model can be a key to decreasing the response times of
tasks and improving schedulability of the system. The server-based schedul-
ing techniques support the proposed task model by guaranteeing the execution
slot for parallel segments on CPU(s). Our experimental evaluation shows that
the proposed allocation can increase the number of schedulable task sets of the
real-time systems up to 90% compared to the static allocation of applications.

We also present a dynamic allocation method using server-based schedul-
ing with the proposed task model that can improve the schedulability up to
16%. Finally, the thesis presents a simulation tool that supports designers in
choosing heterogeneous processing units using the proposed task model while
considering the different levels of radiation tolerance to the processing units.

iii

Sammanfattning

Rymddatorn växer på grund av de tekniska framstegen inom högpresterande
kommersiella plattformar (COTS). Rymden erbjuder en komplex och utma-
nande miljö med storlek, vikt, effekt och tidsbegränsningar, kommunikations-
begränsningar och strålningseffekter.

Forskningen som presenteras i denna avhandling syftar till att undersöka
och stödja intelligent omborddatabehandling med hjälp av COTS heterogena
datorplattformar i rymdsystem. Vi undersöker plattformar med minst en Cen-
tral Processing Unit (CPU) och en Graphics Processing Unit (GPU) på samma
chip. Huvudmålet med forskningen som presenteras i denna avhandling är
tvåfaldigt. Undersök först de heterogena dataplattformarna för att föreslå en
lösning för att hantera ovan nämnda utmaningar i rymdsystem. För det andra,
för att komplettera den föreslagna lösningen med nya schemaläggningstekniker
för realtidsapplikationer som körs på COTS heterogena plattformar i tuffa
miljöer som rymden.

De föreslagna lösningarna baseras på systemmodellen som överväger an-
vändningen av alternativa utföranden av parallella segment av uppgifter. Även
om avlastning av ett parallellt segment till en parallell beräkningsenhet (t.ex.
GPU) förbättrar de bästa tillämpningstiderna för de flesta applikationer, kan det
öka svarstiderna för uppgifter i vissa applikationer på grund av överanvändning
av GPU. Därför kan användning av den föreslagna uppgiftsmodellen vara en
nyckel för att minska responstiderna för uppgifter och förbättra systemets sche-
maläggning. De serverbaserade schemaläggningsteknikerna stöder den före-
slagna uppgiftsmodellen genom att garantera exekveringsplatsen för parallella
segment på CPU(er). Vår experimentella utvärdering visar att den föreslagna
fördelningen kan öka antalet schemalagda uppgiftsuppsättningar för realtidssys-
temen upp till 90% jämfört med den statiska fördelningen av applikationer.

Vi presenterar också en dynamisk allokeringsmetod med hjälp av server-
baserad schemaläggning med den föreslagna uppgiftsmodellen som kan för-
bättra schemaläggningen upp till 16%. Slutligen presenterar avhandlingen
ett simuleringsverktyg som stöder konstruktörer i att välja heterogena bear-
betningsenheter med hjälp av den föreslagna uppgiftsmodellen samtidigt som
man beaktar de olika strålningstoleransnivåerna för behandlingsenheterna.

v

To my family.

vii

Where there’s a will there’s a way

x

Acknowledgments

First of all, I would like to express my sincere gratitude to my supervisors, my
principal supervisor Professor Mikael Sjödin, industrial co-supervisor, Adjunct
Professor Fredrik Bruhn, academic co-supervisors Professor Moris Behnam
and Associate Professor Saad Mubeen. I am glad that I could travel this jour-
ney with you under your expert guidance, persistent support, and enormous
encouragement. I am grateful for your valuable ideas, guidance, suggestions,
comments, and feedback.

I appreciate the contributors, Dr. Matthias Becker and Dr. Harris Gas-
parakis, to this thesis. Many thanks to all of my co-authors for collaborating
with me. Thank you Jakob Danielsson, Marcus Larsson, Ashalatha Kunnap-
pilly, Dr. Mobyen Uddin Ahmed, Dr. Shahina Begum, Alexandros Binios, Dr.
Jaan Praks, and Dr. René Laufer.

Special thanks to Jakob, who is my friend, colleague, bro, contributor,
psychologist, room&team-mate, our team-leader, my driver, etc. It is not only
a matter of time. ”Admire, respect, support, sharpening, help” these words
describe you.

I appreciate Dr. Guillermo Rodriguez-Navas, who is my friend and advi-
sor. Thanks for spending many days for discussing, leading, consolidating the
ideas. I hope we will work together more and more.

I deeply appreciate my teachers, Sharaa, Munkhjargal, Erdene Natsagdorj,
Professor Motomu Takeshige, Professor Shimizu, and Professor Yasushi Kato.
Your words supported me to coming back to the academia.

I would like to thank Prof. Sasikumar Punnekkat and Prof. Masoud
Daneshtalab for valuable suggestions and comments on the thesis and disser-
tation.

Special thanks to my friends and advisors, Jakob Danielsson, Marcus Lars-
son, Tobias Andersson, Uyanga Ganbaatar, Batbuyan Batchuluun, Dr. Gui-
llermo Rodriguez-Navas, Dr. Predrag Filipovikj, Filip Markovic, Ashalatha
Kunnappilly, Mirgita Frasheri, Dr. Gabriel Campeanu, Leo Hatvani, Dr. Momo,
Dr. Svetlana Girs, Prof. Kristina Lundqvist, Prof. Cristina Seceleanu, Prof.

xi

xii

Masoud Daneshtalab, Prof. Micke, Dr. Sara Abbaspour, Prof. Tiberiu Sece-
leanu, Dr. Marcus Jägemar, Stefan Karlsson, Aldin Berisa, Zenepe Satka,
Tugu, Batya, Mitsuteru Kaneoka, Koji Yamaguchi, and Prof. Ryu Funase.
Your words, cheered me up a lot.

1 if ($id =˜ /([a-z][a-z][a-z][0-9][0-9])/) {
2 print <<MDH;
3 To $1,
4 Thank you for spending time with me at MDH.
5 MDH
6 }

I appreciate the DPAC project for funding my doctoral study. I also appre-
ciate Advanced Micro Devices, Inc. (AMD) and Unibap AB (publ.) for donat-
ing and providing the test platforms. In addition, I am thankful to Volvo CE,
Saab, and SaraniaSat Inc. for providing the test data. Furthermore, I would like
to thank TESO Corporation, MOOCHA co-authors, DPAC members, HERO
project team members, and family members.

Finally and foremost, I would like to express my greatest gratitude to my
wife Bolormaa, son Ananda, parents, sister Nandin, and Jouni for your contin-
uous love, support, and encouragement.

Nandinbaatar Tsog
Sala, Oct 12, 2021

List of Publications

Papers Included in the Doctoral Thesis1

Paper A: Intelligent Data Processing using In-Orbit Advanced Algorithms on
Heterogeneous System Architecture – Nandinbaatar Tsog, Moris Behnam,
Mikael Sjödin, Fredrik Bruhn. In the Proceedings of the 39th Interna-
tional IEEE Aerospace Conference, AeroConf 2018.

Paper B: A Trade-Off between Computing Power and Energy Consumption of
On-Board Data Processing in GPU Accelerated In-Orbit Space Systems
– Nandinbaatar Tsog, Saad Mubeen, Mikael Sjödin, Fredrik Bruhn. In
the Transactions of the Japan Society for Aeronautical and Space Sci-
ences, Aerospace Technology Japan, ATJ 2020.

Paper C: Enabling Radiation Tolerant Heterogeneous GPU-based Onboard
Data Processing in Space – Fredrik C. Bruhn, Nandinbaatar Tsog, Fabian
Kunkel, Oskar Flordal, Ian Troxel. In the CEAS Space Journal, CEAS
2020.

Paper D: Simulation and Analysis of In-Orbit Applications under Radiation
Effects on COTS Platforms – Nandinbaatar Tsog, Saad Mubeen, Mikael
Sjödin, Fredrik Bruhn. In the Proceedings of the 42nd International
IEEE Aerospace Conference, AeroConf 2021.

Paper E: Static Allocation of Parallel Tasks to Improve Schedulability in CPU-
GPU Heterogeneous Real-Time Systems – Nandinbaatar Tsog, Matthias
Becker, Fredrik Bruhn, Moris Behnam, Mikael Sjödin. In the Proceed-
ings of the 45th Annual Conference of the IEEE Industrial Electronics
Society, IECON 2019.

Paper F: Offloading Accelerator-intensive Workloads in CPU-GPU Hetero-
geneous Processors – Nandinbaatar Tsog, Saad Mubeen, Fredrik Bruhn,

1The included papers have been reformatted to comply with the doctoral thesis settings.

xiii

xiv

Moris Behnam, Mikael Sjödin. In the Proceedings of the 26th Interna-
tional Conference on Emerging Technologies and Factory Automation,
ETFA 2021.

xv

Additional Peer-Reviewed Publications, not Included in
the Doctoral Thesis

1. A Trade-Off between Computing Power and Energy Consumption of On-
Board Data Processing in GPU Accelerated Real-Time Systems – Nand-
inbaatar Tsog, Mikael Sjödin, Fredrik Bruhn. In the Proceedings of the
32nd International Symposium on Space Technology and Science, ISTS
2019.

2. Using Docker in Process Level Isolation for Heterogeneous Comput-
ing on GPU Accelerated On-Board Data Processing Systems – Nand-
inbaatar Tsog, Mikael Sjödin, Fredrik Bruhn. In the Proceedings of
the 12th IAA Symposium on Small Satellites for Earth Observation,
IAASmallSat 2019.

3. Moon Cubesat Hazard Assessment (MOOCHA) - An International Earth-
Moon Small Satellite Constellation - Alexandros Binios, Janis Dalbins,
Sean Haslam, Rusnė Ivaškevičiūtė, Ayush Jain, Maarit Kinnari, Joosep
Kivastik, Fiona Leverone, Juuso Mikkola, Ervin Oro, Laura Ruusmann,
Janis Sate, Hector-Andreas Stavrakakis, Nandinbaatar Tsog, Karin Pai,
Jaan Praks, René Laufer. In the Proceedings of the 12th IAA Sympo-
sium on Small Satellites for Earth Observation, IAASmallSat 2019.

4. Using Heterogeneous Computing on GPU Accelerated Systems to Ad-
vance On-Board Data Processing - Nandinbaatar Tsog, Mikael Sjödin,
Fredrik Bruhn. In the European Workshop on On-Board Data Process-
ing, OBDP 2019.

5. A Systematic Mapping Study on Real-time Cloud Services - Jakob Daniels-
son, Nandinbaatar Tsog, Ashalatha Kunnappilly. In the Proceedings of
the 1st Workshop on Quality Assurance in the Context of Cloud Com-
puting, QA3C 2018.

6. Advancing On-Board Big Data Processing Using Heterogeneous System
Architecture - Nandinbaatar Tsog, Mikael Sjödin, Fredrik Bruhn. In the
Proceedings of the ESA/CNES 4S Symposium 2018, 4S 2018.

7. Real-Time Capabilities of HSA Compliant COTS Platforms - Nandin-
baatar Tsog, Matthias Becker, Marcus Larsson, Fredrik Bruhn, Moris
Behnam, Mikael Sjödin. In the Proceedings of the 37th IEEE Real-Time
Systems Symposium (WiP) , WiP RTSS 2016.

xvi

Contents

I Thesis 1

1 Introduction 3
1.1 Thesis Goal and Research Challenges 4
1.2 Outline of the Thesis . 5

2 Background 7
2.1 Space Computing . 7

2.1.1 On-Board Data Processing 7
2.1.2 Radiation Effects . 9

2.2 Heterogeneous Computing 9
2.2.1 Heterogeneous Architectures 10
2.2.2 Memory Model & Interconnection 12
2.2.3 Heterogeneous System Architecture (HSA) 14

2.3 Real-Time Embedded Systems 15
2.3.1 Embedded Systems 15
2.3.2 Real-Time Systems 16

2.4 System Model and Architecture 16
2.5 Metrics . 18

3 Research Description 21
3.1 Scientific Contributions . 21
3.2 Summary of Included Papers 24
3.3 Research Process and Methodology 28

4 Related Work 31

5 Conclusions 35
5.1 Summary and Conclusions 35
5.2 Future Work . 36

xvii

xviii Contents

Bibliography 38

Contents xix

II Included Papers 43

6 Paper A: Intelligent Data Processing using In-Orbit Advanced Al-
gorithms on Heterogeneous System Architecture 45
6.1 Introduction . 47

6.1.1 Contributions . 48
6.1.2 Organization . 48

6.2 Related Work . 48
6.3 Background . 50

6.3.1 AMD A-Series A10-8700P APU 50
6.3.2 GIMME3 and GIMME4 51
6.3.3 Heterogeneous System Architecture 52

6.4 Experiment Setup . 54
6.4.1 Benchmark Suites 55
6.4.2 Configuration of Test Scenarios 55
6.4.3 Test Data . 56
6.4.4 Evaluation Environment 56

6.5 Experiment Results . 57
6.6 Conclusion / Future Work . 59
6.7 Test Data . 59

6.7.1 Source of the Test Data 59
6.7.2 Tracking Results . 60

6.8 Pseudo Code for the Measurements of the Computation Time . 61
Bibliography . 62

7 Paper B: A Trade-Off between Computing Power and Energy Con-
sumption of On-Board Data Processing in GPU Accelerated In-
Orbit Space Systems 65
7.1 Introduction . 67

7.1.1 Contributions . 68
7.1.2 Organization . 68

7.2 Related work . 69
7.3 Background . 70

7.3.1 Real-time system . 70
7.3.2 Heterogeneous computing 71
7.3.3 Advanced applications in satellite 72

7.4 System Model . 74
7.5 Experimental design . 75

7.5.1 Algorithms . 76
7.5.2 Testbeds . 77

xx Contents

7.5.3 Experimental observations 77
7.5.4 Evaluation and Results 80

7.6 Conclusion . 85
Bibliography . 87

8 Paper C: Enabling Radiation Tolerant Heterogeneous GPU-based
Onboard Data Processing in Space 93
8.1 Introduction . 95
8.2 Related work . 96

8.2.1 Heterogeneous computing architecture overview . . . 97
8.2.2 High performance computing tools in space 99

8.3 Stacking interface for modularity and form factor 101
8.4 Single-event effect mitigation middleware (SMM) 102
8.5 Mission scenarios and application 106

8.5.1 Applications . 108
8.6 Software overview . 108
8.7 Intelligent data processing performance evaluation 109

8.7.1 Evaluation environment 110
8.7.2 Experimental design 110
8.7.3 Results . 112

8.8 Conclusions . 116
Bibliography . 117

9 Paper D: Simulation and Analysis of In-Orbit Applications under
Radiation Effects on COTS Platforms 121
9.1 Introduction . 123

9.1.1 A. Contributions . 123
9.1.2 B. Organization . 124

9.2 MUST: System architecture 124
9.2.1 A. System Model . 124
9.2.2 B. Task Model . 125
9.2.3 C. Radiation Effect Model 126

9.3 MUST: Design and implementation 129
9.3.1 A. Input & Output 129
9.3.2 B. Design . 132
9.3.3 C. Simulation Mechanism 132
9.3.4 D. Implementation 133

9.4 MUST: Use case . 134
9.4.1 A. Use Case Description 134
9.4.2 B. Evaluation and Discussion 134

Contents xxi

9.5 Related work and tools . 136
9.6 Conclusions . 137
Bibliography . 139

10 Paper E: Static Allocation of Parallel Tasks to Improve Schedula-
bility in CPU-GPU Heterogeneous Real-Time System 141
10.1 Introduction . 143

10.1.1 Contributions . 144
10.1.2 Organization . 144

10.2 Motivation . 145
10.3 System and task model . 146

10.3.1 System model . 146
10.3.2 Task Model . 147

10.4 Heuristic Task Allocation Approaches 149
10.4.1 Non-Greedy Resource Allocation Heuristic Approach

(NHA) . 149
10.4.2 Speedup Classifier based Heuristic Approach (SHA) . 149
10.4.3 Min-Min Approach (MMA) 150

10.5 Synthetic Experiments . 151
10.5.1 Task set generation 151
10.5.2 Comparative algorithms 152
10.5.3 Experiment setup . 152
10.5.4 Result . 152

10.6 Related work . 155
10.7 Conclusions . 156
Bibliography . 157

11 Paper F: Offloading Accelerator-intensive Workloads in CPU-GPU
Heterogeneous Processors 161
11.1 Introduction . 163
11.2 Related Work . 164
11.3 System Model . 165
11.4 Proposed Workload Allocation Framework 168
11.5 Offloading Techniques . 169

11.5.1 Baseline: Default Allocation Technique (DAT) 170
11.5.2 Naive Offloading Technique (NOT) 170
11.5.3 Min-min Fashioned Offloading Technique (MOT) . . . 171
11.5.4 Speedup Classifier Based Technique (SCT) 171
11.5.5 Synchronized Servers Technique (SST) 172
11.5.6 Efficient Offloading Technique (EOT) 173

xxii Contents

11.6 Experimental Evaluation . 174
11.6.1 Task Set Generation and Experimental Setup 174
11.6.2 Offloading Techniques 175
11.6.3 Evaluation Results 175

11.7 Conclusion . 180
Bibliography . 181

Part I

Thesis

1

Chapter 1

Introduction

In the last two decades, the exploitation of small satellites and CubeSats1 has
rapidly increased for academic, commercial, and government intelligence ap-
plications [1, 2]. Space applications like for earth observation, deep space
explorations, and communications, exploit on-board processing and reconsti-
tute the role and use of small satellites from being a simple node of sensing
data to a generator of big data and provider of efficient storage, and intelligent
on-board decision making using the data, i.e., space computing. Numerous
studies show that the intelligent on-board processing improves the use of the
limited communication link bandwidth on small satellites [3, 4, 5], while it
requires high-performance computing capability under the size, weight, and
power (SWaP), radiation and real-time constraints.

As high-performance space computing technology is a key for the fu-
ture of space missions, the interest in commercial-off-the shelf (COTS) het-
erogeneous platforms for space computing is growing vastly. Heterogeneous
platforms employ different types of processing units on the same chip such
as Central Processing Unit (CPU), Graphics Processing Unit (GPU), Field-
Programmable Gate Array (FPGA), Digital Signal Processor (DSP), to men-
tion a few. These platforms provide massive computation capabilities. How-
ever, these platforms make the systems more complex. For instance, the sys-
tems that utilize heterogeneous computing platforms are more prone to unpre-
dictable timing behaviours compared to the systems that use single-core com-
puting platforms [6]. The work presented in this thesis tackles the challenges
to make efficient use of the different compute resources considering various
bottlenecks and difficulties in heterogeneous computing platforms.

Furthermore, COTS platforms are usually wobbly against radiation effects

1https://www.nasa.gov/content/what-are-smallsats-and-cubesats

3

4 1.1. Thesis Goal and Research Challenges

without handling any radiation hardening. Besides, understanding of how
COTS platforms react under radiation effects is less studied on the level of
software and applications. Therefore, this thesis deals with synthetic simula-
tions of radiation effects in order to assess timing predictability of real-time
systems using COTS heterogeneous platforms.

As discussed earlier, heterogeneous platforms include multiple processing
units and each of them can consist of multiple cores. Thus, this thesis provides
a technique to support balanced use of heterogeneous processing units, while
improving timing predictability of these platforms. Furthermore, we focused
on an investigation of the trade-off between computing performance and power
consumption while supporting schedulability of task sets. This investigation
shows that our proposed techniques fit well with the embedded systems that
are constrained by real-time and energy constraints.

1.1 Thesis Goal and Research Challenges

The overall goal of the work in this thesis is

“to improve the timing predictability of real-time applications on
heterogeneous computing platforms under harsh environments for
on-board data processing (e.g., space computing) without degrad-
ing their computing performance and energy efficiency.”

To achieve the goal, we target three core research challenges as follows:

Research Challenge 1: To identify the key factors that affect
timing predictability and power consumption in real-time appli-
cations on heterogeneous CPU-GPU platforms without degrading
their computing performance.

Research Challenge 2: To improve schedulability of real-time
applications running on heterogeneous computing platforms by
manipulating the identified factors.

Research Challenge 3: To provide techniques and tools to sched-
ule, analyze and simulate real-time applications running on het-
erogeneous computing platforms, in particular, under harsh envi-
ronments.

Chapter 1. Introduction 5

1.2 Outline of the Thesis

The thesis is based on a collection of six peer-reviewed publications. The
thesis consists of two parts:
Part I includes the first five chapters. In Chapter 1, an introduction to the thesis
has been provided. The thesis goal and research challenges are introduced in
this chapter. Chapter 2 presents the preliminary concepts that are considered
throughout the thesis. In Chapter 3, we discuss the contributions and research
methodology in the thesis. We present the related work in Chapter 4, and the
conclusion and the future work are presented in Chapter 5.
Part II provides the collection of six peer-reviewed publications considered as
the scientific contributions of the thesis. This part constitutes Chapters 6-11.

6 1.2. Outline of the Thesis

Chapter 2

Background

This chapter provides the required background information following the mo-
tivation of the thesis that starts with space computing, and continues with nec-
essary hardware/software solution (heterogeneous computing) with required
real-time constraint.

2.1 Space Computing

Space computing started to gain considerable attention of the research comput-
ing with the advent of the IEEE Space Computing Conference (SCC) 1 since
2006. Previously, this event was know as Fault Tolerant Space Computing con-
ference/workshop. As space computing performs under harsh environments
with radiation, it is closely related to the research introduced in IEEE Nuclear
& Space Radiation Effects Conference (NSREC) 2. Based on active topics
covered by the SCC and NSREC conferences, we illustrate space computing
in Figure 2.1. Among these topics, this thesis concerns more about COTS com-
ponents, on-board data processing, radiation, heterogeneous space processors
using machine learning benchmarks for intelligent decision making. In this
section, we provide more information about on-board data processing and ra-
diation.

2.1.1 On-Board Data Processing

Space is a perfect example for considering real-time system applications as
many on-board functions in spacecraft and satellites are constrained by soft

1https://spacecomputing.ecs.baylor.edu/
2http://www.nsrec.com/

7

8 2.1. Space Computing

Figure 2.1: Space computing

and hard real-time requirements (see Section 2.3.2 for more details about soft
and hard real-time systems). Any failure such as losing control of a system
or unable to transfer data may end up in a catastrophic result as it is not pos-
sible to fix the devices in orbit or deep space. In order to reduce delays and
have more predictable activities, the role of on-board data processing becomes
significant. However, due to SWaP (size, weight and power) constraints along
with radiation hardiness problem in space, the development of space systems
usually encounter limitations which are not always experienced on the earth.
The design and development of the on-board computer need to overcome these
limitations.

As a heterogeneous architecture, the combination of CPU + FPGA and/or
CPU + DSP is broadly employed for on-board computers in space [7]. How-
ever, these combinations could not support massive amount of computations
required by the intelligent on-board data processing systems. These hetero-
geneous architecture combinations complemented by GPUs can overcome the
above mentioned limitation by running multiple parallel executions and faster
memory accesses. Thus, heterogeneous architectures that include CPU, GPU
and FPGA can offer an efficient computation solution for on-board data pro-
cessing systems. In such an architecture, an FPGA can be used for receiving
sensors’ data with shorter delays, a CPU can act as a controller between the

Chapter 2. Background 9

FPGA and GPU, and the GPU can process heavy computations.

2.1.2 Radiation Effects

Radiation effects increase the complexity of space systems. As radiation ef-
fects are cumulative on the one hand, although the dose of space radiation is
mostly low, its risk increases by the total time traveled in space [8, 9]. This
characteristic is described by total dose of radiation, i.e., total ionizing dose
(TID). Developing shielding materials or radiation-hardened products in or-
der to mitigate radiation effects in orbit components could worsen the other
limitations such as size, weight, and power, cost, and development time. On
the other hand, particles with high energy such as electrons cause electrostatic
discharge, single-event effects (SEEs). Thus, radiation effects can hinder the
usage of commercial off-the-shelf (COTS) technologies that have been suc-
cessful in the systems used the earth, such as COTS system on chip (SoC),
including the use of integrated graphics processing units (GPUs), which im-
prove the quality of onboard data processing [10]. We introduce safety allow-
able range of both particle energy and TID as radiation tolerance in this thesis
and consider that an idea of radiation tolerance improves space computing.

2.2 Heterogeneous Computing

The role of heterogeneous computing has been growing dramatically in indus-
trial applications [11]. Employing multiple types of processing units makes the
embedded systems robust. Freund and Conwell define heterogeneous comput-
ing as follows:

Definition 2.1: ”Heterogeneous computing is the well-orchestrated and coor-
dinated effective use of a suite of diverse high-performance machines (includ-
ing parallel machines) to provide super speed processing for computationally
demanding tasks with diverse computing needs.”
R. F. Freund and D. S. Conwell [12]

We re-define the above definition using a new term ”heterogeneous processor”
instead of machines and consider it in this thesis. ”Heterogeneous computing
is the well-orchestrated and coordinated effective use of a suite of on- and/or
off-chip heterogeneous processing units to provide high-performance process-
ing for computationally demanding tasks with diverse computing needs.” With
this definition, the focus of computation shifts from a machine to a process-
ing unit (PU), and the location of them distinguished by either on- or off-chip.

10 2.2. Heterogeneous Computing

In case of off-chip, processing units communicate with each other via diverse
types of interconnection and network, while processing units employed in the
same die for on-chip. The thesis mostly touches on-chip heterogeneous pro-
cessing units as heterogeneous processing units.

Heterogeneous processing units can employ the same type of naming with
different instruction set architecture and/or even different clock speed (e.g.,
ARM Cortex CPU + Nvidia Denver CPU), while commonly considered to
employ the combinations of different types of naming processors such as CPU
+ GPU, CPU + FPGA and etc. In order to study heterogeneous computing, not
only processor types, but also heterogeneous architectures, memory manage-
ment and interconnection are crucial.

2.2.1 Heterogeneous Architectures

As defined in Section 2.2, heterogeneous computing appears with different
architectures, as described heterogeneous architectures. Figures 2.2, 2.3, 2.4,
and 2.5 illustrate the well-known heterogeneous architectures as some of them
appear in satellites and autonomous vehicles.

Figure 2.2: GIMME3 and GIMME4 platforms by Unibap AB and Mälardalen
University based on AMD APU (CPU and integrated GPU).

The heterogeneous architecture described in Figure 2.2 consists of three
different processing units, CPU, GPU, and FPGA. CPU and GPU are in a sys-
tem on a chip (SoC) and connect to shared memory. The purpose of external
processing unit, FPGA, is to monitor the health of SoC. FPGA interconnects
with CPU via PCIexpress and has its own memory. The SoC illustrated in
Figure 2.2 is called Accelerated Processing Units (APU), that is commonly
known as integrated GPU. In this platform, APU considers a computer archi-
tecture specialized for heterogeneous computing, i.e., Heterogeneous System
Architecture (HSA).

Chapter 2. Background 11

Figure 2.3: Jetson TX platform employs ARM big.LITTLE CPUs (ARM Cor-
tex CPUs and Nvidia Denver CPUs) with Nvidia GPU.

Figure 2.4: GPU4S by Barcelona Supercomputing Center based on Jetson
Xavier platform (ARM CPU and Nvidia GPU).

Both heterogeneous architectures illustrated in Figures 2.3 and 2.4 con-
tain only SoCs. Figure 2.4 describes that homogeneous CPU cores and GPU
are employed in the same SoC and connect to independent memories. On the
other hand, the SoC illustrated in Figure 2.3 consists of heterogeneous CPU
cores and GPU. In other words, two CPUs from different vendors and differ-
ent frequencies are employed in the SoC. This architecture is known as the
big.LITTLE CPUs architecture. In order to improve heterogeneous comput-
ing, the Big.LITTLE CPUs can be used with clustered switching, in-kernel
switching, and heterogeneous multi-processing task migration and scheduling
mechanisms [13].

The heterogeneous architecture illustrated in Figure 2.5 consists of two
SoCs, which are connected through Ethernet. One of them includes two CPUs
with different computing capacities and GPU. Another SoC comprises CPU
and FPGA.

12 2.2. Heterogeneous Computing

Figure 2.5: On-board platform for the University of Georgia’s satellite (Jetson
TX2i + Smart Fusion).

2.2.2 Memory Model & Interconnection

Memory Model

In Figures 2.6, 2.7, and 2.8, most common memory models for heterogeneous
architectures are described. In these models, we do not focus on the inter-
connection between PUs and between PUs and memories, while the relation
between memories of different PUs are crucial. As illustrated in Figure 2.6,
each PU has own allocated memory and independent memory address, i.e., it
is called Multi Memory Model (MMM). In this case, data should be transferred
between different memories and addresses should be handled as well. Hetero-
geneous architectures with external PUs tend to have this memory model such
as the platform depicted in Figure 2.5. In unified (virtual) memory model
(UVM) as illustrated in Figure 2.7, PUs connect to a physical memory. How-
ever, each PU should be connected to allocated area only. This means, data
should still be transferred/copied between memory areas when different PUs
need to access the same data. UVM uses a memory address system for all the
PUs and data will be copied in the same physical memory. Hence, data transfer
time is less compared to UVM.

As depicted in Figure 2.8, Unified Shared Memory (USM) allows to access
to the same data from different PUs. This eliminates unnecessary data transfer
and copy. However, it requires advanced interconnection techniques.

Interconnection

Interconnection is the main key to the challenges of heterogeneous memory
management, although both software and hardware solutions are required.
There exist the following four specifications focused on the interconnection

Chapter 2. Background 13

Figure 2.6: Multi Memory Model.

Figure 2.7: Unified (Virtual) Memory.

and buses. CCIX3 (Cache Coherent Interconnect for Accelerators), Open-
CAPI4 (Open Coherent Accelerator Processor Interface), Gen-Z5 and CXL6

(Computer Express Link). Only CXL is proposed by an Intel-driving consor-
tium, and both AMD and ARM are announced to join this consortium. In this
sense, CXL has a vast potential that could be upgraded to the industry de-facto
standard for the interconnection between host and devices.

3CCIX https://www.ccixconsortium.com/
4OpenCAPI https://opencapi.org/
5Gen-Z https://genzconsortium.org/
6CXL https://www.computeexpresslink.org/

14 2.2. Heterogeneous Computing

Figure 2.8: Unified Shared Memory.

2.2.3 Heterogeneous System Architecture (HSA)

Different types of specifications and designs of the processing units bring com-
plexities for the development process from cost and timing perspective. To
tackle these problems, HSA Foundation [14] has been established by multiple
leading hardware vendors to develop the Heterogeneous System Architecture
(HSA) specification for reducing the complexity of heterogeneous computa-
tions and providing the developer-friendly environments. The main properties
of HSA are described with memory handling, software stack, and interconnec-
tion.

Figure 2.9: Memory structure between a non-HSA system and an HSA system.

Memory handling: The HSA aims to ease the development process on
the heterogeneous platform by providing a development environment to the
programmers that is similar to the environment for traditional systems, i.e.,
homogeneous systems. The HSA provides unified coherent memory for host

Chapter 2. Background 15

and devices that saves time for transferring data between different physical
memories, i.e., there is no memory copy between different physical memories,
e.g., primary and graphics memories (see Figure 2.9).

Software stack: As a part of the HSA, AMD introduces an initiative
GPUOpen, an open source software stack, including, but not limited to, ker-
nel level driver, runtime environment, profiling tools, computer vision and ma-
chine learning libraries such as ROCm7, CodeXL8, AMD OpenVX9, MIOpen10

as well as Tensorflow11 on AMD GPUs. From TensorFlow 2.0, AMD has fully
upstreamed their support.

Interconnection: While HSA covers interconnection between different
devices, it needs to be collaborated with the interconnection specifications. As
CXL is an open standard interconnection and only accepted by all the main
vendors such as Intel, AMD, and ARM, the relation between HSA and CXL is
crucial and it could co-exist as follows. While HSA is located at a high level,
which is close to the developers for reducing the complexity of the develop-
ment of heterogeneous systems, CXL is directly focused on hardware devices,
which is at a low level. This indicates the possibility of the co-existence of
HSA and CXL.

2.3 Real-Time Embedded Systems

2.3.1 Embedded Systems

Embedded systems are found in almost all electronic products covering diverse
domains such as consumer products, business, military, aerospace and so on.
As they are embedded, embedded systems are mostly remain hidden from the
end users. A definition of an embedded system is described as follows:

Definition 2.2: ”An embedded system is a combination of computer hardware
and software – and perhaps additional parts, either mechanical or electronic
– designed to perform a dedicated function.”
M. Barr and A. Massa [15]

7ROCm https://github.com/RadeonOpenCompute/ROCm
8CodeXL https://gpuopen.com/compute-product/codexl/
9OpenVX https://gpuopen.com/compute-product/amd-openvx/

10MIOpen https://gpuopen.com/compute-product/miopen/
11Tensorflow https://rocm.github.io/tensorflow.html

16 2.4. System Model and Architecture

2.3.2 Real-Time Systems

A real-time system is a system that reacts to external events in a timely manner.
This means that not only the accuracy of the result, but also the timeliness is
a crucial factor for the accuracy of the system. Hence, a real-time embedded
system is an embedded system, which reacts to its environment in a timely
manner.

Figure 2.10: A real-time system requirements.12

As illustrated in Figure 2.10, real-time systems can be divided into a hard,
firm and soft [16] real-time system from perspective of the timing constraints.
The hard real-time system must pass all specified timing constraints. If the
system misses a constraint (e.g., a deadline) once, it results in failure leading
to a fatality and/or big financial or environmental damage. Therefore, many
hard real-time systems are considered to be safety critical. In a soft real-time
system, one or more deadline misses may be tolerated at the cost of lower
quality of service. A firm real-time system is between hard and soft real-time
systems.

2.4 System Model and Architecture

We consider a system, which consists of applications comprising of a task
set (i.e., a set of applications, software stack), an operating system (kernel
including drivers), and a hardware platform as illustrated in Figure 2.11. In

12http://www.artist-embedded.org/docs/Events/2008/RT-Kernels/SLIDES/s1-Intro.pdf

Chapter 2. Background 17

addition, in the system architecture, we consider an error to hardware platform,
which appears as an interference task to the task set. In this thesis, an error is a
radiation effect that is generated from the surrounding harsh environment and
interferes with the hardware platform including its devices such as processing
units, memory and so on.

Figure 2.11: System Architecture.

A task in the task set consists of parallel and sequential segments and is
represented by the fork/join task model [17]. We assume that sequential seg-
ments should be executed only on CPU while parallel segments can be exe-
cuted in parallel on GPU or on CPU sequentially. Moreover, in this thesis, we
consider an extension of the fork-join task model by adopting the notion of
heterogeneous segments. A heterogeneous segment can either be mapped to a
GPU for parallel execution (alternative B) or to a CPU for sequential execution
of the same code segment (alternative A), see Figure 2.12.

The thesis considers that the hardware platform employs a heterogeneous
architecture, which may include three types of processing units; host device
as CPU, integrated accelerators such as integrated GPU (iGPU), and discrete
accelerators such as discrete GPU (dGPU) and/or FPGA (see Figure 2.11). We
assume that the hardware platform is HSA-compliant. In some cases, to narrow
the setting, at least processing units in system-on-chip (SoC) side should be
compliant with the HSA. From the power utilization perspective, on one hand,
host device and integrated accelerators share the same power controller, i.e.,
both turn on and off at the same. On the other hand, discrete accelerators have
a dedicated power controller for each, which means that the combinations,
”Host-and-Integrated-Accelerators” and ”Host-and-Discrete-Accelerators”, have

18 2.5. Metrics

Figure 2.12: Sequential, parallel and alternative executions of parallel seg-
ments of tasks.

different amount of power consumption. Furthermore, from the memory struc-
ture perspective, ”Host-and-Integrated-Accelerators” connects to the shared
memory while ”Host-and-Discrete-Accelerators” accesses to the virtual shared
memory.

In this thesis, the following three reference platforms are considered: CPU
+ iGPU, CPU + iGPU + FPGA, and CPU + dGPU. Although it is available to
use FPGA, our focus on the thesis is only CPU and GPU. CPU scheduling is
realized by a partitioned fixed-priority scheduler and we further assume that
the execution on CPUs is preemptable. In contrast, the execution on GPU
is not preemptable. GPU allows to execute tasks with non-preemptive fixed
priority scheduling.

2.5 Metrics

In this thesis, the following metrics are considered in the investigation and
experimental evaluation of heterogeneous computing architectures: computing
performance, energy efficiency, timing predictability, and radiation tolerance.
Use of these metrics in different research methods is explained in Section 3.3.

Computing performance describes how fast tasks are calculated on the
given processing units. Hence, this metric presents computing potential of
platforms/processing units. A unit of time, second (s), is used for this met-
ric and less computation time shows faster computing performance. There are
other ways to express this metric such as FLOPS (floating-point operations per
second). In the contributed papers, these expressions are used to give informa-
tion about the reference platforms at a glance.

Energy efficiency introduces how less power is consumed by the given

Chapter 2. Background 19

processing units to compute tasks. A unit of energy, joule (J), is chosen to de-
scribe this metric. A smaller value of power consumption corresponds to more
energy efficiency. Energy efficiency is a metric to consider power consumption
on the systems/platforms.

Timing predictability presents how systems fulfill the given timing con-
straints. We consider a system is predictable if all tasks in this system meet
their timing requirements [18]. Timing predictability of a system is related to
proving, demonstrating or verifying the fulfillment of the timing requirements
(e.g., deadline miss) that are specified on the system [19]. In order to con-
sider the timing requirements of tasks in task sets, we conduct schedulability
analysis of task sets.

Radiation effect and tolerance express how much high energy particles
are present in the environment and what is tolerance of the given components
in the systems against the radiation effects. A unit of both radiation effect and
tolerance can be either [eV] or [rad] in the cases based on particle energy or
total ionizing dose, respectively.

20 2.5. Metrics

Chapter 3

Research Description

3.1 Scientific Contributions

To achieve the thesis goal, the thesis provides five scientific contributions
(SCs), which address the research challenges presented in Section 1.1. These
contributions are encapsulated in six peer-reviewed research publications (Pa-
pers A-F). Mapping of the research challenges, contributions and publications
is shown in Figure 3.1.

Scientific Contribution 1: Investigation of the fundamental characteristics of
different types of heterogeneous architectures focusing on computation-time
and power-consumption efficiency.
Motivation and summary of the contribution: This contribution helps to un-
derstand the current characteristics of heterogeneous platforms. By using the
computing performance and energy efficiency metrics, we characterize vari-
ous computing units in heterogeneous computing platforms. According to our
prior knowledge, some tasks are suitable for parallel computing while some
tasks are executable only in a sequential manner. Computer vision and ma-
chine learning applications are representations of parallelizable applications,
and we consider these type of applications in Papers A and C. Our investi-
gations aim to understand what kind of applications (i.e., under what kind of
conditions, applications) are suitable to run on GPU compared to CPU or vice
versa. As a result, we experienced that the execution of parallel applications
on GPU boosts up to 238 times computing performance and consumes 13.5
times less energy, compared to CPU. Although applications that include the
smaller numbers of parallel executions are suitable to run on CPU from the
computing performance aspect, all parallel applications consumed less energy
on GPU compared to CPU in our reference platforms. This contribution ad-

21

22 3.1. Scientific Contributions

dresses Research Challenge 1.

Scientific Contribution 2: Proposing and evaluating a task model and allo-
cation algorithms based on the model for real-time applications that run on
CPU-GPU heterogeneous computing platforms.
Motivation and summary of the contribution: Based on the results acquired
by addressing SC 1 and literature review, we extract and propose a novel task
model for applications that run on heterogeneous processors, which allows al-
ternative executions of parallel segments of tasks on heterogeneous processing
units. By allowing alternative executions, parallel segments can be allocated to
an appropriate processing unit with higher computation performance and less
power consumption. Alternative executions of parallel segments are investi-
gated in Papers B and E. While Paper B presents the idea of alternative execu-
tions of parallel segments of tasks, Paper E considers effects of the alternative
executions on the timing behaviours of the applications. As an achievement,
the appropriate use of heterogeneous processing units for parallel segments
can decrease the total energy consumption of systems up to 64.3%. This con-
tribution addresses Research Challenges 1 and 2.

Scientific Contribution 3: Proposing and evaluating a new technique that
utilizes the task model to improve schedulability of real-time applications run-
ning on COTS heterogeneous computing platforms.
Motivation and summary of the contribution: Based on the achievements
of SC 2 and a literature review, we propose solutions which aim at improv-
ing schedulability of the task sets on heterogeneous computing platforms. We
integrate these solutions to the timing analysis proposed for CPU-GPU het-
erogeneous platforms. The solutions increase the number of schedulable task
sets up to 90% compared to the existing solutions, while mitigating accelerator
intensive loads. The contribution covers both static and dynamic scheduling
of task sets. This contribution is discussed in Papers E and F in detail and ad-
dresses Research Challenge 2.

Scientific Contribution 4: Proposing a server-based scheduling technique that
utilizes the proposed task model to improve the schedulability of real-time ap-
plications on CPU-GPU heterogeneous platforms.
Motivation and summary of the contribution: This contribution utilizes the
task model and proposes a server-based scheduling technique for real-time sys-
tems that run on CPU-GPU heterogeneous computing platforms. Papers E and
F cover this contribution. Paper E focuses on static allocation of tasks, and
Paper F considers dynamic allocation of tasks. The evaluation results indicate

Chapter 3. Research Description 23

that one of the proposed techniques based on dynamic scheduling can schedule
up to 16% more task sets compared to the traditional non-offloading technique.
This contribution addresses Research Challenges 2 and 3.

Scientific Contribution 5: Developing a simulation framework and a tool
considering the effects of different radiation tolerance of heterogeneous pro-
cessing units on the schedulability of real-time applications under harsh envi-
ronments.
Motivation and summary of the contribution: As radiation effects limits the
usability of most of the state-of-the-art COTS technologies from use in space,
this contribution presents a simulation framework and a tool to simulate real-
time applications under harsh environments using heterogeneous processing
units with different radiation tolerances. The simulation tool supports pro-
cessing units with different characteristics of computing potential, radiation
tolerance, as well as different type of processing units such as CPU and GPU.
Artificial patterns of single-event effects can be introduced, for example, the
patterns generated by using Poisson distribution, and other well-known math-
ematical distributions. In addition, the simulation tool employs the task model
proposed in SC2 and helps to extend the study of heterogeneous processing
units under the environments with radiation effects. This contribution is dis-
cussed in Paper D and addresses Research Challenge 3 together with SC 4.

As illustrated in Figure 3.1, Paper E proposes a solution based on Papers
A and B. Papers A, B, and C focus on practical experiments on real physical
platforms, while Papers E and F propose solutions for heterogeneous com-
puting. Paper F is extended work to Paper E. Paper D is based on Papers E
and C. It is about a simulation tool to support designers in choosing necessary
heterogeneous processing units.

Figure 3.1: Mapping of the research challenges, contributions and publications

24 3.2. Summary of Included Papers

3.2 Summary of Included Papers

Paper A: Intelligent Data Processing using In-Orbit Advanced Algorithms on
Heterogeneous System Architecture
Nandinbaatar Tsog, Moris Behnam, Mikael Sjödin, Fredrik Bruhn.
Published in the Proceedings of the 39th International IEEE Aerospace Con-
ference, March 2018.

Abstract: In recent years, commercial exploitation of small satellites and
CubeSats has rapidly increased. Time to market of processed customer data
products is becoming an important differentiator between solution providers
and satellite constellation operators. Timely and accurate data dissemination
is the key to success in the commercial usage of small satellite constellations
which is ultimately dependent on a high degree of autonomous fleet manage-
ment and automated decision support. The traditional way for disseminating
data is limited by on the communication capability of the satellite and the
ground terminal availability. Even though cloud computing solutions on the
ground offer high analytical performance, getting the data from the space in-
frastructure to the ground servers poses a bottleneck of data analysis and dis-
tribution. On the other hand, adopting advanced and intelligent algorithms
onboard offers the ability of autonomy, tasking of operations, and fast cus-
tomer generation of low latency conclusions, or even real-time communication
with assets on the ground or other sensors in a multi-sensor configuration. In
this paper, the advantages of intelligent onboard processing using advanced
algorithms for Heterogeneous System Architecture (HSA) compliant onboard
data processing systems are explored. The onboard data processing architec-
ture is designed to handle a large amount of high-speed streaming data and
provides hardware redundancy to be qualified for the space mission applica-
tion domain. We conduct an experimental study to evaluate the performance
analysis by using image recognition algorithms based on an open source intel-
ligent machine library ’MIOpen’ and an open standard ’OpenVX’. OpenVX is
a cross-platform computer vision library.

Paper B: A Trade-Off between Computing Power and Energy Consumption
of On-Board Data Processing in GPU Accelerated In-Orbit Space Systems
Nandinbaatar Tsog, Saad Mubeen, Mikael Sjödin, Fredrik Bruhn.
Published in the Transactions of JSASS, Aerospace Technology Japan, Septem-
ber 2021.

Abstract: On-board data processing is one of the prior on-orbit activities that

Chapter 3. Research Description 25

improves the performance capability of in-orbit space systems such as deep-
space exploration, earth and atmospheric observation satellites, and CubeSat
constellations. However, on-board data processing encounters higher energy
consumption compared to traditional on-board space systems. This is be-
cause the traditional space systems employ simple processing units such as
single-core microprocessors as the systems do not require heavy data process-
ing. Moreover, solving the radiation hardness problem is crucial in space, and
adopting a new processing unit is challenging.

In this paper, we consider a Graphics Processing Unit (GPU) accelerated
in-orbit space system for on-board data processing. According to prior works,
there exist radiation-tolerant GPU, and the computing capability of systems
is improved by using heterogeneous computing method. We conduct exper-
imental observations of energy consumption and computing potential using
this heterogeneous computing method in our GPU accelerated in-orbit space
systems. The results show that the proper use of GPU increases computing
potential with 10-140 times and consumes between 8-130 times less energy.
Furthermore, the entire task system consumes 10-65% of less energy com-
pared to the traditional use of processing units.

Paper C: Enabling Radiation Tolerant Heterogeneous GPU-based Onboard
Data Processing in Space
Fredrik C. Bruhn, Nandinbaatar Tsog, Fabian Kunkel, Oskar Flordal, Ian Troxel.
Published in the CEAS Space Journal, June 2020.

Abstract: The last decade has seen a dramatic increase in small satellite mis-
sions for commercial, public, and government intelligence applications. Given
the rapid commercialization of constellation-driven services in Earth Obser-
vation, situational domain awareness, communications including machine-to-
machine interface, exploration etc., small satellites represent an enabling tech-
nology for a large growth market generating truly Big Data. Examples of mod-
ern sensors that can generate very large amounts of data are optical sensing,
hyperspectral, Synthetic Aperture Radar (SAR), and Infrared imaging. Tra-
ditional handling and downloading of Big Data from space requires a large
onboard mass storage and high bandwidth downlink with a trend towards op-
tical links. Many missions and applications can benefit significantly from on-
board cloud computing similarly to Earth-based cloud services. Hence, en-
abling space systems to provide near real-time data and enable low latency
distribution of critical and time sensitive information to users. In addition,
the downlink capability can be more effectively utilized by applying more on-
board processing to reduce the data and create high value information prod-

26 3.2. Summary of Included Papers

ucts. This paper discusses current implementations and roadmap for leveraging
high performance computing tools and methods on small satellites with radi-
ation tolerant hardware. This includes runtime analysis with benchmarks of
convolutional neural networks and matrix multiplications using industry stan-
dard tools (e.g., TensorFlow and PlaidML). In addition, a 1/2 CubeSat volume
unit (0.5U) (10×10×5 cm3) cloud computing solution, called SpaceCloud™
iX5100 based on AMD 28 nm APU technology is presented as an example of
heterogeneous computer solution. An evaluation of the AMD 14 nm Ryzen
APU is presented as a candidate for future advanced onboard processing for
space vehicles.

Paper D: Simulation and Analysis of In-Orbit Applications under Radiation
Effects on COTS Platforms
Nandinbaatar Tsog, Saad Mubeen, Moris Behnam, Mikael Sjödin, Fredrik
Bruhn.
Published in the Proceedings of the 42nd International IEEE Aerospace Con-
ference, March 2021.

Abstract: Radiation effects research is crucial as it defines risk to both human
bodies and spacecraft. Employing radiation-hardened products is one way to
mitigate radiation effects on in-orbit systems. However, radiation effects pro-
hibit most of the state-of-the-art commercial off-the-shelf (COTS) technolo-
gies from use in space. Furthermore, radiation effects on software components
are less studied compared to hardware components. In this work, we intro-
duce a simulation tool that simulates and performs post-simulation analysis of
the impact of radiation effects on schedulability of the software task sets that
execute on COTS system-on-chip (SoC) platforms within in-orbit systems. In
order to provide a meaningful verification environment, single-event effects
(SEEs) are introduced as aleatory disturbances characterized by probability
distribution of occurrence using their predefined models. The tool supports in-
teroperability with several other tools as it uses the extensible markup language
(XML) model files for input and output, i.e., for importing input task sets and
radiation effects and exporting the simulation and analysis results. The pro-
posed tool is extensively by running simulations using a use case of an in-orbit
onboard monitoring system.

Paper E: Static Allocation of Parallel Tasks to Improve Schedulability in GPU
Accelerated Real-Time Systems
Nandinbaatar Tsog, Matthias Becker, Fredrik Bruhn, Moris Behnam, Mikael
Sjödin.

Chapter 3. Research Description 27

Published in the Proceedings of the 45th Annual Conference of the IEEE In-
dustrial Electronics Society (IECON), October 2019.

Abstract: Autonomous driving is one of the main challenges of modern cars.
Computer visions and intelligent on-board decision making are crucial in au-
tonomous driving and require heterogeneous processors with high computing
capability under low power consumption constraints. The progress of paral-
lel computing using heterogeneous processing units is further supported by
software frameworks like OpenCL, OpenMP, CUDA, and C++AMP. These
frameworks allow the allocation of parallel computation on different compute
resources. This, however, creates a difficulty in allocating the right computa-
tion segments to the right processing units in such a way that the complete sys-
tem meets all its timing requirements. In this paper, we consider pre-runtime
static allocations of parallel tasks to perform their execution either sequentially
on CPU or in parallel using a GPU. This allows for improving any unbalanced
use of GPU accelerators in a heterogeneous environment. By performing sev-
eral heuristic algorithms, we show that the overuse of accelerators results in a
bottle-neck of the entire system execution. The experimental results show that
our allocation schemes that target a balanced use of GPU improves the system
schedulability up to 90%.

Paper F: Offloading Accelerator-intensive Workloads in CPU-GPU Hetero-
geneous Processors
Nandinbaatar Tsog, Saad Mubeen, Fredrik Bruhn, Moris Behnam, Mikael
Sjödin.
Published in the Proceedings of the 26th International Conference on Emerg-
ing Technologies and Factory Automation (ETFA), September 2021.

Abstract: Autonomous vehicular systems require computer vision and intelli-
gent on-board decision making functionalities that include a mix of sequential
and parallel workloads. The execution times of the workloads and power con-
sumption in these functionalities can be lowered by utilizing the accelerators
(e.g., GPU) instead of running the workloads entirely on the host processing
units (CPU). However, allocating all the parallelizable workload to accelera-
tors can create a computation bottleneck in the accelerators that, in turn, can
have an adverse effect on schedulability of the systems. This paper presents
a novel framework that can allocate the accelerate-intensive workloads to the
accelerators as well as to the non-accelerated host processing units. Within
the context of this framework, the paper introduces five offloading techniques
to mitigate the accelerator-intensive workloads by utilizing excess capacity of

28 3.3. Research Process and Methodology

non-accelerated processing units under dynamic scheduling in CPU-GPU het-
erogeneous processors. The proposed techniques are evaluated using simu-
lation experiments. The evaluation results indicate that one of the proposed
techniques can achieve up to 16% improvement in schedulability of the task
sets compared to the traditional non-offloading technique.

3.3 Research Process and Methodology

A research method is a way to uncover new knowledge or create better un-
derstanding of research problems. A scientific method is the logical scheme
of the research method that is used to answer to scientific questions posed
within science [20]. A research methodology is the primary principle that will
guide the research topic conducting a collection of the specific scientific meth-
ods [21]. Holz et al. [22] discuss the four major steps (problem definition, idea
development, implementation and evaluation) of the research process that we
adopt in our research. The research methodology that is used in our research
is illustrated in Figure 3.2.

Figure 3.2: Research Methodology.

Problem definition. As first step in our research process, we have done a
review of both the state of the art and practice including the reason/problem for
initiation of our research which has not been investigated before. In addition
to the discussion between the involved parties, the research goals are formu-
lated as an outcome of the problem definition step. In Papers A, B, and C, we
have conducted a review of the state of the practice with the help of the indus-

Chapter 3. Research Description 29

try, including Unibap AB (publ.), Volvo Construction Equipment, SAAB, and
Advanced Micro Devices (AMD). Furthermore, we investigate how heteroge-
neous and parallel computing are introduced in the state of art technologies
such as HSA, CUDA, OpenCL, OpenMP and so on. The literature reviews
surveys have been conducted in order to understand how different communi-
ties deal with heterogeneous computing. In other words, Papers E and F are
focused on heterogeneous computing in real-time systems, while Papers A and
C survey the relation between heterogeneous computing and space community.
As a result, we extract some ideas for the technical contributions presented in
this thesis.

Idea development. After the survey study, we have chosen the most rel-
evant works which help to consolidate our ideas. In Papers D, E, and F, we
extract models from real applications and propose a solution using models to
improve the existing solutions. In Papers A, B, C, and D, we have identified
the metrics which are used to understand the characterization of heterogeneous
architectures.

Implementation of the proposed solutions. The implementation step re-
sults with empirical studies based on either real implementation (Papers A, B,
C) and simulation using the state of the art analysis tool (Papers E, F and D).
Real implementations help to perform benchmarking study, i.e., measurement
based experiments. Some understanding of the proposed solutions using the
implementation has been published as work-in progress and workshop papers,
and technical reports (listed in this thesis as not included publications) in early
stage.

Evaluation of the solutions. In the last part research process, we draw
conclusion and determine limitations of our approach by conducting the eval-
uation of the proposed solution. In the evaluation process, the introduced met-
rics, tools including MUST (implemented by us during this PhD journey), and
research methods are used. Depending on the results of the evaluation step,
the problem definition and idea development are revised and continue with the
later steps. This process is iterated until the results are acceptable. The final-
ized results/outcomes are presented as conference and journal publications.

30 3.3. Research Process and Methodology

Chapter 4

Related Work

Space missions are constrained to bring the technological advances in COTS
platforms due to the radiation effects and other limitations. Many works ex-
plore the behaviour of COTS platforms under radiation effects such as [23],
[24], [25], and so on. Their focus is the effect of radiation regarding total ion-
izing dose (TID) and single-event effects (SEEs) on in-orbit hardware and ma-
terials used in the spacecraft. Miller et al. [26] and Troxel [23] study the radia-
tion effect on commercial DRAMs. The studies show that the exposed particle
can damage hardware, which may end up with data loss as well. Moreover, the
authors report the changes of chip revision within each family can be another
concern of radiation effects. Therefore, the current state of the art considers
how radiation effects can affect materials of hardware that, in turn damage
the stored data. This thesis explores how GPU accelerated COTS platforms
fit in in-orbit missions, measuring various types of applications considering
different limitations such as radiation effect, SWaP, and real-time constrains.
However, there is a lack of research on investigation of radiation effects on the
execution behavior of applications that are stored in the hardware. Hence, in
the thesis, we provide a framework and a tool to simulate how radiation effects
influence the execution behavior of applications on the on-board computing
platforms including heterogeneous processing units.

Historically, the adoption of heterogeneous processing units is intimately
bound to the development of high-performance computing such as supercom-
puters, especially, in the area of distributed heterogeneous supercomputing [12].
The execution times and manners of the workloads can vary a lot depending
on what type of processing units they are executed on. To this end, several
existing works focus on how to allocate applications to the appropriate pro-
cessing units in order to achieve the best-case execution time, i.e., the shortest
execution time [27, 28, 29]. In contrast, the work presented in the thesis con-

31

32

siders offloading the accelerator-intensive workloads, constrained by real-time
requirements, e.g., deadlines on the response times of the workloads, to the
available non-accelerated host processing units.

Beside radiation effects, the use of heterogeneous processing units in real-
time applications is another main focus of this thesis. The heterogeneous pro-
cessing units considered in the thesis consist of mainly two parts: (i) a host
processing unit, CPU, and (ii) accelerator(s) that include GPUs and FPGAs,
among others. There exist several research trends on how to tackle heteroge-
neous processing units in real-time applications. One of the research trends
is to explore the properties of accelerators in heterogeneous processing units
since a host processing unit is a well-studied single-core CPU. The existing
explorations in this regard include TimeGraph [30], Gdev [31], the black-box
method [32], to mention a few.

Another line of existing studies targets resource management in the sys-
tems that use heterogeneous processing units. There are several studies [33,
34, 35] that focus on splitting a task on accelerators for improving the schedu-
lability. Moreover, TimeGraph [30], GPUSync [36], and the works by Kim et
al. [37] and Biondi et al. [38] consider schedulability analysis of the systems
that use heterogeneous processing units. These studies focus on accelerators,
which obviously offer better (shorter) execution times of the compute-intensive
workloads compared to the executions on the host processing units. On the
other hand, this thesis aims at mitigating the accelerator-intensive workload by
efficiently offloading it to the non-accelerated host possessing units.

From the real-time perspective, there exist several works that support server-
based scheduling on single- and multi-core CPU(s) such as the constant band-
width server (CBS) [39], total bandwidth server (TBS) [40], polling server
(PS), sporadic server (SS) and deferrable server (DS) [41]. Some of the ex-
isting works also address the challenge of using the server-based scheduling
in accelerators. For example, the works in [42, 43] show that the server-based
scheduling on accelerator(s) can improve the schedulability of the systems that
use heterogeneous processing units. In comparison to these works, the work
presented in the thesis uses the server-based (DS) scheduling in the host pro-
cessing units instead of accelerators. The rationale behind the decision is that
the proposed framework, based on alternative executions of parallel segments,
offloads the accelerator-intensive workloads to host processing units to effi-
ciently utilize their excess resources to assist the accelerators.

The idea of using alternative executions of parallel segments of real-time
workloads is discussed in a few works [44]. Baruah [44] uses conditional
branching by using the if-then-else construct for two or more alternative exe-
cutions of a workload. Moreover, a scheduling approach employs the condi-

Chapter 4. Related Work 33

tional DAG model for reserving the necessary amount of computing resources.
This thesis discusses a static allocation of real-time tasks using alternative exe-
cution of parallel segments of the tasks. Both works construct the fundamental
of alternative executions of segments under real-time constraints. However,
dynamic allocation of tasks using the alternative executions of parallel seg-
ments is missing from the state of the art. Hence, provisioning of such an
allocation is the main focuses of this thesis.

34

Chapter 5

Conclusions

5.1 Summary and Conclusions

This thesis conducts an investigation of COTS heterogeneous architectures un-
der the real-time and space-specific constraints, i.e., space computing using
COTS heterogeneous platforms. The work conducted in the thesis addresses
the goal of improving timing predictability of real-time applications on het-
erogeneous computing platforms under harsh environments without degrading
their computing performance and energy efficiency.

First, we have investigated the characteristics of processing units in the
heterogeneous computing architectures focusing on computing potential and
energy efficiency. We confirm that CPU performs better computing perfor-
mance in the case of small workloads. Otherwise, GPU performs better than
CPU in computing performance. In addition, GPU is more energy efficient
compared to CPU for any type of workloads. Hence, from the execution-time
perspective, we conclude that larger workloads can benefit more compared to
smaller workloads by computing on GPU. This conclusion builds the base of
an idea about alternative executions of parallel segments. In other words, alter-
native executions of parallel segments can impact on the timing predictability
and energy use of the total system.

Then, the investigations of alternative executions of parallel segments have
been conducted in three phases introduced. In the first phase, we have studied
the characteristics of alternative executions of parallel segments considering
computing performance and energy efficiency. The results indicate that the
appropriate use of heterogeneous processing units for parallel segments can
achieve up to 64.3% decrease in the total energy consumption by the systems.
In the second phase, the study continues with the scheduling of real-time appli-
cations applying the alternative executions of parallel segments. The results in-

35

36 5.2. Future Work

dicate that the schedulability of task set can be improved up to 90% compared
to the existing solutions. In the third phase, we propose a dynamic scheduling
technique for alternate execution of parallel segments on CPU-GPU heteroge-
neous computing platforms. The results indicate that the dynamic scheduling
of the proposed task model can improve the schedulability up to 16% com-
pared to the state-of-the-art solutions.

Finally, we have implemented a simulation tool for heterogeneous COTS
platforms under harsh environments. In this tool, we applied the proposed task
model for the parallel segments of applications. This tool opens a new research
direction regarding heterogeneous COTS platforms under harsh environments,
when we consider different radiation tolerance levels for the different process-
ing units and peripheral devices.

We believe that the proposed techniques using our novel task model im-
prove the timing predictability of real-time applications on heterogeneous com-
puting platforms without degrading their computing performance and energy
efficiency. Moreover, our implemented tool and framework build a base of
a new research area for heterogeneous COTS platforms under harsh environ-
ments such as electromagnetic environments and radiation environments.

5.2 Future Work

There are several research directions for the future work:

• Validation on industrial case studies is crucial, since the need for the
practical use of heterogeneous architectures increases dramatically. Con-
cerning the proposed task model, a real-time GPU scheduler using alter-
native executions of parallel segments can be useful for the industrial
use cases. This scheduler can be implemented by customizing HSA-
compliant ROCm. ROCm is adopted already in mainline Linux kernel
and the thesis confirms that it performs very stable from Linux kernel
5.0.

• Tackling the radiation effect problems from software level is an interest-
ing research direction. In this field, the thesis has opened a new research
direction using different radiation tolerance levels for different process-
ing units, and other peripherals for computation.

• In this thesis, our focus was on the processing units. The investigation
can be extended to memory management of platforms that employ het-
erogeneous processing units. Among the memory models introduced
in Section 2.2.2, the research direction can be focused on the shared

Chapter 5. Conclusions 37

memory architectures as it can already be divided as uniform memory
access, non-uniform memory access, and heterogeneous uniform mem-
ory access. We plan to investigate the different use case scenarios of
these architectures with heterogeneous processing units.

• Last, but not least, the consideration of the collaboration of heteroge-
neous processing units, AI, and big data can be an interesting research
direction. This thesis limits AI applications as test-beds that use hetero-
geneous processing units. However, for example, AI optimized schedul-
ing policy for heterogeneous processing units will be crucial when we
consider big data, data inefficiency, extracting the important parts from
data and their uses.

38 Bibliography

Bibliography

[1] J. Bouwmeester and J. Guo, “Survey of worldwide pico-and nanosatellite
missions, distributions and subsystem technology,” Acta Astronautica,
vol. 67, no. 7-8, pp. 854–862, 2010.

[2] M. Swartwout, “Cubesats and mission success: 2017 update,” in Elec-
tronic Technology Workshop, NASA Electronic Parts and Packaging Pro-
gram (NEPP), NASA Goddard Space Flight Center, vol. 27, 2017.

[3] G. Richardson, K. Schmitt, M. Covert, and C. Rogers, “Small satellite
trends 2009-2013,” 2015.

[4] T. Segert, “Why did Google dump Skybox?” [Online]. Avail-
able: https://www.linkedin.com/pulse/why-did-google-dump-skybox-
tom-segert/ (Accessed Nov 14, 2019)

[5] M. T. Hicks and C. Niederstrasser, “Small sat at 30: trends, patterns, and
discoveries,” 2016.

[6] B. Andersson, G. Raravi, and K. Bletsas, “Assigning real-time tasks on
heterogeneous multiprocessors with two unrelated types of processors,”
in 2010 31st IEEE Real-Time Systems Symposium. IEEE, 2010, pp.
239–248.

[7] G. Lentaris, K. Maragos, I. Stratakos, L. Papadopoulos, O. Papanikolaou,
D. Soudris, M. Lourakis, X. Zabulis, D. Gonzalez-Arjona, and G. Fu-
rano, “High-performance embedded computing in space: Evaluation of
platforms for vision-based navigation,” Journal of Aerospace Informa-
tion Systems, vol. 15, no. 4, pp. 178–192, 2018.

[8] L. Walsh, U. Schneider, A. Fogtman, C. Kausch, S. McKenna-Lawlor,
L. Narici, J. Ngo-Anh, G. Reitz, L. Sabatier, G. Santin et al., “Research
plans in europe for radiation health hazard assessment in exploratory
space missions,” Life sciences in space research, vol. 21, pp. 73–82,
2019.

[9] J. Rask, W. Vercoutere, B. Navarro, and A. Krause, “Space faring: The
radiation challenge,” Nasa, Module, vol. 3, no. 8, p. 9, 2008.

[10] L. L. Bello, R. Mariani, S. Mubeen, and S. Saponara, “Recent advances
and trends in on-board embedded and networked automotive systems,”
IEEE Transactions on Industrial Informatics, vol. 15, no. 2, pp. 1038–
1051, 2018.

Bibliography 39

[11] H. Andrade, L. E. Lwakatare, I. Crnkovic, and J. Bosch, “Software chal-
lenges in heterogeneous computing: A multiple case study in industry,”
in 2019 45th Euromicro Conference on Software Engineering and Ad-
vanced Applications (SEAA). IEEE, 2019, pp. 148–155.

[12] R. F. Freund and D. S. Conwell, “Superconcurrency: A form of dis-
tributed heterogeneous supercomputing,” NAVAL OCEAN SYSTEMS
CENTER SAN DIEGO CA, Tech. Rep., 1991.

[13] B. Jeff, “Ten things to know about big. little,” ARM Holdings, 2013.

[14] HSA Foundation, “”Heterogeneous System Architecture.”,” available:
http://www.hsafoundation.com/ [Oct 16, 2018].

[15] M. Barr and A. Massa, Programming embedded systems: with C and
GNU development tools. ” O’Reilly Media, Inc.”, 2006.

[16] G. C. Buttazzo, Hard real-time computing systems: predictable schedul-
ing algorithms and applications. Springer Science & Business Media,
2011, vol. 24.

[17] C. Maia, M. Bertogna, L. Nogueira, and L. M. Pinho, “Response-time
analysis of synchronous parallel tasks in multiprocessor systems,” in Pro-
ceedings of the 22Nd International Conference on Real-Time Networks
and Systems, 2014, pp. 3–12.

[18] J. A. Stankovic and K. Ramamritham, “What is predictability for real-
time systems?” 1990.

[19] S. Mubeen, E. Lisova, and A. Vulgarakis Feljan, “Timing predictability
and security in safety-critical industrial cyber-physical systems: A posi-
tion paper,” Applied Sciences, vol. 10, no. 9, p. 3125, 2020.

[20] G. Dodig-Crnkovic, “Scientific methods in computer science,” in Pro-
ceedings of the Conference for the Promotion of Research in IT at New
Universities and at University Colleges in Sweden, Skövde, Suecia, 2002,
pp. 126–130.

[21] C. Dawson, A–Z of Digital Research Methods. Routledge, 2019.

[22] H. J. Holz, A. Applin, B. Haberman, D. Joyce, H. Purchase, and C. Reed,
“Research methods in computing: What are they, and how should we
teach them?” in Working group reports on ITiCSE on Innovation and
technology in computer science education, 2006, pp. 96–114.

40 Bibliography

[23] I. Troxel, “Memory technology for space,” Military and Aerospace Pro-
grammable Logic Devices (MAPLD), 2009.

[24] D. Sinclair and J. Dyer, “Radiation effects and cots parts in smallsats,”
2013.

[25] R. Kingsbury, F. Schmidt, W. Blackwell, I. Osarentin, R. Legge, K. Ca-
hoy, and D. Sklair, “Tid tolerance of popular cubesat components,” in
2013 IEEE Radiation Effects Data Workshop (REDW). IEEE, 2013, pp.
1–4.

[26] C. Miller, R. Owen, M. Rose, P. M. Rutt, J. Schaefer, and I. A. Troxel,
“Trends in radiation susceptibility of commercial drams for space sys-
tems,” in 2009 IEEE Aerospace conference. IEEE, 2009, pp. 1–12.

[27] Y. Wen, Z. Wang, and M. F. O’boyle, “Smart multi-task scheduling for
opencl programs on cpu/gpu heterogeneous platforms,” in 2014 21st In-
ternational conference on high performance computing (HiPC). IEEE,
2014, pp. 1–10.

[28] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous comput-
ing,” in 2009 IEEE international symposium on workload characteriza-
tion (IISWC). Ieee, 2009, pp. 44–54.

[29] P. Czarnul and P. Rościszewski, “Optimization of execution time under
power consumption constraints in a heterogeneous parallel system with
gpus and cpus,” in International Conference on Distributed Computing
and Networking. Springer, 2014, pp. 66–80.

[30] S. Kato, K. Lakshmanan, R. Rajkumar, and Y. Ishikawa, “Timegraph:
Gpu scheduling for real-time multi-tasking environments,” in 2011
USENIX Annual Technical Conference (USENIX ATC 11), 2011, pp. 17–
30.

[31] S. Kato, M. McThrow, C. Maltzahn, and S. Brandt, “Gdev: First-class
gpu resource management in the operating system,” in 2012 USENIX
Annual Technical Conference (USENIX ATC 12), 2012, pp. 401–412.

[32] N. Otterness, M. Yang, S. Rust, E. Park, J. H. Anderson, F. D. Smith,
A. Berg, and S. Wang, “An evaluation of the NVIDIA TX1 for support-
ing real-time computer-vision workloads,” in Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2017, pp. 353–364.

Bibliography 41

[33] C. Basaran and K.-D. Kang, “Supporting preemptive task executions and
memory copies in GPGPUs,” in 2012 24th Euromicro Conference on
Real-Time Systems. IEEE, 2012, pp. 287–296.

[34] S. Kato, K. Lakshmanan, A. Kumar, M. Kelkar, Y. Ishikawa, and R. Ra-
jkumar, “Rgem: A responsive gpgpu execution model for runtime en-
gines,” in 2011 IEEE 32nd Real-Time Systems Symposium. IEEE, 2011,
pp. 57–66.

[35] E. Rossi, M. Damschen, L. Bauer, G. Buttazzo, and J. Henkel, “Preemp-
tion of the partial reconfiguration process to enable real-time computing
with FPGAs,” ACM Transactions on Reconfigurable Technology and Sys-
tems (TRETS), vol. 11, no. 2, pp. 1–24, 2018.

[36] G. A. Elliott, B. C. Ward, and J. H. Anderson, “Gpusync: A framework
for real-time gpu management,” in 2013 IEEE 34th Real-Time Systems
Symposium. IEEE, 2013, pp. 33–44.

[37] H. Kim, P. Patel, S. Wang, and R. R. Rajkumar, “A server-based ap-
proach for predictable gpu access control,” in 2017 IEEE 23rd Interna-
tional Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA). IEEE, 2017, pp. 1–10.

[38] A. Biondi, A. Balsini, M. Pagani, E. Rossi, M. Marinoni, and G. But-
tazzo, “A framework for supporting real-time applications on dynamic
reconfigurable FPGAs,” in 2016 IEEE Real-Time Systems Symposium
(RTSS). IEEE, 2016, pp. 1–12.

[39] L. Abeni and G. Buttazzo, “Integrating multimedia applications in hard
real-time systems,” in Proceedings 19th IEEE Real-Time Systems Sym-
posium (Cat. No. 98CB36279). IEEE, 1998, pp. 4–13.

[40] M. Spuri and G. C. Buttazzo, “Efficient Aperiodic Service Under Earliest
Deadline Scheduling,” in RTSS, 1994, pp. 2–11.

[41] H. Zhu, S. Goddard, and M. B. Dwyer, “Response time analysis of hier-
archical scheduling: The synchronized deferrable servers approach,” in
32nd Real-Time Systems Symposium. IEEE, 2011, pp. 239–248.

[42] S. Kato, K. Lakshmanan, Y. Ishikawa, and R. Rajkumar, “Resource shar-
ing in GPU-accelerated windowing systems,” in 2011 17th IEEE Real-
Time and Embedded Technology and Applications Symposium. IEEE,
2011, pp. 191–200.

42 Bibliography

[43] Y.-S. Chen, H. C. Liao, and T.-H. Tsai, “Online real-time task schedul-
ing in heterogeneous multicore system-on-a-chip,” IEEE Transactions on
Parallel and Distributed Systems, vol. 24, no. 1, pp. 118–130, 2012.

[44] S. Baruah, “Resource-efficient execution of conditional parallel real-time
tasks,” in European Conference on Parallel Processing. Springer, 2018,
pp. 218–231.

Part II

Included Papers

43

Chapter 6

Paper A
Intelligent Data Processing
using In-Orbit Advanced
Algorithms on Heterogeneous
System Architecture

Nandinbaatar Tsog, Moris Behnam, Mikael Sjödin, Fredrik Bruhn
In the Proceedings of the 39th International IEEE Aerospace Conference, AeroConf
2018

45

Abstract

In recent years, commercial exploitation of small satellites and CubeSats has
rapidly increased. Time to market of processed customer data products is be-
coming an important differentiator between solution providers and satellite
constellation operators. Timely and accurate data dissemination is the key
to success in the commercial usage of small satellite constellations which is
ultimately dependent on a high degree of autonomous fleet management and
automated decision support. The traditional way for disseminating data is lim-
ited by on the communication capability of the satellite and the ground termi-
nal availability. Even though cloud computing solutions on the ground offer
high analytical performance, getting the data from the space infrastructure to
the ground servers poses a bottleneck of data analysis and distribution. On
the other hand, adopting advanced and intelligent algorithms onboard offers
the ability of autonomy, tasking of operations, and fast customer generation of
low latency conclusions, or even real-time communication with assets on the
ground or other sensors in a multi-sensor configuration.

In this paper, the advantages of intelligent onboard processing using ad-
vanced algorithms for Heterogeneous System Architecture (HSA) compliant
onboard data processing systems are explored. The onboard data processing
architecture is designed to handle a large amount of high-speed streaming data
and provides hardware redundancy to be qualified for the space mission appli-
cation domain. We conduct an experimental study to evaluate the performance
analysis by using image recognition algorithms based on an open source intel-
ligent machine library ”MIOpen” and an open standard ”OpenVX”. OpenVX
is a cross-platform computer vision library.

Chapter 6. Paper A 47

6.1 Introduction

Small satellites (i.e., satellites defined weighing less than 100 kg) all the way
down to nanosatellites (i.e. satellites defined weighing less than 10 kg) are
rapidly attracting interest in many areas including the commercial telecom-
munication, Earth Observation (EO) markets, and the intelligence and defense
community [1]. EO satellites are experiencing rapid advancements in optical
imaging payload technologies and onboard processing, leading to significantly
improved quality and resolution of imagery gathered from spaceborne plat-
forms. The smaller size of satellites together with a lower cost has allowed the
use of high performing Commercial-Off-The-Shelf (COTS) electronic parts to
be harnessed for image compression and cloud removal using both Graphi-
cal Processing Units (GPUs) and Field Programmable Gate Arrays (FPGAs)
[2, 3]. The improvements in sensor technology have not been matched with
equivalent developments in satellite downlink technologies, and hence the ex-
ponential increases in the generated data volume are forming a significant bot-
tleneck onboard the platform. Optical communication holds promise to enable
gigabit per second telemetry data transfer for downlinks and intersatellite links
[4]. This would decrease the difference between sensor advances and the com-
munication bottleneck. However, latency and storage capacity will still be big
challenge since the number of places on Earth with suitable optical stations are
limited.

Many emerging missions use constellations of many (e.g., over 100) small
satellites to enable rapid revisit times and global coverage [5]. Small satel-
lites are being deployed for many different applications, e.g., communications,
space situational awareness, and Intelligence, Surveillance, and Reconnais-
sance (ISR), precision agriculture (PA), machine to machine communication,
and air traffic management.

In order to address the latency issues and communication bottlenecks,
more onboard data analytics is required to enable small satellites to accommo-
date the flexibility needed for autonomous constellation management, informa-
tion extraction, compression and sensor fusioning with low latency. However,
it is important to find data processing solutions that fit the Size, Weight, and
Power (SWaP) constraints while collecting mission-critical sensor data. This
paper further explores the use, efficiency and performance of HSA capabilities
of modern System-on-Chips (SoC) for ISR sensors (e.g., EO/Infrared/Hyper-
spectral cameras) using the GIMME-series architectures [6].

GIMME-3 is an architecture developed at Mälardalen University to pursue
a SWaP optimized onboard computing solution that enables Deep Learning
on massively parallel units with advanced Error Code Correction (ECC) for

48 6.2. Related Work

aerospace application. GIMME-3 has been expanded to GIMME-4 which in-
troduces HSA capability through the AMD® R-series SoC (f.m. named Merlin
Falcon) [6].

Radar is an another important sensor which usually requires massive pro-
cessing. New methods suitable for onboard processing are being developed.
Single-frequency transmitted wave-forms with high Doppler resolution nature
called Doppler synthetic aperture radar (D-SAR) is one interesting approach
for bistatic radar [7].

6.1.1 Contributions

The main contribution of this paper is to investigate the performance of on-
board data processing on the heterogeneous architecture by running image
processing algorithms which use both MIOpen framework of high perform-
ing machine learning primitives and OpenVX vision library. We focus on the
fact that the concurrent executions of multiple advanced algorithms affect the
worst-case execution time (WCET) of other parallel running tasks which of
expresses the quality of the onboard heterogeneous system. Since less en-
ergy consumption is an another key factor to increase the quality of the on-
board architecture, we have focused on the energy consumption of GPU based
heterogeneous computing. We confirmed that an HSA compliant GPU based
heterogeneous computing improves the quality of the onboard architecture for
intelligent data processing since it either uses less energy consumption and per-
forms better than CPU for the feature tracking with the different workloads.

6.1.2 Organization

In Section 2, we discuss an importance of onboard processing, usage of in-orbit
heterogeneous architectures and energy consumption of parallel architectures
running advanced algorithms. The architectures and specifications are intro-
duced in Section 3. We describe our benchmark suites in Section4 and the
evaluation of the experiments are described in Section 5. Section 6 concludes
the paper and discusses future work.

6.2 Related Work

In this work, we consider the contribution of heterogeneous architecture in
mission critical applications such as onboard processing. Advanced and resource-
intensive computing in new science-mission applications brings a new chal-
lenge to the space-computing community as these needs require next-generation

Chapter 6. Paper A 49

systems that should support a broad potential of processing with low power
consumption and high reliability [8]. Certain numbers of the heterogeneous
multicore SoC platforms are introduced as a promising architecture for space-
computing. In order to increase the reliability of such platforms, Wilson et
al. consider a multifaceted strategy (HARFT strategy) for fault-tolerant com-
puting, targeting SoC platforms consists of multicore CPUs and FPGA fabric.
The HARFT strategy introduces fault-tolerant schemes by using both compute
nodes to achieve a robust, hybrid, hardware redundant and fault-tolerant theme
for a hybrid device.

Heterogeneous architectures including FPGA are not only the hybrid solu-
tion in space-computing, but also several architectures including GPUs exist.
However, fault masking and tolerance on GPUs is less investigated for harsh
environments [9]. Milluzzi and George discuss GPU protection on Tegra X1
SoC for space usage, i.e., how to avoid vulnerability of Tegra SoCs against a
wide range of single-event upsets (SEUs) since it has complex caching struc-
ture which consists of a number of the GPU cores and a custom task scheduler.
As a GPU protection, they consider a persistent thread method with triple-
modular redundancy (TMR) which provides a strong basis for fault masking
on a wide range of platforms. They have succeeded to remove the vulnerabil-
ity of scheduler faults even when GPUs pose a unique challenge to a general
TMR implementation. The paper reports that the NVIDIA Tegra™ K1 and
X1 perform over 500 GFLOPS of peak performance at just 10 Watts Thermal
Design Power (TDP). Hence, the SoC considered in our paper possesses suf-
ficient computational performance that it employees Radeon™ R6 GPU which
has the computational potential up to 614GFLOPS and less than 10Watt in
peak performance.

Persistent threads style programming model/method is well-known to pro-
tect GPU from the interference of host CPU since it performs the direct com-
munication with the different GPU kernels instead of unnecessary round-trip
communications through host CPU. Moreover, this method is useful for FPGA
protection as well. Khan et al. present a complete networking switch designed
in OpenCL that consists of several high-level constructs which create the build-
ing blocks of any network application for FPGAs [10]. In this work, persistent
kernel method is used to avoid the intervention of the host to provide the ker-
nels with data processing constantly. Measuring the intervention of the tasks
to one another and between the different compute nodes is one of the main
challenges in our work to assess the quality of the concurrent executions.

Measuring the energy consumption of the advanced algorithms while run-
ning on the onboard computer is another challenge in our work. Liu et al.
tackle with an advanced algorithm using the aerosol optical depth (AOD) prop-

50 6.3. Background

erties from the performance and energy efficiency perspective [11]. As a result
of a large number of remote sensing data and compute-intensive algorithms,
the AOD retrieval is computationally expensive. Two different kinds of paral-
lel architectures, multicore processors and GPU accelerators, are used to run
the time-consuming SRAP-MODIS algorithm for the AOD retrieve. This al-
gorithm includes not only a set of nonlinear equations but also requires a large
number of input images. In this paper, the performance of parallel computa-
tions on both of the architectures and energy consumptions are analyzed in the
context of a quantitative remote sensing retrieval application. The difference
of the power consumptions between the idle and load conditions [12] is used
as the power consumption of the applications for the multicore and GPU in
order to evaluate the power consumption. We use this measurement method to
determine the real power consumption of the application running.

In order to adapt to unexpected situations, acquirement of cognitive capa-
bilities is important to autonomous control systems in space [13]. Q-learning
is a model-free reinforcement learning technique and it is efficient in solving
some classes of learning problems. Due to the constraints, SWaP, convergence
rate and costs, learning algorithms are rarely implemented in onboard embed-
ded systems in space. Similarly to exploring Convolution Neural Network
in our paper, Gankidi and Thangavelautham present Q-learning with Aritifi-
cial Neural Network. This method fits well with the parallel computing and it
achieved a great reducing processing time by using the fine-grain parallelism
of an FPGA hardware. The result shows 43x speed up by Virtex 7 FPGAs
compared to Intel i5 2.3 GHz CPUs. They emphasize that the fine grained
parallel architectures are competitive considering power consumption.

6.3 Background

6.3.1 AMD A-Series A10-8700P APU

As illustrated in Figure 6.1, the AMD A10-8700P APU maintained in a SoC
comprises a quad core 1.8GHz 64bit A10 CPU and Radeon™ R6 GPU. The
CPUs consist of 2 compute units (CUs) each of which has 2 cores and shares
1MB L2 cache. The cores integrated into the same CU share 96KB L1 instruc-
tion cache, and 32KB L1 data caches are unique to each core. The GPU con-
sists of 6 CUs with 64 cores each, and totally performs up to 614GFLOPS. The
APU shares 8GB DDR3 handled by memory controllers with a full hardware
cache coherence at 128 bit-wide memory bandwidth between GPU and CPU
caches. An Address Translation Cache (ATC) hierarchy brings a fine grained
shared virtual memory, i.e., the same virtual address space to all devices. This

Chapter 6. Paper A 51

feature is known as a foundational aspect of HSA that is merely passing the
pointer to data between all the devices and no memory copying required for
the different CUs. The AMD Embedded G- and R-Series SoCs are used with
the A-series APUs and there exist COTS products such as conga-TR31 with
the size of 95mm by 125 mm. The AMD Embedded R-series SoC is based
on a 28 nm process and compliant with HSA 1.0 thus meaning it supports
fine-grain full cache coherency. The power consumption of this APU ranges
between from 12 Watt up to 35 Watt while the thermal design power (TDP) is
15Watt.

Figure 6.1: AMD A-series A10 APU’s architecture

6.3.2 GIMME3 and GIMME4

A fault tolerant heterogeneous architecture, GIMME3, has been designed for
high performance computing in mission critical applications [14]. GIMME3
architecture was productized and commercialized by Unibap AB (publ) and
was flown into space on May 30th 2016 on the Satellogic NuSat-1 and NuSat-2
[6]. GIMME3 employees the AMD Embedded G-series SoC based on FT3 and
FT3(b) footprints (formerly known as Kabini and Steppe Eagle, respectively)
that support up to quad core CPU with 2 GPU CUs [15]. Each AMD GPU CU
has 64 Arithmetic Logic Units (ALU) and GIMME3 can deliver 77 GFLOPS
of GPU performance.

As an expansion of GIMME3, Tsog et al. introduce the next generation
heterogeneous computing architecture GIMME4 using HSA for higher com-
puting performance and better redundancy [6]. Similarly to the AMD A10-
series APU, GIMME4 architecture is based on the AMD Embedded 2nd Gen

1conga-TR3:
http://www.congatec.com/en/products/com-express-type6/conga-tr3.html

52 6.3. Background

R-series SoC [16] with 8 GPU CUs and FP4 footprint, formerly known as
Merlin Falcon. Major differences between the FT3(b) and FP4 footprint based
products are the shift in CPU architecture from ’Bulldozer’ to ’Excavator’, up-
dated GPU design, memory controller, and the official support for HSA [6].
The Unibap e2200 family development board based on GIMME4 architec-
ture is 82 mm by 110 mm and 85g, and provides 819GFLOPS of GPU per-
formance. Currently, GIMME4 has not tested yet in radiation environments,
however, the previous version GIMME3 is fully confirmed [14] that it operates
in radiation environments.

6.3.3 Heterogeneous System Architecture

In modern trend in industrial applications, the role of heterogeneous comput-
ing has been increasing dramatically. Employing multiple types of compute
nodes, CPU, GPU, FPGA, DSP and so on, according to their strengths makes
the embedded systems as robust as much. However, the different types of spec-
ifications and designs of the compute nodes bring difficulties for the develop-
ing process from cost and timing perspective. To overcome these problems,
multiple leading hardware vendors have established HSA Foundation2 to de-
velop the Heterogeneous System Architecture (HSA) specification for reduc-
ing heterogeneous computing complexity and providing the developer friendly
environments. The HSA aims to ease the process of developing the heteroge-
neous platform by providing the similar environment for the developers such
as they used for the legacy systems, i.e., homogeneous systems. For example,
providing the open-source well-known compilers, LLVM and GCC, and using
only pointers in a virtual memory space gives access to the memory spaces
of all the compute nodes. The virtual memory space in the HSA provides no
memory copying between different physical memories, i.e., the HSA provides
unified coherent memory that saves a lot of computation time for transferring
data between different physical memories. As a part of HSA, AMD contributes
by introducing an initiative GPUOpen3, an open-source software stack, includ-
ing, but not limited to, kernel level driver, runtime, tools and libraries such as
ROCm, MIOpen, AMD OpenVX and CodeXL.

ROCm

ROCm is an open source software stack and consists of multiple modules
which support GPU computing [6].

2HSA Foundation: http://www.hsafoundation.com
3GPUOpen: https://gpuopen.com

Chapter 6. Paper A 53

MIOpen

MIOpen, an alternative to CuDNN, is an open-source machine learning library
that developed to exert full potential of ROCm software stack as well as het-
erogeneous computing. In the current release (version 1.0), MIOpen supports
Convolution Neural Network (CNN), Pooling, Softmax, Activations, Gradi-
ent Algorithms Batch Normalization, and LR Normalization[17] with data de-
scribed in 4-D tensors. Both OpenCL and HIP frameworks are enabled in
MIOpen that HIP includes a tool ”hipify” which ports CUDA code into C++.

OpenVX

The Khronos Group has designed an open and royalty-free standard OpenVX
that is portable across different vendors and hardware types, and optimized and
power-efficient image processing for computer vision applications. OpenVX
enables the following use cases; face, body and gesture tracking, smart video
surveillance, advanced driver assistance systems (ADAS), object and scene
reconstruction, augmented reality, visual inspection, robotics and more [18].
Moreover, OpenVX and OpenCV complement each other to perform as per-
fect computer vision library since OpenVX has to be implemented by hardware
vendors and OpenCV has a strong open source community. Not only, OpenVX
is the computer vision library, but also it has great potential to being as a ma-
chine learning library in its Neural Network Extension. There are multiple
vendors implement their OpenVX libraries for both computer vision and neu-
ral network libraries. However, we focus only on computer vision library and
use AMD OpenVX (AMDOVX) [19] in this paper. Currently, the released ver-
sion of the AMDOVX is 0.9.6 and it includes feature tracking ”Optical flow”
algorithm as well as feature detection algorithms, e.g. Harris, FAST, Canny.
Furthermore, the current version interoperates with OpenCV as well.

CodeXL

CodeXL4 is an open-source development tool suite, debugging and profiling,
for the different processors such as CPU, GPU, and APU. Using CodeXL fa-
cilitates the HSA development process as it provides debugging functionality
for OpenGL, OpenCL and HSA, and profiling functionality for both OpenCL
and HSA kernels. CodeXL works on both Windows™ and Linux™ as a Visual
Studio™ extension and a standalone user interface with both graphical and
command line. In this paper, we deal with CodeXL mainly for power profiling
purpose, however, it is used for debugging purpose as well.

4CodeXL: https://gpuopen.com/compute-product/codexl/

54 6.4. Experiment Setup

6.4 Experiment Setup

As illustrated in Figure 6.2, we consider a comparison of the process of a re-
porting system using satellite data. The traditional reporting system is depicted
with solid lines and it consists of storing raw data on the onboard computer of
satellite, downlinking to the ground station, processing data on the ground sta-
tion and creating the report. Meanwhile, the report creating system using on-
board processing is illustrated with dash lines. The system begins with onboard
processing and storing analyzed data on the onboard computer. The report will
be ready once the analyzed data is downlinked to the ground station. In this
paper, we consider the onboard processing only.

Figure 6.2: A reporting system using satellite data

The SWaP is the key to evaluate advancing onboard processing while as-
sessing the quality of the onboard processing. The size constraint is satisfied as
both the Unibap e2200 family product and the conga-TR3 fit in the 1.5U Cube-
Sats or more. From the weight perspective, the Unibap e2200 family product
takes less than 10% of the entire weight of 1U CubeSat as specified by the
CubeSat standard and less than 3% of 3U CubeSat which is the preferred size
of CubeSats for the advanced missions. By the specification of the board/sys-
tem, the power consumption is known as between 15-35Watt that fits for the
3U CubeSats [20]. However, we investigate the detail of power consumption
to find the real power consumption of the advanced onboard processing while
accessing the quality of the onboard processing.

Chapter 6. Paper A 55

6.4.1 Benchmark Suites

We design the following experiment scenarios by using MIOpen and OpenVX
with the CodeXL in order to assess the HSA compliant onboard computer for
advanced processing.

• ExpA - An investigation of the computational performance and power
consumption in CPU and GPU. The goal of this experiment is to in-
vestigate the computational performance and power consumption of ad-
vanced algorithms on CPU and GPU devices of the HSA compliant on-
board computer. We use the CodeXL profiler to measure the power con-
sumption of the advanced algorithms. To the best of our knowledge,
CodeXL is an optimal tool to measure the power consumption since it
omits to equip physical measuring tools.

• ExpB - Assessing a quality of the concurrent executions of advanced
tasks. In this experiment, we aim to investigate the quality of the HSA
compliant onboard computer by executing the multiple concurrent ad-
vanced algorithms. We consider a comparison of the measurement-
based worst case execution time (WCET) of a task with different work-
loads on the CPU and GPU.

6.4.2 Configuration of Test Scenarios

In the experiment ExpA, we consider the following 7 tasks (in Table 6.1) on
both CPU and GPU computations; OVX1, OVX2, ML1-1, ML1-2, ML1-3,
ML1-4 and ML1-5. OVX1 and OVX2 are based on a tracking algorithm with
the different test data [21] and [22], respectively. ML1-1, ML1-2, ML1-3,
ML1-4 and ML1-5 are the following machine learning applications of MIOpen
with the default configurations, respectively; Activations, Batch Normaliza-
tion, CNN, LR Normalization and Pooling.

Shortened name Detailed name

OVX1 Tracking algorithm with test data 1 [21]

OVX2 Tracking algorithm with test data 2 [22]

ML1-1 Activations

ML1-2 Batch Normalization

ML1-3 CNN

ML1-4 LR Normalization

ML1-5 Pooling

Table 6.1: Tasks’ shortened and detailed name list

56 6.4. Experiment Setup

The combinations of the following 5 tasks are used in the experiment
ExpB; OVX1, OVX2, ML10, ML100 and ML1000. OVX1 and OVX2 are
the same as we defined for the experiment ExpA. ML10, ML100 and ML1000
are the concurrent executions of the machine learning applications Activations,
Batch Normalization, CNN, LR Normalization and Pooling with a custom con-
figurations such as 10, 100 and 1000 iterations, respectively. We measure the
WCET of the task OVX1 while we consider the following tasks as the work-
loads; OVX2, ML10, ML100 and ML1000. The task OVX1 converts a 4K
image to 1280x720 RGB image for every frame and tracks the features.

6.4.3 Test Data

In this paper, we use the International Space Station (ISS) Expedition 42’s time
lapse videos of earth as test data. The resolution of the videos is 4K 3840x2160
and the size of each frame is around 6MB. The test data 1 and 2 have 180 and
600 frames, respectively. The frame rate of both the data is 60fps.

Tasks
Computation time Energy consumption

GPU
[ms]

CPU
[ms] Ratio=CPU/GPU GPU

[Joules]
CPU

[Joules] Ratio=CPU/GPU

OVX1 79.33 137.35 1.73 4.41 4.78 1.08

OVX2 31.18 93.62 3.00 3.92 4.34 1.11

ML1-1 1.12 0.66 0.58 1.09 1.14 1.05

ML1-2 0.19 22.34 119.67 0.73 0.87 1.19

ML1-3 12.06 2873.56 238.20 1.63 22.01 13.52

ML1-4 0.57 86.82 153.23 0.75 1.43 1.89

ML1-5 1.73 29.65 17.16 0.76 0.99 1.31

Table 6.2: The computation time and energy consumption of the tasks per
frame or iteration in the ExpA.

6.4.4 Evaluation Environment

The experiments are performed on A10-8700P APU employed Acer E15 E5-
552-T99R model notebook. The following software stacks are installed in the
environment; Ubuntu 16.04, Linux Kernel 4.14.rc3 , ROCm 1.6.3, CodeXL
2.5-25, MIOpen 1.0 and OpenVX 0.9.6. To reproduce the experiments, we
have implemented the patches5 to the CodeXL, since the current version of
CodeXL is not suitable for the newer versions of the Linux Kernel than 4.10.

5The patches to CodeXL 2.5-25:
https://github.com/GPUOpen-Tools/CodeXL/issues/161#issuecomment-337128790

Chapter 6. Paper A 57

6.5 Experiment Results

The accuracy of the tasks (algorithms) are confirmed by the comparison of
calculations of both CPU and GPU. We have confirmed the optical flow and
Harris feature algorithms of OpenVX as shown in Figure 6.6 in Appendix 6.7.
The results of the ExpA are shown in Table 6.2. Both the results of compu-
tation time and energy consumption are measured per frame and iteration for
OpenVX and MIOpen applications, respectively. We can see that GPU com-
putes faster than CPU except in case of the ML1-1 task. The speed up ratio
reaches up to 238 times in the ML1-3 task which is based on one the most well-
known algorithm CNN. From the energy consumption perspective, GPU leads
CPU for all the cases. Moreover, GPU consumes surprisingly 13.52 times less
energy in case of CNN algorithm as GPU reaches 6 Watts for the full perfor-
mance in contrast with the usage of CPU reaches 3 Watts. As we know the
results are per unit (frame and iteration), this experiment shows that GPU is a
potential candidate for the onboard processing.

Processor
Task / Workloads

OVX1 OVX2 ML10 ML100 ML1000

GPU [s] 7.11 9.34 0.25 1.92 21.51

CPU [s] 11.52 24.32 27.57 320.05 5406.53

CPU/GPU 1.62 2.60 111.94 166.82 251.30

Table 6.3: The computation time of each workload running alone (no concur-
rent executions of any other tasks as well as the workloads).

The aim of the expB is to investigate the measurement-based WCET of
the task (OVX1) while running with the different workloads. The computa-
tion time of the workloads in the expB is the total computation time of the
tasks, meanwhile we considered the computation time per unit (frame or it-
eration) similar to the case in the ExpA. In Table 6.3, we can see that the
computation time of the workloads are different. Moreover, the computation
time of the workloads is measured when each workload runs alone, i.e., no
concurrent executions of any other tasks at the same time. We can see that it
is better to run the machine learning algorithms on GPU than CPU since the
ratio of CPU/GPU increases when the iteration number of a running algorithm
increases.

Figure 6.3 shows the variation of the computation time of OVX1 while
running together with the different workloads. Detail information are shown
in Table 6.4. We can see that the computation time of the OVX1 slows down to
2.82 times from 11.52s (no workload) to 32.56s (OVX1+OVX2+ML1000) on

58 6.5. Experiment Results

CPU. Meanwhile, the increase of the computation time stays 2.23 times from
7.11s (no workload) to 15.86s (OVX1+OVX2+ML1000) on GPU. Therefore,
GPU takes from 40ms (7.11s/179) to 89ms for the calculation of each frame,
and CPU takes from 64ms to 182ms for each frame. As shown in Figure 6.3,
we confirm that the computation time of the GPU is more stable than CPU.
The task OVX1 uses the data1 which is 180frames, 4K resolution and 60fps.
In other words, it takes 1/60s=17ms per frame. Therefore, the computation
time of CPU is approximately 10.71 times more time compare to the frame
rate time of the video. However, GPU consumes approximately 5.24 times
more time of the frame rate time of the video with 4K resolution, and it could
be considered reasonable with the lower frame rate (20-30fps) and the lower
resolution of the images.

Figure 6.3: The variation of the computation time of OVX1 while running
together with the different workloads.

Concurrent executions
The computation time of the task OVX1

CPU [s] GPU [s]

OVX1 + no workload 11.52 7.11

OVX1 + ML10 26.36 7.24

OVX1 + OVX2 25.50 15.59

OVX1 + ML100 25.17 15.17

OVX1 + ML1000 25.64 15.17

OVX1 + OVX2 + ML10 25.39 15.55

OVX1 + OVX2 + ML100 25.74 15.66

OVX1 + OVX2 + ML1000 32.56 15.86

Table 6.4: The computation time of the task OVX1 while running together
with the different workloads in the ExpB.

Chapter 6. Paper A 59

6.6 Conclusion / Future Work

First of all, we have come to conclusion that GPU is a potential candidate
for the onboard computer processing of the CubeSat as we performed two ex-
periments over 7 different machine learning and computer vision algorithms.
From our experimental study, we have confirmed that the HSA compliant GPU
computes up to 238 times faster and consumes between 13.5 times less energy,
compared to the CPU calculation. Moreover, we have confirmed that the com-
putation time of GPU is more stable than CPU while running together with the
different workloads. Therefore, we conclude that GPU can be a highly poten-
tial candidate in the onboard computer processing of the CubeSat. For future
work, we would like to continue developing combined usage of the intelligent
applications for the onboard computer of the CubeSat that allows more usabil-
ity and reliability.

6.7 Test Data

6.7.1 Source of the Test Data

The first frames of ISS Expedition 42’s time lapse videos with the id num-
ber ”jsc2015m000221” and ”jsc2015m000226” are shown in Figures 6.4, and
6.5, respectively. These time lapse videos are assembled from JSC still photo
collections (still photos iss042e255412 - iss042e255592 and iss042e283240 -
iss042e283840).

Figure 6.4: The first frame image from ISS Expedition 42 Time Lapse Video
of Earth with the id ”jsc2015m000221”

60 6.7. Test Data

Figure 6.5: The first frame image from ISS Expedition 42 Time Lapse Video
of Earth with the id ”jsc2015m000226”

6.7.2 Tracking Results

The results of the tasks OVX1 and OVX2 are shown in Figure 6.6.

(a) Applying OVX1 to the data1 (b) Applying OVX2 to the data2

Figure 6.6: Applying OVX1 and OVX2 to the data1 and data2, respectively

Chapter 6. Paper A 61

6.8 Pseudo Code for the Measurements of the Compu-
tation Time

A guide to measure the computation time is shown in the following pseudo
code.

Algorithm 1 How to set a timestamp to the MIOpen code
* Include header files located in MIOpen/driver/.
- #include ”InputFlags.hpp”
- #include ”timer.hpp”

* Declare a timestamp variable
- Timer t;

* Set the timestamp for START
- START TIME;

* Set the timestamp for END and calculate the computation time
if inflags.GetValueInt(”time”) == 1 then

STOP TIME;
if WALL CLOCK then

print t.gettime ms();
end if

end if

Acknowledgments

We would like to express our sincere gratitude to Dr Harris Gasparakis, an
AMD GPGPU, Computer Vision and Machine Learning technical expert and
project manager, for his great knowledge in computer vision, machine learning
and HSA related areas. He has helped us a great deal by providing an extensive
amount of support whenever necessary.

AMD, Radeon and combinations thereof are trademarks of Advanced Mi-
cro Devices, Inc. Other product names used in this publication are for identifi-
cation purposes only and may be trademarks of their respective companies.

62 Bibliography

Bibliography

[1] P. Hershey, B. Wolpe, J. Klein, and C. Dekeyrel, “System for small satel-
lite onboard processing,” in 2017 Annual IEEE International Systems
Conference (SysCon). IEEE, 2017, pp. 1–6.

[2] R. Davidson and C. Bridges, “Gpu accelerated multispectral eo im-
agery optimised ccsds-123 lossless compression implementation,” in
2017 IEEE Aerospace Conference. IEEE, 2017, pp. 1–12.

[3] L. Santos, L. Berrojo, J. Moreno, J. F. López, and R. Sarmiento, “Mul-
tispectral and hyperspectral lossless compressor for space applications
(hyloc): A low-complexity fpga implementation of the ccsds 123 stan-
dard,” IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing, vol. 9, no. 2, pp. 757–770, 2015.

[4] R. P. Welle, S. Janson, D. Rowen, and T. Rose, “Cubesat-scale laser com-
munications,” in 31st space symposium, 2015.

[5] C. Boshuizen, J. Mason, P. Klupar, and S. Spanhake, “Results from the
planet labs flock constellation,” 2014.

[6] N. Tsog, H. Gasparakis, M. Behnam, M. Sjödin, and F. Bruhn, “Technical
Report: Advancing Onboard Computer Data Processing in CubeSats,”
Tech. Rep., 2017.

[7] L. Wang and B. Yazici, “Bistatic synthetic aperture radar imaging us-
ing ultranarrowband continuous waveforms,” IEEE transactions on im-
age processing, vol. 21, no. 8, pp. 3673–3686, 2012.

[8] C. Wilson, S. Sabogal, A. George, and A. Gordon-Ross, “Hybrid, adap-
tive, and reconfigurable fault tolerance,” in 2017 IEEE Aerospace Con-
ference. IEEE, 2017, pp. 1–11.

[9] A. Milluzzi and A. George, “Exploration of tmr fault masking with per-
sistent threads on tegra gpu socs,” in 2017 IEEE Aerospace Conference.
IEEE, 2017, pp. 1–7.

[10] J. Khan, P. Athanas, S. Booth, and J. Marshall, “Opencl-based design
pattern for line rate packet processing,” in 2017 IEEE 28th International
Conference on Application-specific Systems, Architectures and Proces-
sors (ASAP). IEEE, 2017, pp. 190–194.

Bibliography 63

[11] J. Liu, D. Feld, Y. Xue, J. Garcke, and T. Soddemann, “Multicore pro-
cessors and graphics processing unit accelerators for parallel retrieval of
aerosol optical depth from satellite data: implementation, performance,
and energy efficiency,” IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, vol. 8, no. 5, pp. 2306–2317, 2015.

[12] S. Hong and H. Kim, “An integrated gpu power and performance model,”
in Proceedings of the 37th annual international symposium on Computer
architecture, 2010, pp. 280–289.

[13] P. R. Gankidi and J. Thangavelautham, “Fpga architecture for deep learn-
ing and its application to planetary robotics,” in 2017 IEEE Aerospace
Conference. IEEE, 2017, pp. 1–9.

[14] F. Bruhn, K. Brunberg, J. Hines, L. Asplund, and M. Norgren, “Intro-
ducing radiation tolerant heterogeneous computers for small satellites,”
in 2015 IEEE Aerospace Conference. IEEE, 2015, pp. 1–10.

[15] AMD, “Embedded G-Series SoC Processors — AMD,” (ac-
cessed 2017-10-12). [Online]. Available: http://www.amd.com/en-
us/products/embedded/processors/g-series (accessed 2017-10-12)

[16] ——, “Application Brief of AMD Embedded R-Series SoC,” 2017.
[Online]. Available: http://www.amd.com/Documents/merlin-falcon-
product-brief.pdf (accessed 2017-10-12)

[17] ——, “MIOpen.” [Online]. Available:
https://github.com/ROCmSoftwarePlatform/MIOpen (accessed 2017-
10-05)

[18] Khronos, “OpenVX.” [Online]. Available:
https://www.khronos.org/openvx/ (accessed 2017-10-09)

[19] AMD, “AMD OpenVX.” [Online]. Available:
https://gpuopen.com/compute-product/amd-openvx/ (accessed 2017-10-
09)

[20] S. S. Arnold, R. Nuzzaci, and A. Gordon-Ross, “Energy budgeting for
cubesats with an integrated fpga,” in 2012 IEEE Aerospace Conference.
IEEE, 2012, pp. 1–14.

[21] NASA, “ISS Expedition 42 Time Lapse Video.” [Online]. Available:
https://images.nasa.gov/%5C#/details-jsc2015m000221.html; (accessed:
2017-10-19)

64 Bibliography

[22] ——, “ISS Expedition 42 Time Lapse Video.” [Online]. Available:
https://images.nasa.gov/%5C#/details-jsc2015m000226.html (accessed
2017-10-19)

Chapter 7

Paper B
A Trade-Off between
Computing Power and Energy
Consumption of On-Board Data
Processing in GPU Accelerated
In-Orbit Space Systems

Nandinbaatar Tsog, Saad Mubeen, Mikael Sjödin, Fredrik Bruhn
In the Transactions of the Japan Society for Aeronautical and Space Sciences,
Aerospace Technology Japan, ATJ 2020

65

Abstract

On-board data processing is one of the prior on-orbit activities that improves
the performance capability of in-orbit space systems such as deep-space ex-
ploration, earth and atmospheric observation satellites, and CubeSat constel-
lations. However, on-board data processing encounters higher energy con-
sumption compared to traditional on-board space systems. This is because the
traditional space systems employ simple processing units such as single-core
microprocessors as the systems do not require heavy data processing. More-
over, solving the radiation hardness problem is crucial in space, and adopting
a new processing unit is challenging.

In this paper, we consider a Graphics Processing Unit (GPU) accelerated
in-orbit space system for on-board data processing. According to prior works,
there exist radiation-tolerant GPU, and the computing capability of systems is
improved by using heterogeneous computing method. We conduct experimen-
tal observations of energy consumption and computing potential using this het-
erogeneous computing method in our GPU accelerated in-orbit space systems.
The results show that the proper use of GPU increases computing potential
with 10-140 times and consumes between 8-130 times less energy. Further-
more, the entire task system consumes 10-65% of less energy compared to the
traditional use of processing units.

Chapter 7. Paper B 67

Key Words: On-board data processing, Heterogeneous computing, En-
ergy efficiency, GPU accelerated on-board computer

Nomenclature
C : worst case execution time (WCET), sec
T : period of task, sec
D : deadline of task, sec
R : response time (RT), sec
t : time instance, sec
E : consumed energy, Joule
P : consumed power, Watt

7.1 Introduction

In the space community, technological advances make it possible to work on
a new challenge for on-orbit activities [1] including in-orbit servicing and in-
situ experiments. On-board data processing is one of the prior on-orbit activ-
ities that improves the performance capability of in-orbit space systems such
as deep-space exploration, earth and atmospheric observation satellites, and
CubeSat constellations. We consider that the advanced on-board data pro-
cessing solves the current communication limitation which is low-speed con-
nections between satellites and ground stations with limited access time inter-
vals. Furthermore, there exist Size, Weight, and Power (SWaP) and radiation
limitations for space systems as well as on-board data processing. Due to
these limitations, the traditional and small scale space systems employ sim-
ple processing units such as micro-controllers or a single-core processor even
though the systems end up with limited on-board processing capabilities in or-
bit. The rapid development of technology makes advanced on-board data pro-
cessing possible for small scale space systems using heterogeneous processing
units that meet the requirements of size and weight limitations. Moreover,
there exist many radiation hardened and/or tolerant processing units including
Field Programmable Gate Arrays (FPGA), Digital Signal Processor (DSP) and
Graphics Processing Unit (GPU) [2]. However, these processing units con-
sume more energy [3]. In addition, the use of GPUs in the context of space
is not well studied yet, due to the prior concern that GPUs are not suitable for
the radiation-hardened environments. Therefore, in this paper, we consider a
trade-off between computing power and energy consumption focusing on the
entire task set with different use scenarios in GPU accelerated systems.

68 7.1. Introduction

The interest of using heterogeneous computing in real-time and low-end
embedded systems is increasing along with advanced on-board processing
such as machine learning and computer vision algorithms. However, in real-
time and low-end embedded systems, heterogeneous processing units are less-
studied compared to single- and multi-core processing units, although, hetero-
geneous computing is well-known in High-Performance Computing (HPC),
especially in supercomputers [4, 5]. The main reasons that hinder the us-
age of heterogeneous processing units in embedded systems are difficulties
of parallel programming and complexity of heterogeneous systems. In order
to address these problems, some industry vendors (AMD, ARM, Imagination,
MediaTek, Qualcomm, and Samsung) established HSAFoundation [6] which
has proposed a new standard, the Heterogeneous System Architecture (HSA),
for the advancement of heterogeneous computing. In this paper, we conduct
experimental observations of HSA compliant GPU accelerated on-board pro-
cessing platforms using heterogeneous computing methods introduced in prior
works [5, 7]. These platforms are commercialized by Unibap AB1 with flight
heritage and selected by NASA for high-performance on-board data process-
ing for the “HyTI” thermal hyperspectral mission [8].

7.1.1 Contributions

The overall goal of our research is to develop a real-time system which could
provide more computing potential to its tasks under energy limited conditions.
This work is part of understanding suitable mapping from heterogeneous pro-
cessors to tasks under limited energy budget. Prior works [7, 5, 9] report that
the balanced use of heterogeneous processors improves the schedulability of
the task sets in real-time systems when tasks are allowed to choose to run
on different processors in different instances. Hence, our contribution in this
paper is to conduct observations of energy consumption in GPU accelerated
real-time systems while using the mapping method for the balanced use of
heterogeneous processors. These observations provide us the fundamental un-
derstanding to perform the dynamic allocation of tasks to the heterogeneous
processors under limited energy budget.

7.1.2 Organization

In the rest of this paper, we provide needed related work in Section 7.2. Sec-
tion 7.3 presents detailed explanations about real-time systems, heterogeneous
computing as well as advanced applications in satellite. A description of our

1https://unibap.com/

Chapter 7. Paper B 69

system model is discussed in Section 7.4. Section 7.5 reports experimental
evaluation. Lastly, we conclude in Section 7.6.

7.2 Related work

In high performance computing, the research of heterogeneous processors and
heterogeneous computing is very active [4]. Especially, in supercomputers,
the impact of GPU is indispensable. However, the balanced use of GPU and
Central Processing Unit (CPU) is significant, since not all the applications
are suitable for parallelism [5]. The nature of Open Computing Language
(OpenCL) [10, 5] makes heterogeneous computing easier as it is possible to
prepare the different kernels on the different devices. Furthermore, heteroge-
neous computing is considered as part of distributed computing in sense of
distributing the data/kernels to the distributed computing resources when ap-
plications use data-parallelism. However, satellites as being low-end embed-
ded system applications need to perform under limited budgets of the different
resources (location, SWaP); therefore, considering the distributed computing
resources is challenging in the satellite. Moreover, the research of heteroge-
neous computing in real-time embedded systems is less studied compared to
high performance computing.

There exist several approaches to utilize GPU in real-time systems. Shin-
pei et al. introduced TimeGraph[11], Responsive GPGPU Execution Model
(RGEM)[12] and Gdev[13] along with zero-copy Input/Output (I/O) process-
ing for low-latency GPU computing[14]. Furthermore, the works of Elliott et
al. [15, 16] and Kim et al. [17, 18] consider worst-case timing behavior in
GPU accelerated real-time systems. Most of these works consider compensat-
ing the limitation of early existing GPU hardware and device drivers such as a
zero-copy technique for accelerators’ memory and splitting tasks into smaller
chunks for allowing preemption. However, these limitations are considered to
be solved by new technologies such as unified memory, zero-copy and pre-
emption support in Compute Unified Device Architecture (CUDA)[19] and
Heterogeneous System Architecture (HSA)[20, 3, 21].

There are several works that have focused on modeling sequential and par-
allel tasks such as fork-join[22, 23] and Directed Acyclic Graph (DAG)[24,
25]. Recently, Baruah[26] introduced if -then-else concept using conditional
DAG task modeling, which is useful for the heterogeneous computing. The
topology of this model is considered in this study.

In order to maintain a sustainable system in space, energy efficiency is the
crucial factor that should be considered. There are many techniques used to
improve energy efficiency[4] such as workload partitioning based techniques

70 7.3. Background

[27], Dynamic Voltage and Frequency Scaling (DVFS) based techniques [28],
and resource scaling based techniques. The combination of these techniques
has also considered to save energy efficiency [29]. Our experiments in this
paper focus more on the energy consumption of the entire system compared to
specific tasks, since the power budget for the entire system is most important
in the low-end embedded systems.

Employing heterogeneous processors in On-Board Computer (OBC) of a
satellite is common when the scale of the satellite size is larger. For example,
FPGA accelerated on-board computers are well known in satellites, as FPGAs
are robust in the radiation-hardened environments. Since FPGAs are good for
image and video processing, they are considered for on-board processing in an
advanced imaging system [30], Digital Video Broadcasting - Satellite - Second
Generation (DVB-S2) transport stream [31] and real-time cloud detection [32].
On the other hand, the use of GPUs in the context of space was not appreciated,
due to the prior concern of GPUs for the radiation-hardened environments.
Recently, GPUs are being considered more and more in the on-board computer
is increasing [33, 2]. In this paper, we conduct experimental observations of
utilizing GPU in the context of space.

7.3 Background

The advanced on-board data processing should be predictable in order to make
a decision in orbit, while it is considered as a way to solve the limitation of
communication between the satellite and the ground station. To consider a pre-
dictable system, we introduce the background knowledge of real-time systems
in this section. Then, we present how the heterogeneous computing techniques
are implemented in the current state of the art environments. Furthermore, we
discuss the use of advanced applications in satellite in this section.

7.3.1 Real-time system

A real-time system is a system that reacts to external events. The system ex-
ecutes a function based on the external events and returns a response within a
finite and required time. Therefore, not only the accuracy of the result, but also
the timeliness is a crucial factor for the accuracy of the system.

The real-time system can be divided into a hard, firm and soft [34] real-
time system from perspective of the timing constraints (see Figure 7.1). The
hard real-time system must pass all specified timing constraints. If the system
misses a constraint (e.g., a deadline) once, it results in failure leading to a

Chapter 7. Paper B 71

fatality and/or big financial or environmental damage. Therefore, hard real-
time systems are often considered to be safety critical. In a soft real-time
system, one or more deadline misses may be tolerated at the cost of lower
quality of service. A firm real-time system is between hard and soft real-time
systems.

Figure 7.1: A real-time system requirements.2

7.3.2 Heterogeneous computing

In regards to parallel computation, technology developments that have been
pursued actively cover many environments such as operating systems, pro-
gramming languages/libraries, heterogeneous processing units and so on. Here
we look through four programming languages which are pushing the hetero-
geneous computation research a lot.

Open Multi-Processing (OpenMP) [35], a specification implementing Ap-
plication Programming Interface (API), is a well-known candidate when it
comes to parallel computation and consists of compilers directives, runtime
library routines, tool support and environment variables used in Fortran and
C/C++ programs. OpenMP allows a program to run its parallel part regardless
of whether it is on a host device or target devices. Regardless of how an ex-
ecutable is assigned to the processors, the host device is set as a default/spare
processor and is possible to run the executable implicitly when the assigned
target device is not able to run it. In other words, a parallel part of programs
has a heterogeneous variety of the execution contexts on processors.

2http://www.artist-embedded.org/docs/Events/2008/RT-Kernels/SLIDES/s1-Intro.pdf

72 7.3. Background

OpenCL is an open and royalty-free standard for parallel programming
in heterogeneous systems including smartphones, personal computers, servers
and embedded systems. In OpenCL[36], computing systems are considered
as a collection of a number of computing devices which consist of a host pro-
cessor (host device in OpenMP) and accelerators (target devices in OpenMP).
By simply using clCreateContextFromType function together with conditional
statements like if, programmers can develop a heterogeneous nature of execu-
tions explicitly.

CUDA is a (Nvidia’s GPU centered) parallel computing platform and a
heterogeneous programming model. CUDA consists of a host and devices
which stand for CPU and Nvidia’s GPUs, respectively. In CUDA [37, 38],
three qualifiers/space-specifiers (global , device , and host) are pre-
pared to run code regardless of it is on host or devices. The space-specifiers
allow programmers to write executions explicitly with a heterogeneous nature.

In order to gain computational performance using GPU in systems, Mi-
crosoft implemented a native programming model and open specification called
”C++ Accelerated Massive Parallelism (C++ AMP)” which extends to pro-
gramming language C++ and its runtime library [39]. Moreover, C++ AMP is
supported by HSA using its intermediate language Heterogeneous System Ar-
chitecture Intermediate Language (HSAIL). HSA allows virtual shared mem-
ory between different devices such as host (CPU) and target (e.g. GPU, DSP).
Similar to OpenMP, C++ AMP runs an executable implicitly on a host device
when it is assigned to target device which is not able to run the executable at
the same time.

7.3.3 Advanced applications in satellite

Satellite image analysis presents a fertile ground for applying cutting edge
computer vision algorithms. In contrast to other fields of application of com-
puter vision, such as Advanced Driver Assistance Systems (ADAS), satellite
images are quasi-static, in the time-scale defined by the image acquisition fre-
quency: the satellite does not move very fast (if at all) in relation to the imaged
landscape, weather conditions such as cloud formations do not change rapidly,
and neither do the lighting conditions. Nonetheless, for a variety of applica-
tions, we still need to be able to compensate for all these factors, and deduce
a normalized image where further inference can be performed. As it is com-
mon in the computer vision/machine learning space, it is beneficial to know in
advance what questions one wishes to answer. Possible interesting questions
include: is a forest on fire, and if yes, how is it evolving over time? Or, is there
a hurricane system developing? Or, how fast is ice melting in Antarctica? Or,

Chapter 7. Paper B 73

how fast is traffic flowing in highway I-90?
Cloud identification is best viewed as deducing a cloud density distribution

over the image to accommodate for the varying degree of apparent cloud thick-
ness. In this scheme, a “cloudness” value of 1 would be interpreted as perfect
confidence of complete obstruction of the ground by clouds (per pixel). Simi-
larly, a “cloudness” value of 0 would be interpreted as perfect confidence of no
obstruction. There are multiple ways to define such a model, while the problem
is of some complexity, in the following sense: clouds over snow appear signif-
icantly different compared to clouds over an ocean, or over a city during the
day, or during the night. One can condition a cloudness model over the various
relevant backgrounds, and train either a generative model that will generate
clouds and apply them on various backgrounds, or directly train a discrimina-
tive model that will deduce the cloudness distribution. There is merit in both
approaches, however, in keeping with the current state of the art, it is benefi-
cial to train a deep network, to automatically discover the salient feature maps.
There are two approaches in training such a network: one approach would
stream the data to a ground data-center, which would combine imagery from
multiple satellites. Such an approach would be the most fruitful, as it could be
enhanced by user-assisted classification. There are multiple machine learning
frameworks that can accomplish this, such as Tensorflow3, Torch4, Caffe5, and
Microsoft Cognitive Toolkit (CNTK)6. Of course, one could also employ unsu-
pervised learning approaches, such as a (deep) auto-encoder scheme. Having
a trained model, one can execute it on the satellite’s GPU, and produce a scene
classification. The forward problem consists of a cascade of convolution fil-
ters, activation functions, subsampling, and normalization. One would execute
a forward pass on multiple and possibly overlapping regions of interest, for
local scene classification. Such a problem is well suited for GPU acceleration.
If the training takes into account the various variability factors (terrain kinds,
atmospheric conditions, light conditions), the classification will also succeed
in classifying the scene according to these factors, for example deducing that
the scene represents a city at night with clouds.

Having performed a classification on the scene, one can then have a solid
ground in performing further analysis: for example, by knowing what features
in the scene are persistent, as opposed to transient noise (such as a cloud), one
can select robust keypoints (or robust regions of interest), for image registra-
tion (either based on keypoints, or based on functional minimization). Such

3https://www.tensorflow.org/
4http://torch.ch/
5https://caffe.berkeleyvision.org/
6https://github.com/Microsoft/CNTK

74 7.4. System Model

robust registration would be beneficial for creation of panoramas, or for en-
hancing image quality by combining multiple images of the same scene (super-
resolution). Conversely, one can apply tracking algorithms to the transient
features, for example following a cloud or a car, or set of cars, using correla-
tion tracking. Depending on image resolution, it may be beneficial to apply
pre-processing algorithms on the image, such as image sharpening (e.g. via
unsharp mask with local contrast enhancement, or anisotropic heat diffusion).

7.4 System Model

We consider a task model which is described by Fork-Join task model. As
shown in Fig. 7.2, the parallel segment (starts with a Fork and ends with a Join)
of tasks could be executed in two manners, parallel and sequential [9]. Parallel
execution could be performed on GPU, multi-core CPUs, or single CPU using
parallelization techniques such as Single Instruction, Multiple Data (SIMD),
multithreading, etc. Sequential execution is executed on CPU sequentially.

Figure 7.2: Execution manner of parallel segment of Fork-Join task model

In order to study a trade-off between computing power and energy con-
sumption, we consider a task set Γ, which consists of n independent periodic
tasks {τ1, .., τn} expressed with the introduced task model. Each task τi has
a period Ti, deadline Di, and worst case execution time (WCET) Ci. The re-
sponse time (RT) Ri of task τi is measured by experimental observations in
this paper.

We consider that the system consists of two different processing units such

Chapter 7. Paper B 75

as CPU and GPU. The system energy consumption can be calculated with
either Esystem = ECPU + EGPU + Eother or

Esystem =
∑

1≤t≤max(Ri),1≤i≤n

Psystem(t) ∗∆t

Here, Esystem is the system’s energy consumption. ECPU , EGPU , and Eother
are the energy consumptions of CPU, GPU, and other peripherals, respectively.
Psystem(t) is power consumption of the system at timing instance of t. ∆t is
unit value of time sample.

Algorithm 2 Algorithm of the 2D Anisotropic Diffusion.
* Initialise the variables; num iter, option, kappa and
lambda.
* Set an initial condition of Partial Differential Equation (PDE); diff im.
* Set step for all directions. 1 pixel for horizontal: d[x] and vertical: d[y],
sqrt(2) pixels for diagonal: d[d].
* Define 2D convolution masks - finite differences.
* Main calculation of Anisotropic diffusion.Looping given number of itera-
tions
for num iter do

* Calculate finite differences nabla[] for all directions N, S, W, E, NE,
SE, SW and NW, where N, S, W, E describe north, south, west, and east,
respectively.
* Calculate coefficients for all directions:
– Choose a diffusion function from 2 original functions.
– if option == 1
Calculate c[] = exp(−(nabla[]/kappa)2) for all 8 directions
– if option == 2
Calculate c[] = 1/(1 + (nabla[]/kappa)2) for all 8 directions
* A solution for Discrete PDE
– diff im = diff im+ lambda ∗ sum{c[] ∗ nabla[]/(d[]2)}

end for

7.5 Experimental design

In this section, we introduce algorithms and discuss the evaluation of the en-
ergy consumption and computing potential of the task set which consists of
these algorithms.

76 7.5. Experimental design

7.5.1 Algorithms

In this paper, we consider two on-board algorithms, namely Anisotropic Dif-
fusion [40] and Livermore Unstructured Lagrangian Explicit Shock Hydrody-
namics (LULESH) [41]. The different combinations of the algorithms are used
in the different purposes of the experiments.

Anisotropic Diffusion

We perform Anisotropic Diffusion algorithm to evaluate the on-board com-
puter processing since this algorithm is used to sharpen images. As we men-
tioned in Section 7.3.3, sharpening the satellite images and detecting objects
such as clouds and forest fires from the satellite images are significantly useful.
The pseudo code of the Anisotropic Diffusion algorithm is shown in Alg. 2,
as we have ported the 2D Anisotropic Diffusion code from MATLAB to C++
AMP, OpenCL and OpenMP in order to execute the application on HSA com-
pliant platform. In this study, we only deal with the code, since the quality of
Anisotropic Diffusion is well-known from the previous studies [40, 42, 43].

Table 7.1: Detailed information about the test machines.
Test

Machine Type Product Specification Clock
Cores /

compute
units

Energy
consumption

(Watt)

A10 CPU A10-8700P APU,
Excavator 1800MHz 4 12-35

iGPU Radeon™ R6, GCN Gen3 800MHz 6

R&R CPU Ryzen™ 7 1800x, Zen 4GHz 8 95

dGPU Radeon™ R9 nano, GCN
Gen3

1GHz 64 175

LULESH

LULESH is created as a result of the project, The Shock Hydrodynamics Chal-
lenge Problem, which is originally defined and implemented by Lawrence Liv-
ermore National Laboratory (LLNL) as one of five challenge problems in De-
fense Advanced Research Projects Agency (DARPA)’s Ubiquitous High Per-
formance Computing (UHPC) program. LULESH is a highly simplified shock
hydro application in order to solve only a simple Sedov blast problems [44].
Modeling hydrodynamics is significant in computer simulations as it is used
to understand the motion of materials relative with each other under the force.
Furthermore, these kind of simulations are preferable to use the parallel com-
puting. In order to achieve parallelism, LLNL provides an open-source version

Chapter 7. Paper B 77

of LULESH78, which is ported to the different environments such as MPI,
OpenMP, OpenCL and C++AMP.

7.5.2 Testbeds

Test platforms Two test machines, A10 and R&R, are used for this experi-
ment. A10 is Acer’s laptop that is maintained with AMD A10-8700P Accel-
erated Processing Unit (APU), which consists of 4 core CPUs and 6 compute
unit GPUs in a chip. APU is AMD’s product name of a new type of process-
ing unit, which integrates CPU and GPU in a die. APU is normally termed
as ”integrated GPU”. R&R is a custom made desktop computer and consists
of AMD Ryzen™ 7 1800x8 core CPUs and AMD Radeon™ R9 nano GPU.
More details are shown in Table 7.1. As the test machines are general-purpose
computers, the range of the energy consumption differs from the embedded
systems, especially R&R. Both A10 and R&R are used for experimental ob-
servations 1 and 2, while only A10 is used for observation 3.

Test application 1 This application performs Anisotropic Diffusion algo-
rithm in order to measure a computation time on the following three combi-
nation of the accelerators; HSACalc, CPUCalc, and OMPCalc. HSACalc is
about the computation of the algorithm using GPU with the HSA extension.
CPUCalc and OMPCalc are the computation of the algorithm on single-core
CPU and multicore CPUs, respectively. OpenMP’s loop parallel technique is
used in OMPCalc for multicores. The aim of this test application is to con-
firm the computation time improvements of GPU/HSA instead of a single core
CPU.

Test application 2 There are three applications which run Anisotropic Dif-
fusion algorithm in three different programming manners independently. The
intention of this experiment is to monitor the energy consumptions of the dif-
ferent compute units in different programming manners.

Test application 3 This application performs two algorithms (Anisotropic
Diffusion and LULESH) concurrently with different sets. The intention of this
experiment is to monitor how the energy consumption of the system changes
with respect to the different settings of tasks.

7.5.3 Experimental observations

Observation 1: Compiler vs Computing potential. First, we consider the re-
lation between computing potential with respect to the different compiler ver-

7https://github.com/LLNL/LULESH
8https://github.com/AMDComputeLibraries/ComputeApps

78 7.5. Experimental design

sions. Test application 1 is compiled by three different versions (GCC5.4.0,
GCC6.2.19 and GCC 7.1.010) of GCC compiler toegther with 2 different op-
tions, ”non-optimised” and ”optimised”. ”Non-optimised” is compiled with
”-O0” flag, and ”optimised” is compiled with ”-O3”11 flag. Each measure-
ment is performed 100 times continuously.

Observation 2: Energy consumption vs Programming manner. Then,
we conduct an experiment about energy consumption of test application 2 im-
plemented in different programming manners (using HSA for GPU, normal se-
quential execution on CPU, using OpenMP for parallelization on CPU). While
the experiments of ”optimised” and ”non-optimised” versions of the applica-
tions are conducted in ”Observation 1”, we consider the worst case scenario in
this observation. Hence, we use only non-optimised versions of the applica-
tions in this observation.

Figure 7.3: Execution manners of a stand-alone parallel segment in terms of
considering worst case execution time (WCET). Blue bars express sequential
segments of tasks that should be executed sequentially only. Red bars are par-
allel segments of tasks. Parallel segments could be executed either in sequen-
tial or in parallel manner. The length of each task/bar describes its worst case
execution time. The cases (A) and (B) are the execution manners of parallel
segment of Task 1 (τ1) in sequential and parallel, respectively. Similarly, (C)
and (D) represent the execution manners for Task 2 (τ2).

9Untrusted PPA:ppa:jonathonf/gcc-6.2
10Untrusted PPA: ppa:jonathonf/gcc-7.1
11Combining the ”-O3” flag with the following machine architecture specific flags is possible;

”-march=bdver4” and ”-march=znver1”. However, we consider only ”-O3” flag in this paper.

Chapter 7. Paper B 79

Figure 7.4: Execution manners of concurrent parallel segments in terms of
considering response time (RT). The combinations of the tasks, Task 1 (τ1)
and Task 2 (τ2), described in Fig. 3 are considered. White space bordered with
dot-lines expresses no execution of tasks, e.g., τ2 in cases (F) and (H). Three
dots means that the pointed parallel segment has been shortened compared to
its actual execution. In cases (E) and (F), the parallel segment of τ1 is executed
either in sequentially or parallel, while the parallel segment of τ2 is executed in
parallel manner only. In case (G), Tasks τ1 and τ2 are executed on CPU1 and
CPU2, respectively. Both τ1 and τ2 are allocated to CPU1 only in case (H).

Observation 3: Energy consumption vs Execution manner. Finally,
we consider experiments in which the tasks in the task set are allocated to the
different processing units. In order to generate the worst case scenario, we con-
sider non-optimised codes on A10 machine in this observation. By conducting
these experiments, we can monitor how the balanced use of the processing
units affects the energy consumption of the systems. The allocations of the
tasks are illustrated in Figs 7.3 and 7.4. We express sequential and parallel seg-
ments with blue and red bars, respectively. Text inside the bars describe where
this segment should be allocated. For example, in Fig 7.3-(A), the parallel seg-
ment of task τ1 is allocated to CPU1. On the other hand, in Fig7.3-(B), we

80 7.5. Experimental design

can see that this parallel segment is allocated to GPU. Stand alone executions
of the tasks are illustrated in Fig. 7.3. Allocations of concurrent executions
of tasks τ1 and τ2 are shown in Fig. 7.4. Here, we consider that τ1 and τ2
implement LULESH and Anisotropic Diffusion algorithms, respectively.

7.5.4 Evaluation and Results

Observation 1: The results of running the test application 1 are shown in
Tables 7.2, 7.3, 7.4, 7.5, 7.6 and 7.7. In this observation, we consider the com-
binations of two machines, A10 and R&R, and three accelerators, HSACalc,
CPUCalc, and OMPCalc, named as A10 HSACalc, A10 CPUCalc, A10 OMP-
Calc, R&R HSACalc, R&R CPUCalc, and R&R OMPCalc. In non-optimised
experiments, we can see that the computation times are in the following order:
R&R OMPCalc, A10 OMPCalc, R&R CPUCalc and A10 CPUCalc, from the
smallest to the largest respectively. This result is obvious since we have used
Ryzen™ 7 1800x CPU which is one of the best CPUs in the market now. How-
ever, when we turn a spotlight to both A10 and R&R HSACalc, HSACalc
shows between 122 to 152 times faster than the calculation which uses 1 core
CPU with non-optimised version. This ratio improves in the case of 1 core
CPU with optimised version, however, HSACalc shows still between 11 to
22 times faster computation time than 1 core CPU. Moreover, A10 HSACalc
shows the best computation time among others, even better or similar R&R
HSACalc. As we explained in Table 7.1, Ryzen™ CPU and discrete R9 nano
GPU are connected through PCIe 3.0 in R&R machine. In A10-8700P APU,
CPU and GPU are located in the same silicon with coherent fabric connec-
tion. Hence, A10-8700P APU is gaining benefits of HSA more than R&R for
this particular workload. In general, a high end discrete GPU has significantly
more compute cores than an integrated GPU. While data needs to be physically
transferred to the discrete GPU over a typically slower bus, once the transfer
is performed (optimally employing the multiple concurrent asynchronous Di-
rect Memory Access (DMA) engines typically available), the data is available
on the discrete GPU over a very fast memory (e.g. DDR5). Therefore the
relative performance of a discrete GPU over an integrated GPU is workload
dependent. The more the data that need to be densely processed, the higher the
desired frame-rate, and the more processing steps they will undergo, the more
likely it is that a discrete GPU will outperform an integrated GPU. However,
as argued in this paper, they will both typically significantly outperform even
a very powerful CPU.

As we mentioned in the previous section, we have used ”-O3” flag for the
compiler level optimisations. Moreover, there is a machine architecture spe-

Chapter 7. Paper B 81

cific optimisation flag ”-march=znver1” for Ryzen™. However, this flag is not
available to optimise with GCC 5.4 compiler. Therefore, we have focused only
on ”-O3” flag in this paper. We confirm 6.5-12.7 times faster improvements for
the optimised versions of both A10 and R&R CPUCalc compared to the non-
optimised versions. Moreover, about similar times faster improvements have
confirmed for the optimised versions of both A10 and R&R OMPCalcs com-
pared to the non-optimised versions. In addition, the optimised R&R CPUCalc
calculates the similar computation time as A10 OMPCalc.

Table 7.2: Anisotropic Diffusion, gcc version 5.4.0 20160609, non optimised
Computation time of Anisotropic Diffusion

A10
HSACalc

A10
CPUCalc

A10
OMPCalc

R&R
HSACalc

R&R
CPUCalc

R&R
OMPCalc

max
(msec)

2.692 128.843 50.631 0.913 94.292 36.225

min
(msec)

0.487 112.960 43.897 0.556 89.341 27.726

avg
(msec)

0.889 116.663 47.223 0.679 91.978 30.372

ratio12 131.265 1 2.470 135.468 1 3.028

Table 7.3: Anisotropic Diffusion, gcc version 5.4.0 20160609, optimised
Computation time of Anisotropic Diffusion

A10
HSACalc

A10
CPUCalc

A10
OMPCalc

R&R
HSACalc

R&R
CPUCalc

R&R
OMPCalc

max
(msec)

2.580 22.579 14.874 0.914 11.983 4.869

min
(msec)

0.516 16.206 6.674 0.567 7.764 2.085

avg
(msec)

0.923 17.819 8.752 0.658 8.247 2.933

ratio 19.307 1 2.036 12.532 1 2.812

Observation 2: The energy consumption results of the test application 2
for the different environments, HSACalc, CPUCalc and OMPCalc, with op-
timised and non-optimised are shown in Figure 7.5. The preparation, initial-
izing variables and loading images, part of the entire calculation is marked
with orange colour, and the execution which is the essential calculation of
the algorithm is marked with blue colour. Here, we consider the total energy

12The ratio of the average values to the average value of CPUCalc. For example,
avg(A10CPUCalc)
avg(A10HSACalc)

or avg(R&RCPUCalc)
avg(R&ROMPCalc)

.

82 7.5. Experimental design

Table 7.4: Anisotropic Diffusion, gcc version 6.2.1 20161215, non optimised
Computation time of Anisotropic Diffusion

A10
HSACalc

A10
CPUCalc

A10
OMPCalc

R&R
HSACalc

R&R
CPUCalc

R&R
OMPCalc

max
(msec)

2.796 123.160 48.415 0.903 94.328 35.914

min
(msec)

0.485 112.515 42.630 0.545 88.889 24.633

avg
(msec)

0.963 117.759 45.092 0.608 91.380 26.593

ratio 122.302 1 2.612 150.408 1 3.436

Table 7.5: Anisotropic Diffusion, gcc version 6.2.1 20161215, optimised
Computation time of Anisotropic Diffusion

A10
HSACalc

A10
CPUCalc

A10
OMPCalc

R&R
HSACalc

R&R
CPUCalc

R&R
OMPCalc

max
(msec)

2.703 22.354 13.924 0.837 11.694 5.696

min
(msec)

0.485 15.885 6.572 0.552 7.963 2.199

avg
(msec)

0.770 17.524 8.233 0.640 8.318 2.560

ratio 22.762 1 2.129 12.993 1 3.249

Table 7.6: Anisotropic Diffusion, gcc version 7.1.0, non optimised
Computation time of Anisotropic Diffusion

A10
HSACalc

A10
CPUCalc

A10
OMPCalc

R&R
HSACalc

R&R
CPUCalc

R&R
OMPCalc

max
(msec)

2.504 124.866 48.461 1.135 90.652 37.356

min
(msec)

0.508 113.488 41.570 0.535 85.848 24.244

avg
(msec)

0.782 119.108 45.348 0.684 88.440 26.210

ratio 152.290 1 2.627 129.330 1 3.374

consumption, Esystem, as a summation of the energy consumption of the exe-
cution, Eexecution, and preparation, Epreparation, i.e., Esystem = Eexecution +
Epreparation. In case of HSACalc, the total energy consumption, Esystem,
of the system is 24.08 Joules and 17.46 Joules for non-optimised and opti-
mised versions, respectively. In other words, the energy consumption of the
execution (Eexecution) for HSACalc is 2.24 and 3 Joules, and the energy con-
sumption of the preparation (Epreparation) for HSACalc is 21.84 and 14.46

Chapter 7. Paper B 83

Table 7.7: Anisotropic Diffusion, gcc version 7.1.0, optimised
Computation time of Anisotropic Diffusion

A10
HSACalc

A10
CPUCalc

A10
OMPCalc

R&R
HSACalc

R&R
CPUCalc

R&R
OMPCalc

max
(msec)

2.673 18.415 12.675 0.899 10.425 4.189

min
(msec)

0.489 14.304 5.597 0.538 6.459 1.873

avg
(msec)

0.753 15.668 7.158 0.620 6.923 2.265

ratio 20.800 1 2.189 11.158 1 3.056

Figure 7.5: Comparison of energy consumption between different program-
ming manners with optimised and non-optimised codes.

84 7.5. Experimental design

Joules. The energy consumption of the preparation part of CPUCalc and OM-
PCalc decrease by half of HSACalc to approximately 13 and 7.5 Joules for
non-optimised and optimised versions, respectively. From Figure 7.5, we can
see that the energy consumption of the experiment part in OMPCalc (123.38
Joules for non-optimised and 25.08 Joules for optimised) is around half of
CPUCalc (296.79 Joules for non-optimised and 45.85 Joules for optimised).
Hence, we see that the execution part (Eexecution) of HSACalc uses between
15 (= 45.85/3) to 132(= 296.79/2.24) times less energy consumption com-
pared to the execution part of CPUCalc. Similar to the comparison of energy
consumption regarding the execution parts of HSACalc and OMPCalc is be-
tween 8 to 55 times difference, which means HSACalc consumes that much
less energy. In other words, adapting an HSA complaint GPU uses between 8
to 132 times less energy compared to the CPU cores.

Table 7.8: System’s energy consumption (stand alone execution)
(A) (B) (C) (D)

Measured WCET of τ1 (s) 15.21 9.1
Measured WCET of τ2 (s) 11.94 6.11

Energy consumption of the system (Joules) 136.81 88.82 107.14 60.81

Table 7.9: System’s energy consumption (concurrent executions)
(E) (F) (G) (H)

Measured RT of τ1 (s) 15.63 9.41 15.93 15.78
Measured RT of τ2 (s) 6.36 11.62 12.64 32.1

Energy consumption of the system (Joules) 150.32 136.29 152.47 382.41

Observation 3: The results of different allocations of tasks τ1 and τ2 are
illustrated in Tables 7.8 and 7.9. The result in Table 8 corresponds to the ex-
ecution manner described in Figure 3, while the result in Table 9 relates to
the execution manners in Figure 4. Since the stand alone execution manner
of the tasks are explained in Figure 3, the results in (C) and (D) for tasks τ1
and in (A) and (B) for tasks τ2 are not available. As described in Figure 4, we
consider an execution manner of concurrent execution of two tasks, hence, the
response time (RT) will be the key in these measurements. In case of (F), we
can see the system consumes less energy (at least 10% and up to 65%) com-
pared to other allocations, although the RT of τ2 gets almost two times longer
(R2 = 11.62sec) than the stand alone version, i.e, its worst case execution
time (WCET). (C2 = 6.11sec). The RT of τ2 in (F) is shorter than the stand
alone version (C2 = 11.94sec) of τ2 when the parallel segment is allocated to
CPU sequentially. This means that the proper use of GPU shows better results

Chapter 7. Paper B 85

of both computing potential and energy efficiency.
The energy consumptions of the systems in the cases of (E)(Esystem =

150.32Joules) and (G)(Esystem = 152.47Joules) are close to each other.
The parallel segment of task τ1 is allocated to CPU in both cases. The differ-
ence here is that the parallel segment of task τ2 is allocated to GPU in parallel
and CPU sequentially. This means that we can choose the allocation of (E) in
case GPU is idle. Otherwise, it is good to choose the allocation of (G) when
GPU is busy with other tasks.

The allocation (H) shows longest RTs (R1 = 15.78sec for τ1 and R2 =
32.1sec for τ2) and consumes most energy (Esystem = 382.41Joules). How-
ever, we have to note that the system did not use the GPU in this case at all.
Hence, we could say that the system has more space for GPU computation.

7.6 Conclusion

In this paper, we have focused on the energy consumption and computing po-
tential of GPU accelerated in-orbit space systems. Further, both programming
manner (how to compile a task) and executing manner (how to allocate a task)
are considered in the experiments. From the experimental study, we have con-
firmed that the execution part of HSA compliant GPU computes the calcula-
tion between 10 to 140 times faster and consumes between 8 to 130 times less
energy, compared to the execution part of CPU-based (including single- and
multi-core processors) calculations. The use of GPU is supported even when
we consider the entire system as allocation of the workload to GPU is most en-
ergy efficient compared to the other allocations. Therefore, we conclude that
GPU can be a highly potential candidate in the on-board data processing of the
small satellites.

For future work, we would like to continue developing a system with real-
time GPU scheduler, which can dynamically allocate the tasks under limited
power budget.

Acknowledgments

The work presented in this paper is supported by the Swedish Knowledge
Foundation (KKS) through the research profile DPAC. We would like to ex-
press our sincere gratitude to Dr. Moris Behnam for sharing his great knowl-
edge in real-time embedded systems. Further, this work is supported in part by
a corporate scholarship of the TESO Corporation for Nandinbaatar Tsog.

86 7.6. Conclusion

The authors would also like to express our sincere gratitude to Dr. Harris
Gasparakis, a computer vision expert at AMD, for his great knowledge in com-
puter vision and HSA related areas. Dr. Gasparakis has helped us a great deal
by providing an extensive amount of support whenever necessary, especially,
sections 7.3 and 7.5 would not be improved without his advice and valuable
discussions.

AMD, Ryzen, Radeon and combinations thereof are trademarks of Ad-
vanced Micro Devices, Inc. Other product names used in this publication are
for identification purposes only and may be trademarks of their respective com-
panies.

Bibliography 87

Bibliography

[1] T. Master, “Consortium for Execution of Rendezvous
and Servicing Operations (CONFERS).” [Online]. Avail-
able: https://www.darpa.mil/program/consortium-for-execution-of-
rendezvous-and-servicing-operations

[2] F. Bruhn, K. Brunberg, J. Hines, L. Asplund, and M. Norgren, “Intro-
ducing radiation tolerant heterogeneous computers for small satellites,”
in 2015 IEEE Aerospace Conference. IEEE, 2015, pp. 1–10.

[3] N. Tsog, M. Behnam, M. Sjödin, and F. Bruhn, “Intelligent data process-
ing using in-orbit advanced algorithms on heterogeneous system archi-
tecture,” in 2018 IEEE Aerospace Conference, March 2018, pp. 1–8.

[4] S. Mittal and J. S. Vetter, “A survey of cpu-gpu heterogeneous computing
techniques,” ACM Computing Surveys (CSUR), vol. 47, no. 4, pp. 1–35,
2015.

[5] Y. Wen, Z. Wang, and M. F. O’boyle, “Smart multi-task scheduling for
opencl programs on cpu/gpu heterogeneous platforms,” in 2014 21st In-
ternational conference on high performance computing (HiPC). IEEE,
2014, pp. 1–10.

[6] HSAFoundation, “HSA Foundation - ARM, AMD, Imagina-
tion, MediaTek, Qualcomm, Samsung, TI.” [Online]. Available:
http://www.hsafoundation.com

[7] N. Tsog, M. Sjödin, and F. Bruhn, “Using heterogeneous computing on
gpu accelerated systems to advance on-board data processing,” in Euro-
pean Workshop on On-Board Data Processing 2019 OBDP2019, 25 Feb
2019, Amsterdam, Netherlands, 2019.

[8] R. Wright, T. George, and ..., “Hyperspectral Thermal Imager (HyTI).”
[Online]. Available: https://esto.nasa.gov/files/solicitations/INVEST -
17/ROSES2017 InVEST
A49 awards.html#george

[9] N. Tsog, M. Becker, F. Bruhn, M. Behnam, and M. Sjödin, “Static alloca-
tion of parallel tasks to improve schedulability in cpu-gpu heterogeneous
real-time systems,” in IECON 2019-45th Annual Conference of the IEEE
Industrial Electronics Society, vol. 1. IEEE, 2019, pp. 4516–4522.

88 Bibliography

[10] P. Czarnul and P. Rościszewski, “Optimization of execution time under
power consumption constraints in a heterogeneous parallel system with
gpus and cpus,” in International Conference on Distributed Computing
and Networking. Springer, 2014, pp. 66–80.

[11] S. Kato, K. Lakshmanan, R. Rajkumar, and Y. Ishikawa, “Timegraph:
Gpu scheduling for real-time multi-tasking environments,” in 2011
USENIX Annual Technical Conference (USENIX ATC 11), 2011, pp. 17–
30.

[12] S. Kato, K. Lakshmanan, A. Kumar, M. Kelkar, Y. Ishikawa, and R. Ra-
jkumar, “Rgem: A responsive gpgpu execution model for runtime en-
gines,” in 2011 IEEE 32nd Real-Time Systems Symposium. IEEE, 2011,
pp. 57–66.

[13] S. Kato, M. McThrow, C. Maltzahn, and S. Brandt, “Gdev: First-class
gpu resource management in the operating system,” in 2012 USENIX
Annual Technical Conference (USENIX ATC 12), 2012, pp. 401–412.

[14] S. Kato, J. Aumiller, and S. Brandt, “Zero-copy i/o processing for low-
latency gpu computing,” in Proceedings of the ACM/IEEE 4th Interna-
tional Conference on Cyber-Physical Systems, 2013, pp. 170–178.

[15] G. A. Elliott, B. C. Ward, and J. H. Anderson, “Gpusync: A framework
for real-time gpu management,” in 2013 IEEE 34th Real-Time Systems
Symposium. IEEE, 2013, pp. 33–44.

[16] G. A. Elliott and J. H. Anderson, “Globally scheduled real-time multipro-
cessor systems with gpus,” Real-Time Systems, vol. 48, no. 1, pp. 34–74,
2012.

[17] H. Kim, P. Patel, S. Wang, and R. R. Rajkumar, “A server-based ap-
proach for predictable gpu access control,” in 2017 IEEE 23rd Interna-
tional Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA). IEEE, 2017, pp. 1–10.

[18] ——, “A server-based approach for predictable gpu access with improved
analysis,” Journal of Systems Architecture, vol. 88, pp. 97–109, 2018.

[19] M. Harris, “”Unified Memory for CUDA Beginners.” June 19, 2017.”
available: https://devblogs.nvidia.com/unified-memory-cuda-beginners/
[Oct 16, 2018].

Bibliography 89

[20] HSA Foundation, “”Heterogeneous System Architecture.”,” available:
http://www.hsafoundation.com/ [Oct 16, 2018].

[21] N. Tsog, M. Sjödin, and F. Bruhn, “Advancing on-board big data pro-
cessing using heterogeneous system architecture,” in ESA/CNES 4S Sym-
posium 4S 2018, 28 May 2018, Sorrento, Italy, 2018.

[22] C. Maia, M. Bertogna, L. Nogueira, and L. M. Pinho, “Response-time
analysis of synchronous parallel tasks in multiprocessor systems,” in Pro-
ceedings of the 22Nd International Conference on Real-Time Networks
and Systems, 2014, pp. 3–12.

[23] A. Saifullah, D. Ferry, J. Li, K. Agrawal, C. Lu, and C. D. Gill, “Par-
allel real-time scheduling of dags,” IEEE Transactions on Parallel and
Distributed Systems, vol. 25, no. 12, pp. 3242–3252, 2014.

[24] J. D. Ullman, “Np-complete scheduling problems,” Journal of Computer
and System sciences, vol. 10, no. 3, pp. 384–393, 1975.

[25] A. Melani, M. Bertogna, V. Bonifaci, A. Marchetti-Spaccamela, and
G. C. Buttazzo, “Response-time analysis of conditional dag tasks in mul-
tiprocessor systems,” in 2015 27th Euromicro Conference on Real-Time
Systems. IEEE, 2015, pp. 211–221.

[26] S. Baruah, “Resource-efficient execution of conditional parallel real-time
tasks,” in European Conference on Parallel Processing. Springer, 2018,
pp. 218–231.

[27] Q. Liu and W. Luk, “Heterogeneous systems for energy efficient scien-
tific computing,” in International Symposium on Applied Reconfigurable
Computing. Springer, 2012, pp. 64–75.

[28] H. Aydin, R. Melhem, D. Mossé, and P. Mejı́a-Alvarez, “Power-aware
scheduling for periodic real-time tasks,” IEEE Transactions on comput-
ers, vol. 53, no. 5, pp. 584–600, 2004.

[29] M. Rofouei, T. Stathopoulos, S. Ryffel, W. Kaiser, and M. Sarrafzadeh,
“Energy-aware high performance computing with graphic processing
units,” in Workshop on power aware computing and system, 2008.

[30] C. D. Norton, T. A. Werne, P. J. Pingree, and S. Geier, “An evaluation of
the xilinx virtex-4 fpga for on-board processing in an advanced imaging
system,” in 2009 IEEE Aerospace conference. IEEE, 2009, pp. 1–9.

90 Bibliography

[31] R. Varsha, R. Arora, T. Ram, and A. Patel, “Design and implementation
of dvb-s2 transport stream for onboard processing satellite,” in 2015 19th
International Symposium on VLSI Design and Test. IEEE, 2015, pp.
1–6.

[32] J. A. Williams, A. S. Dawood, and S. J. Visser, “Fpga-based cloud detec-
tion for real-time onboard remote sensing,” in 2002 IEEE International
Conference on Field-Programmable Technology, 2002.(FPT). Proceed-
ings. IEEE, 2002, pp. 110–116.

[33] R. Davidson and C. P. Bridges, “Adaptive multispectral gpu accelerated
architecture for earth observation satellites,” in 2016 IEEE International
Conference on Imaging Systems and Techniques (IST). IEEE, 2016, pp.
117–122.

[34] G. C. Buttazzo, Hard real-time computing systems: predictable schedul-
ing algorithms and applications. Springer Science & Business Media,
2011, vol. 24.

[35] A. OpenMP, “Openmp application programming interface version 4.5,”
OpenMP Architecture Review Board, 2015.

[36] K. O. W. Group et al., “The opencl specification, version: 1.2,
document revision: 19.(nov. 2012),” URL: https://www. khronos.
org/registry/OpenCL/specs/opencl-1.2. pdf, 2012.

[37] NVIDIA, “NVIDIA CUDA C Programming Guide, Ver-
sion 4.2, April 16, 2012.” [Online]. Available:
https://developer.download.nvidia.com/compute/DevZone/docs/html/C/
doc/CUDA C Programming Guide.pdf

[38] ——, “CUDA C PROGRAMMING GUIDE, Version PG-02829-
001 v9.2, Design Guide, August 2018.” [Online]. Available:
https://docs.nvidia.com/cuda/archive/9.2/pdf/CUDA C Programming
Guide.pdf

[39] Microsoft, “C++ AMP : Language and Programming
Model, Version 1.0, August 2012.” [Online]. Available:
https://download.microsoft.com/download/4/0/E/40EA02D8-23A7-
4BD2-AD3A-0BFFFB640F28/CppAMPLanguageAndProgramming
Model.pdf

Bibliography 91

[40] P. Perona and J. Malik, “Scale-space and edge detection using anisotropic
diffusion,” IEEE Transactions on pattern analysis and machine intelli-
gence, vol. 12, no. 7, pp. 629–639, 1990.

[41] L. L. N. Laboratory, “LULESH.” [Online]. Available:
https://computation.llnl.gov/projects/co-design/lulesh (accessed April
21, 2019)

[42] A. Schwarzkopf, T. Kalbe, C. Bajaj, A. Kuijper, and M. Goesele, “Volu-
metric nonlinear anisotropic diffusion on gpus,” in International Con-
ference on Scale Space and Variational Methods in Computer Vision.
Springer, 2011, pp. 62–73.

[43] D. Lopes, “A set of filters that perform 1D, 2D
and 3D conventional anisotropic diffusion, 2007.” [Online].
Available: http://se.mathworks.com/matlabcentral/fileexchange/14995-
anisotropic-diffusion–perona—malik- (accessed April 22, 2019)

[44] L. Sedov, “Similarity and dimensional methods in mechanics [in rus-
sian],” 1957.

92 Bibliography

Chapter 8

Paper C
Enabling Radiation Tolerant
Heterogeneous GPU-based
Onboard Data Processing in
Space

Fredrik C. Bruhn, Nandinbaatar Tsog, Fabian Kunkel, Oskar Flordal, Ian Troxel
In the CEAS Space Journal, CEAS 2020

93

Abstract

The last decade has seen a dramatic increase in small satellite missions for
commercial, public, and government intelligence applications. Given the rapid
commercialization of constellation-driven services in Earth Observation, situ-
ational domain awareness, communications including machine-to-machine in-
terface, exploration etc., small satellites represent an enabling technology for
a large growth market generating truly Big Data. Examples of modern sensors
that can generate very large amounts of data are optical sensing, hyperspectral,
Synthetic Aperture Radar (SAR), and Infrared imaging. Traditional handling
and downloading of Big Data from space requires a large onboard mass stor-
age and high bandwidth downlink with a trend towards optical links. Many
missions and applications can benefit significantly from onboard cloud com-
puting similarly to Earth-based cloud services. Hence, enabling space systems
to provide near real-time data and enable low latency distribution of critical
and time sensitive information to users. In addition, the downlink capabil-
ity can be more effectively utilized by applying more onboard processing to
reduce the data and create high value information products. This paper dis-
cusses current implementations and roadmap for leveraging high performance
computing tools and methods on small satellites with radiation tolerant hard-
ware. This includes runtime analysis with benchmarks of convolutional neural
networks and matrix multiplications using industry standard tools (e.g., Ten-
sorFlow and PlaidML). In addition, a ½ CubeSat volume unit (0.5U) (10 ×
10 × 5 cm3) cloud computing solution, called SpaceCloud™ iX5100 based on
AMD 28 nm APU technology is presented as an example of heterogeneous
computer solution. An evaluation of the AMD 14 nm Ryzen APU is presented
as a candidate for future advanced onboard processing for space vehicles.

Chapter 8. Paper C 95

8.1 Introduction

There are numerous studies and argumentation for increased onboard auton-
omy and data information processing to provide more efficient use of the rel-
atively limited communication link bandwidth on small satellites [1, 2, 3].
Expanding on the needs of intelligent processing, it is especially relevant to
study the rapidly evolving field Earth Observation driven by advances in sen-
sor technologies. ESA’s Φ-lab at the ESRIN facility has led several workshops
in the context of artificial intelligence (AI) for Earth Observation (AI4EO)
and written a European AI research agenda [4]. The agenda identifies a range
of challenges and opportunities for ensuring European pooling of resources,
talent supply, digital environment for rapid prototyping, and development of
solutions to capture the opportunities. The landscape formed around the trans-
formative AI technology is today dominated by United States and China. ESA
have formulated several candidate projects in the mid-technology readiness
level (TRL) range within the General Study Technology Programme (GSTP)
Element 1 “Develop” AI 2019 compendium [5]. These candidate projects are
of strategic importance to current and future space systems and space explo-
ration and cover both data exploitation and operations. The proposed develop-
ments are categorized in these areas:

• Smart payload data

• AI in data exploitation

• AI in operations

• Guidance, navigation, and control

• Edge/onboard AI

This paper covers architectural and software aspects of Edge/onboard AI
and Smart Payload Data but uses toolchains common with cloud architectures
on ground and hence AI in data exploitation and operations. The presented
architecture can also be applied to guidance, navigation, and control (GNC).
The commonality with hardware and software development environments on
ground is important to simplify deployment of AI in space systems. It is fur-
thermore important for cost and resource sharing reasons, where existing code
from industry or consumer business can be reused and a wider access to talent
is possible.

To make a difference in the information market it is important to provide an
infrastructure and ecosystem that is generic while still offering specialization

96 8.2. Related work

at the same time in order to minimize the size, weight, and power (SWaP) for
small satellites. This is especially important, since small satellites are driving
many new products and services [6].

The authors have explored edge computing and especially onboard AI data
processing since 2013, leading up to a scalable radiation tolerant heteroge-
neous architecture first implemented using AMD 1st generation (28 nm) G-
series System-on-Chip (SOC) paired with MicroSemi FPGA on an Input/out-
put (IO) expanded industrial Qseven form factor board [6]. AMD denotes
their SOCs as accelerated processing units (APUs). This paper expands on the
previous work to include a full heterogeneous computer architecture also for
AMD 2nd generation (28 nm) G-series SOC, AMD R-series (28 nm) SOC,
and the latest AMD V1000 Series (14 nm) SOC [7, 8].

8.2 Related work

Due to increasing demands of onboard sensor and autonomous processing,
research has long focused on high performance and reliability. The adoption
of graphical processing units (GPU) in space is emerging rapidly due to the
necessity of handling massive data in-orbit or in deep space. One example of a
CubeSat with heterogeneous architecture is the NASA Hyperspectral Thermal
Imaging (HYT) mission being integrated by University of Hawaii [9].

Processing capabilities on CubeSat has been limited due to available SWaP
and novel computer architectures have been explored like hybrid and recon-
figurable computing. George and Wilson present an overview of different
architectures, methods, and alternatives for onboard space computing in an
overview paper [10]. The authors also describe the radiation effects that are
shared between all space computers including the presented architecture in
this paper. The reconfigurable computing part is defined in a field program-
mable gate array (FPGA) while hybrid computing is synonym with heteroge-
nous computing, i.e., the combination of CPU + GPU, CPU + FPGA on the
same chip or board. Fault tolerant computing is needed for space computers
due to the radiation background effects and uses a combination of techniques
also common with the presented architecture. These include information re-
dundancy exemplified by error detection and correction coding (EDAC), er-
ror correcting codes (ECC), cyclic redundancy check (CRC), algorithm-based
fault tolerance (ABFT), and parity checking. Checkpoint and exception han-
dling are prominent examples of software redundancy.

Adams et al. of University of Georgia have investigated a similar approach
of hybrid processing as the authors with a combination of Nvidia Tegra TX2i

Chapter 8. Paper C 97

and Microsemi SmartFusion2 [11]. It shares similar features with the archi-
tecture presented in this paper, including the physical form factor of PC/104,
stacking connector, and standard protocols. However, there is a big difference
in radiation performance behaviour between the Nvidia TX2 and the AMD
SOC, which is further discussed below. Very similarly, Adams et al. use the
SmartFusion2 as a trusted control node and watchdog of the larger CPU + GPU
SOC. In the heterogeneous architecture the FPGA use is a bit expanded as it
has redundant communication paths to the SOC and can have isolated hybrid
compute tasks separate from the watchdog functionality as further described
below.

ESA has investigated GPU for space applications through analysis of dif-
ferent low-end and high-end GPUs from radiation and power consumption per-
spectives in the GPU4Space project [12].

NASA has conducted several studies from a radiation perspective on dif-
ferent GPUs including from both Nvidia and AMD [10, 11, 13]. Notable,
Salazar et al. have conducted radiation testing on five COTS graphic cards,
of which two AMD GPUs and three Nvidia GPUs, aiming for application on
the International Space Station (ISS) in low earth orbit (LEO) radiation envi-
ronment [13]. Top three among five GPUs were chosen to test under the total
dose of 6 krad. However, 6 krad is very low and ISS is not a representative
environment for most missions. An expanded description of radiation effects
is discussed in Sect. 4. None of the cards failed in a permanent failure, all
the cards have several failures, i.e., functional interrupts which are required a
reboot or power cycle to get the control again. MSI HD6450 employed with
AMD’s GPU has performed the best and recorded 43.1 days of MTTFI (the
mean time to functional interrupt).

An important rationale for the use of GPUs in space is the energy efficiency
for a computing task. Kosmidis et al. and Tsog et al. have shown that GPUs
can have a significantly higher power efficiency compared to CPU for the same
computation [12, 14].

8.2.1 Heterogeneous computing architecture overview

Building on the initial Qseven standard derived heterogeneous design described
in refence 7, Unibap AB and Troxel Aerospace Industries, Inc have coordi-
nated to develop a next-generation onboard heterogeneous/hybrid computing
platform for intelligent processing, e.g., Big Data analytics and Artificial Intel-
ligence (AI) processing to address the need of onboard data processing using
the AMD V1000 Series 14 nm embedded family of SOCs [8] and the Mi-
crochip PolarFire FPGA [15].

98 8.2. Related work

The initial compute architecture laid the foundation to the presented x86
embedded computer using SOC/APUs from AMD. The SOC devices are from
the FT3/FT3b footprint compatible 1st and 2nd generation G-series SOCs fea-
turing multi-core 64-bit CPU cores and integrated Graphical Processing Unit
(GPU). and paired with a Microchip/Microsemi SmartFusion2 FPGA, which
includes an ARM Cortex M3 Microcontroller and high-speed IO. The indus-
trial standard Qseven interfaces are supported together with a wide range of IO
expanded through the FPGA. Figure 8.1 illustrates the heterogeneous/hybrid
architecture combining x86 SOC, ARM-based FPGA and optionally additional
accelerators (e.g., Intel Movidius Myriad ASICs).

Figure 8.1: Illustration of the heterogeneous compute architecture as imple-
mented on the Qseven industrial form factor compute board

Figure 8.1 illustrates the initial heterogenous architecture as described above.
From a raw theoretical performance view, the AMD G-series SOCs have up to
87 GFLOPS GPU FP32, single precision performance. Common space inter-
faces such as SpaceWire, SpaceFibre and RapidIO can be supported through
the FPGA or external circuits. The data rate limitation in the heterogeneous
SOC-FPGA link is 10 Giga Transfer per second (GT/s) (bidirectional) over 2
lanes PCIexpress generation 2. The DDR3 memory support Error Correction
Code (ECC) on both the AMD SOC and the FPGA and operate at 1066 or
1333 MHz on the AMD and 667 MHz on the FPGA. To simplify integration
of new functions in the FPGA, Unibap developed a custom Direct Memory
Architecture (DMA) for the heterogeneous computing architecture interaction
between the AMD SOC and the FPGA over PCIexpress. Theoretically using
two lanes of PCIe, an actual real data flow of 8 Gigabit/s (Gbps) is theoretically
possible without the protocol overhead. Unibap has demonstrated a sustained
heterogeneous bandwidth of 5.7 Gbps (i.e., 720 MB/s) using DMA over the
PCIe interface.

The heterogeneous PCIe link between the AMD SOC and the FPGA is
used in the NASA HYTI mission by integrating a DMA Camera Link sensor
interface and providing DMA interfaces to S- and X-band radios [9].

Chapter 8. Paper C 99

For the purpose of demonstrating a real implementation of the architecture,
a Qseven compute solution in a ½ CubeSat volume unit (0.5U) (10 × 10 × 5
cm3) called SpaceCloud™ iX5 is presented as an example of a heterogeneous
computing solution suitable for spaceflight that provides advanced onboard
processing for space systems.

8.2.2 High performance computing tools in space

The AMD V1000 Series SOC and AMD R-Series SOCs advances the con-
cept of heterogeneous computing by integrating hardware features for rapid
IO memory translation (IOMMU) and instructions from Heterogeneous Sys-
tem Architecture (HSA) standard led by HSA Foundation [16].

Supporting HSA has significant benefits to the compute architecture as the
V1000 and R-Series can be made to leverage AMD’s high-performance com-
puting (HPC) software stack called Radeon Open Compute (ROCm) [17]. A
particularly interesting aspect of the ROCm stack is that is can convert and ex-
ecute Nvidia CUDA code and hence provide an avenue for radiation tolerant
execution of CUDA code. This is also of interest, since large algorithm invest-
ments have been made in the CUDA framework and ROCm offer an avenue to
leverage these investments on an open source platform.

ROCm is an open source high performance computing platform for GPU
accelerated platforms. The open source aspect of the ROCm stack is important
from a software radiation hardening perspective as it allows for injection of
time and executing state monitoring in the code, as well as review and modifi-
cations of choice. The main development of ROCm is done by AMD and cur-
rently it is targeting mainly Linux operating systems. As illustrated in Figure
8.2, ROCm provides a complete software stack, from the Linux kernel driver,
to compiler support and common libraries and software for machine learning.
The core Linux driver of ROCm is accepted upstream in the Linux kernel.
Currently, the latest release of ROCm is version 3.3.0 which have upstream
support in Linux kernel 4.15 and 5.3 respectively for R-series and V-series.
ROCm supports important features for heterogeneous computing, including:

• multi-GPU coarse-grain shared virtual memory,

• process concurrency and pre-emption,

• large memory allocations,

• HSA signals and atomics,

• user-mode queues and DMA,

100 8.2. Related work

• standardized loader and code-object format,

• dynamic and offline-compilation support,

• peer-to-peer multi-GPU operation with RDMA support,

• profiler trace and event-collection API,

• systems-management API and tools.

Figure 8.2: Overview of the ROCm HPC software stack

ROCm is the first HSA-compliant HPC software stack and is designed
to allow other hardware vendors to adopt and develop their drivers to extend
the ROCm ecosystem. The aim of HSA generally is to decrease the devel-
opment complexity of applications on heterogeneous processing units (e.g.,
CPU, GPU, FPGA, etc.) for developers. Moreover, it allows to handle co-
herent shared memory through the entire heterogeneous processing units. For
example, by allowing this, developers do not need to care about the different
memory structures of CPU and GPU. Furthermore, the processing units see
data in coherent shared memory in the same way. It reduces the mechanical
data copying process between the memories of different processing units.

Comparing the 1st and 2nd generation G-series SOCs to the V1000 series
reveal a significant performance uplift in performance, partially due to HSA

Chapter 8. Paper C 101

but mostly because of a new manufacturing process and new CPU + GPU ar-
chitecture. The performance uplift and use of ROCm HPC software stack is
demonstrated with benchmarks in this paper. Overall GPU compute perfor-
mance of the V1000 family in 16 bit (half) floating point (FP16) is up to 3.7
TFLOPs and the SOC support up to 8 CPU threads execution using simul-
taneous multithreading (SMT) on quad x86 CPU cores from the AMD ZEN
microarchitecture.

8.3 Stacking interface for modularity and form factor

The SpaceCloud™ iX5 is modularized by providing a core compute board and
a common stacking interface based on the Samtec LSHM-150-04.0-L-V-A-S-
K-TR connector [18]. The physical outline form factor of the printed circuit
board (PCB) is aligned to the Pumpkin PCB Specification [19] with all PC-104
related connectors removed and replaced. Figure 8.3 shows a photograph of
the Unibap e2160 heterogeneous compute module and the iX5 CORE carrier
board on the left. On the right the stacking connectors are highlighted. The
system is designed to operate on 12 V DC voltage and fit within a 0.5 U (10 ×
10 × 5 cm) volume.

Figure 8.3: Photograph of SpaceCloud™ iX5 core components. Left, IO ex-
panded Qseven compatible compute core (Unibap e2160) with CORE- 1000
carrier board. Right: Photograph of SpaceCloud™ iX5 CORE module with
high speed stacking interface for expansion

Figure 8.4 shows a photograph of the iX5 compute module, CORE carrier
board and EXTENSION board stacked together.

The signal partitioning and capabilities in the stacking connectors on the
iX5 CORE module are defined in Table 8.1.

102 8.4. Single-event effect mitigation middleware (SMM)

Figure 8.4: Photograph of SpaceCloud™ iX5 CORE and EXTENSION mod-
ule stacked with compute module attached at the top

Table 8.1: Summary of the electrical interfaces in the high-speed expansion
stacking interface (level 1 and level 2)

Interface
module (level)

LSHM-150-06.0-F-DV-S-K-TR (100 pin, height 12 mm)

DD-iX5 CORE (level 1) DD-iX5 EXTENSION (level 2)
Signal definition Device Signal definition Device

CORE Module
Stacking Connector
Extension

16xLVDS pair @ 700Mbps FPGA 2xI2C FPGA

CAN v2.0b FPGA 2xUSB v2.0 AMD SOC
2xI2C FPGA SPI FPGA

SPI FPGA I2C AMD SOC
2xSERDES (10Gbps) FPGA

12xGPIO 3.3V FPGA
PCIexpress x1 (5GT/s) AMD SOC

CORE Module
Stacking Connector
Base

3.3V DC 3.3V DC

3.3V on/off FPGA 5V DC
5V DC 5V on/off FPGA

5V on/off FPGA 12V DC
12V DC 12V on/off FPGA

12V on/off FPGA Reset FPGA
Reset FPGA 12xGPIO FPGA

6xGPIO 3.3V FPGA PCIexpress x1 (5GT/s) AMD SOC
2xSATA v3 AMD SOC PCIexpress x4 (20GT/s) AMD SOC

PCIexpress x4 (20GT/s) AMD SOC
2xUSB v3 AMD SOC
2xUSB v2 AMD SOC

I2C AMD SOC
Ground

8.4 Single-event effect mitigation middleware (SMM)

A brief discussion of radiation effects is required to understand the value of
Troxel Aerospace’s single-event effect mitigation middleware (SMM) and its

Chapter 8. Paper C 103

relevance to enabling the use of COTS processors in space applications. Sev-
eral types of radiation effects have the potential to damage or create incorrect
operating conditions in electronics, e.g., processors, while operating in a space
environment. Total ionizing dose (TID) can be thought of as a build-up of
absorbed radiation over time that changes the electrical characteristics of tran-
sistors. A transistor’s ability to effectively switch without increasing leakage
current degrades as dose increases to a point, where the transistor will either
no longer switch and/or becomes stuck in a closed or open state. TID effects
are a combination of numerous particles strikes and/or gamma irradiation over
time. Other effects occur based on a single particle strike and are generally
grouped into the category of single-event effects (SEEs). Within this category
of radiation effects, single-event latchup (SEL) is a destructive event, whereby
a single particle, typically a heavy ion, concentrates enough charge within a
transistor to cause a charge path between two of the three contact points of the
transistor causing an un-designed current to flow between them. If the current
flow is sufficiently large or flows in an inappropriate direction, the transistor
suffers permanent damage such that it becomes a current short or in some other
way no longer functions properly. Other types of SEE, such as single-event up-
sets (SEUs) and single-event functional interrupts (SEFIs), are non-destructive
events caused by a single particle (typically a proton, neutron, or heavy ion)
that either causes a memory bit to “flip”, i.e., change from 1 to 0 or 0 to 1, or
cause the device to enter an incorrect state of operations, respectively.

Radiation hardened processors (rad-hard processors) are designed with
various techniques at the basic silicon transistor layer to provide some level
of immunity to the radiation effects previously described. Typical TID im-
munity levels exceed 100 krad up to over 1 Mrad and SEL immunity is typ-
ically above 75 MeVcm2/mg (Si). Non-destructive SEEs are designed to be
so rare in these devices that they typically occur only once in 20 years. Rad-
hard processors such as the BAE RAD750 [20], BAE RAD5545 [21], Cob-
ham/Geisler LEON3FT [22], and Moog Broad Reach BRE440 [23], form the
basis of many satellite control systems that require a high degree of radiation
effects immunity, especially large/expensive spacecraft, human-rated vehicles,
and exoplanetary missions like the Mars rovers. However, there is a large
performance price paid for such radiation immunity with rad-hard processors
being typically tens to hundreds of times less capable in processor performance
compared to modern COTS processors [20]. If chosen carefully and validated
through extensive radiation testing, COTS processors can be selected that have
favourable destructive radiation effect characteristics—indeed, the AMD pro-
cessors mentioned in this paper have been shown to have favourable TID and
SEL characteristics [21]. However, all COTS processors exhibit high rates

104 8.4. Single-event effect mitigation middleware (SMM)

of non-destructive SEEs compared to rad-hard processors and thus typically
require frequent rebooting to mitigate these effects. The frequency of time
between reboot vary greatly based on the underlying technology and the radia-
tion environment in which the processor is operating. In benign environments
such as the International Space Station, the time between reboot can be weeks
to months while in more stringent environments such as polar orbits, GEO sta-
tionary, MEO, or HEO orbits, or exoplanetary missions, SEFI rates, and time
between reboots, can be multiple per day. For many missions, particularly ex-
pensive or human-rated ones mentioned previously, where rad-hard processors
are typically used, such reboot rates, and moreover, any reboot at all is unac-
ceptable. Additionally, the observed SEFI susceptibility of COTS processors
has been increasing as their feature sizes have decreased (i.e., moving from 32
to 28 nm to 14 nm, etc.) reducing times between reboot for a given mission.

To overcome this limitation and provide a means to make COTS proces-
sors viable for space applications that require both improved processing capa-
bility and reduced radiation susceptibility (i.e., less frequent reboots) Troxel
Aerospace developed an SEE Mitigation Middleware that greatly improves
non-destructive SEE upset rates. Troxel Aerospace’s SEE Mitigation Mid-
dleware (SMM) provides core-, device-, and system-level fault tolerance by
implementing multicore checking in the background in Linux. This robust
middleware for heterogeneous multicore processors provides resource-aware
configuration and execution management, and fault detection and mitigation.
The SMM is designed to operate as either a background “scrubbing” task or as
an interactive fault correction mechanism directed by missions software. The
middleware software layer primarily resides between the application layer and
the Operating System (OS), with extensions into and below the OS, to provide
intelligent resource, fault, and power management. The middleware provides
a consistent computing environment and application programming interface
(API) for fault management that allows mission software to be largely agnostic
to the specific underlying hardware, thereby reducing development and inte-
gration cost, complexity, and schedule.

A functional block diagram illustrating where the middleware resides within
a multicore processor software stack is shown in Figure 8.5. The SMM pro-
vides an abstraction layer on which mission software, be it command and data
handling (C&DH) software or applications, execute to increase portability and
fault tolerance. The SMM is largely processor-agnostic and supports multiple
processor architectures with core management functions fully portable across
processor and Linux variants. A relatively small portion of the middleware is
required to be OS- and processor-specific to support resource and fault status
collection, and to execute commands to manage resources, deploy applica-

Chapter 8. Paper C 105

tions, and mitigate faults through processor-specific interfaces and technology.
The technology-agnostic central management features of the SMM communi-
cate to the technology-specific components (i.e., OS and hypervisor kernel ex-
tensions) through standard interfaces allowing the design to be common across
processor and OS architectures.

Figure 8.5: Proposed middleware software architecture

The SMM has been deployed on a homogenous quad-core ARM proces-
sor, the Unibap e2000 and e2100 family featuring AMD 1st Gen SOC fm.
“eKabini” and 2nd Gen SOC fm. “Steppe Eagle” Series GPU, the Unibap
V1000 series AMD, and a Digital Signal Processor (DSP), demonstrating the
middleware’s flexibility across platforms. Through the completion of a NASA
JPL SBIR Phase II program, the SMM implementations on the Steppe Eagle
and DSP were irradiated with 32 h of heavy ions using Texas A&M’s Cy-
clotron in November and December 2019 and demonstrated SEU (bit-flip) and
SEFI immunity for all error events observed demonstrating a 720× increase
in non-destructive SEE susceptibility. The 720× increase takes a conservative
approach by assuming that the next test observation would have resulted in
an uncorrectable error, which is possible but very unlikely. Even so, this is
a dramatic increase in upset rate. As mentioned in the radiation discussion
above, this improvement provides a varied benefit depending on the mission
orbit. To provide two examples, if the processor would otherwise suffer a
SEFI (reboot) every 3 days, i.e., a relatively harsh mission, the system would

106 8.5. Mission scenarios and application

instead suffer a SEFI once every 5.9 years with Troxel Aerospace’s SMM en-
abled. In another mission scenario, if the processor would suffer a SEFI every
30 days, i.e., a moderately harsh mission, the system would instead suffer a
SEFI once every 59 years with the SMM enabled. These results demonstrate
a substantial improvement in SEFI rate and would make these processors vi-
able for a wide range of otherwise inappropriate missions such as autonomous
operations, docking, exoplanetary landings, and other missions described in
Section 8.5.

8.5 Mission scenarios and application

The latest available NASA crosscutting technology roadmap lists key avionics
goals to include improved reliability and fault tolerance, increased autonomy,
reduced size, weight, and power (SWaP), and commonality across spaceflight
and ground processing systems [22]. Long-duration crewed missions, space-
based observatories, and solar system exploration will require highly reliable,
fault-tolerant systems. Communication delays, the challenging orbital dynam-
ics of Near-Earth Asteroids (NEAs), and extreme science missions require in-
creased autonomy for on-board decision infrastructures [23]. Future robotic
missions will involve greater complexity and reactivity, which will require
increased reliance on autonomy (i.e., advanced onboard processing). Deep-
space missions that target active, dynamic, or time-varying phenomena will
need robots that can adaptively adjust their configurations and behaviour to
changing circumstances, and robustly handle uncertainty. Robotic missions to
NEAs will require the decision-making and monitoring processes—currently
performed by ground control—to be performed by onboard autonomous sys-
tems [24]. Advanced avionics technologies and approaches are needed to sup-
port these challenging missions.

Subsection TA11.1.1 of the Chief Technologists Office Technology Road-
map lists the three areas of flight computing that are critical to next-generation
needs for science and exploration to include processors, memory, and high-
performance flight software [22]. Scalable, multicore processors, co-processors,
and memory that have a range of capabilities for fault tolerance and recov-
ery are needed for use in radiation fields to support an increasingly software-
intensive onboard environment. Flight software, called on to perform a range
of functions, including increasing autonomy, will require techniques for state-
based design and verification techniques to manage complexity at design time
and ensure reliability and safety in operations. Historically, flight computing
has focused on tight-loop operations.

Onboard experiments with intelligent onboard processing on CubeSats took

Chapter 8. Paper C 107

a significant step forward in 2013 when the IPEX CubeSat was launched as a
secondary payload. IPEX validated a range on board instrument data-processing
algorithms and autonomy [24, 25].

ESA’s Earth Observation directorate have been pushing AI for small satel-
lites through the Φ-Sat-1 satellites. The Φ-Sat-1 mission was formulated in re-
sponse to an ESA challenge and consists of two 6U CubeSats. The mission will
demonstrate on-orbit image filtering using AI of hyperspectral images [26].
This mission represent the comprehensive approach ESA is taking to identify
and deploy AI on space mission as discussed in the introduction [4, 5]. Varile
et al. have explored Convolutional Neural Networks (CNN) for autonomous
image analysis [27].

Future trends show generalization toward varied requirements for flight
computing, including hard real-time, mission-critical calculations that often
involve vision-based algorithms such as those for entry, descent, and land-
ing; high-data-rate instrument throughput imperatives, such as those for hyper-
spectral and synthetic aperture radar; and the increasing use of model-based
reasoning techniques like those for mission planning and fault management.
Future flight computing systems must provide heterogeneous architectural sup-
port across this spectrum of computational drivers, including uncertainty, dis-
tribution, concurrency, and operations. As more capable science instruments
observe and capture larger volumes of data, there is a need to develop methods
for data reduction and triage at the point of collection. The introduction of
intelligent machine-learning algorithms onboard is a critical technology area
that is important for helping to address the entire end-to-end observing path
in data-driven environments. Furthermore, the need to respond to and update
observation plans is a critical part of moving towards more autonomous oper-
ations. This paradigm shift will require new onboard capabilities as demands
for computation, storage, and software continue to grow to enable more au-
tonomous operations coupled with onboard data services.

Additionally, new paradigms for fleet management and sustainment, such
as the Digital Twin, which are enabling to extended autonomous operations,
amplify the need for robust onboard computing [28]. Pinpoint landing, haz-
ard avoidance, rendezvous-and-capture, and surface mobility are directly tied
to the availability of high-performance space-based computing. In addition,
multicore architectures have significant potential to implement scalable com-
puting, thereby lowering spacecraft vehicle mass and power by reducing the
number of dedicated systems needed to implement onboard functions. These
requirements are equally important to space science and human exploration
missions. In addition, power-efficient, high-performance, radiation-tolerant
processors and the peripheral electronics required to implement functional

108 8.6. Software overview

systems could also benefit commercial aerospace entities and other govern-
mental agencies that require high-capability spaceflight systems. Advances in
middleware to support cooperative processing in combining high-performance
multicore general-purpose processors (GPPs) and niche co-processors, such
as the robust middleware proposed by Troxel Aerospace, and heterogeneous
computing architectures by Unibap, is required to achieve planned mission
performance requirements.

8.5.1 Applications

There are many mission’s scenarios and applications, where massive onboard
processing is critical as discussed earlier in the paper. Some mission are prime
candidates for advanced onboard computing, including the following types:

• Autonomous rendezvous and docking

• Quick react, low latency science observations, where human time scales
are not enough to react

• Exo-planetary avionics and science missions, where message latency is
too long

• Downlink bandwidth limited missions (high rate sensors), where intelli-
gent data reduction is required

An example of a bandwidth limited mission that leveraging onboard radia-
tion tolerant heterogenous ×86 computing is the NASA Hyperspectral Thermal
Imaging, HyTI mission, due for launch in 2021 [9]. The HyTI mission is a 6U
CubeSat that will demonstrate spectral thermal imaging from Low Earth Orbit
(LEO) orbit with onboard science data product generation.

8.6 Software overview

The heterogeneous architecture allows for software portioning over different
compute nodes in the heterogenous architecture (i.e., multi-core CPU, GPU,
and the FPGA in this case). It is possible to extend the heterogenous archi-
tecture with more compute nodes using the available peripherals such as PCIe
or USB, e.g., Intel Myriad X Vision Processing Units (VPU) with 3 TOPS as
illustrated in the figure.

For the purpose of benchmarking and demonstrating AI software in this
paper, the software configuration listed in Table 8.1 was used with either CPU

Chapter 8. Paper C 109

support or both CPU and GPU support. The tools clpeak [29] and mixbench [30]
was used to verify the GPU performance of 87 GFLOP for the AMD G-series
SOC and 2 TFLOPs for the AMD V1605B SOC from the V1000 family.

It is important to note that the AMD HPC software stack ROCm is not
possible to run on SOC/APUs after version 1.7 without modification. The offi-
cial APU support has been removed from the packages. Hence, it was needed
to recompile the entire stack to enable support for the AMD embedded se-
ries of devices. Bruhnspace corporation and Mälardalen University performed
the ROCm patching and Bruhnspace provide an experimental software build
online [31] while Unibap has patched the latest ROCm v3.3.0.

To illustrate the use of the “hipify” tool we convert a simple squaring
CUDA code and execute it.

This example uses a simple squaring example, square.cu1 to demonstrate
the simplicity of using CUDA on AMD ROCm. However, it should be noted
that “hipify” cannot parse CUDA assembler which need to be manually con-
verted to AMD GPU assembler.

$ hipify-perl square.cu>square.cpp // ROCm “Hipify” Nivida CUDA ex-
ample code to generic cpp code.

$ hipcc square.cpp -o square hip // Compile the cpp code with AMD “hip
compiler”.

$./square hip // and finally run it on ROCm stack for AMD APU devices.
info: running Square CUDA example on device AMD Ryzen Embedded

V1605B with Radeon Vega GFX.
info: allocate host mem (7.63 MB) info: allocate device mem (7.63 MB).
info: copy Host2Device info: launch ’vector square’ kernel info: copy

Device2Host.
info: check result PASSED!

8.7 Intelligent data processing performance evaluation

To demonstrate the next-generation intelligent processing capabilities of the
heterogeneous compute platform, six experiments have been conducted in this
paper and executed on AMD A10-8700P (codename “Carrizo”) R-series SOC
and AMD V1605B part of the V1000 family of SOCs using the ROCm HPC
stack (v2.6.0 and v3.3.0).

1https://raw.githubusercontent.com/ROCm-Developer-Tools/HIP/master/samples/0 Intro/
square/square.cu.

110 8.7. Intelligent data processing performance evaluation

8.7.1 Evaluation environment

The experiments are performed on two refence platforms featuring V-Series
V1605B and A10-8700P APUs from AMD. V1605B APU includes gfx902
(Vega) GPU with 1.1 GHz (15 W TDP setting) clock rate and Ryzen CPU
with 2 GHz (15 W TDP setting) clock rate [32]. A10-8700P APU consists of
Excavator CPU and gfx801 GPU that is employed in Acer E15 E5-552-T99R
model notebook [33]. The clock rates of CPU and GPU in A10-8700P APU
are 1.67 GHz and 0.8 GHz, respectively. The software used are defined in
Table 8.2.

Table 8.2: Verified software AMD G-series SOC, AMD R-series AMD V1000
Software name G-series R-series/V-series V-series
(L)Ubuntu Operating system 18.04.4 6 AMD64 18.04.4 AMD64 18.04.4 AMD64
Linux kernel 5.4.28 5.0.0 5.4.28
AMD gpu kernel driver amdgpu amdgpu amdgpu
AMD IOMMU driver – IOMMU2 IOMMU2
AMD HSA driver amdkfd amdkfd amdkfd
AMD ECC memory kernel driver AMD64 EDAC – –
Unibap DMA kernel driver 1.0 – –
GCC 7.2 8.1 7.2
cmake 3.11 3.11 3.16
LLVM 10.0.0 6.0.0 11.0-git
Mesa, patched by Unibap 20.1-devel 18.2 19.2
Libclc, patched by Unibap 2020–02-22 – –
ROCm, patched by Unibap – 2.6.0 3.3.0
OpenCL 1.2 2.0 2.0
OpenGL 4.6 4.6 4.6
Vulcan 1.2 1.2 1.2
Theano 1.0.0 – –
Caffe 1.0 – –
OpenCV 3.3.1 4.1.1 4.1.1
Robot Operating System (ROS) 1.12.13 (Kinetic) – –
TensorFlow 1.4 1.14.1/2.0 1.15.2/2.2
pyTorch 1.6a
PlaidML 0.6.4 0.6.4
Clpeak [19] 2019–09-05 2019–09-05 2019–09-05
Mixbench (HIP) [20] 2020–05-19

8.7.2 Experimental design

Artificial intelligence (AI) enabled applications are one of the concepts that
should be employed for intelligent onboard data processing. TensorFlow2 is
explored as machine learning platform/framework in the experiments. Using
TensorFlow, matrix multiplication has been performed for Experiment A on
both CPU and GPU with the different sizes of the arrays. TensorFlow is an

2https://www.tensorflow.org/

Chapter 8. Paper C 111

open source machine learning platform involving tensor computations. Matrix
multiplication is the fundamental of neural network, hence, we selected it in
this experiment. The aim of this experiment is to discuss how the platform
gains computing performance using GPU for the advanced parallel algorithms
compared to CPU. Furthermore, this experiment indicates the performance of
Tensorflow framework. Necessary parameters for Experiment A are described
in Table 8.3.

Table 8.3: Parameters for Experiment A
Parameters Values
Edge size of matrix 10, 20, 50, 100, 200, 500, 1000, 2000, 5000
Experiments number 100 times

Then, in Experiment B, we consider the optimal implementations of matrix
multiplication provided by vendors (ROCm) as well as a well-known library
(BLAS3) to evaluate the performance capabilities of the platforms. We use a
code written in C++ for HIP compiler for GPU computing and sgemm from
BLAS for CPU cores. For comparison reason, we use the program that used
in Experiment A as well (Table 8.4).

Table 8.4: Parameters for Experiment B
Parameters Values
Edge size of matrix 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096
Experiments number 10 times

In Experiment C, we evaluate the inference performance when running two
different convolutional neural network (CNN) across both CPU and GPU on
the v1605b and the A10-8700P. The networks are from the TensorFlow ob-
ject detection model zoo which are good candidates for transfer learning when
running detection networks for earth observation on a satellite. A resolution of
512 × 512 is used, where multiple overlapping images can be used to cover the
typical large sensor sizes seen on satellites.

In Experiment D we benchmark the compute throughput and bandwidth of
ROCm 3.3.0 running on AMD V1605B.

In Experiment E we evaluate the possibility to do training on the platform.
There are cases when it is impractical to get data to ground and where online
learning can be done on self-supervised data such as anomaly detection on
sensor readouts. Included is an experiment, where we train a simple Long
short-term memory (LSTM) autoencoder on a time series anomaly detection
dataset. Given the algorithmic advancement in where classification workloads

3BLAS – Basic Linear Algebra Subprograms https://www.netlib.org/blas/

112 8.7. Intelligent data processing performance evaluation

have reduced in FLOP count by 2× every 16 months [34] workloads that is
efficient to train on ground today is likely to become easier to train efficiently
in orbit during the platforms lifetime.

In Experiment F we test the Intel Movidius Myriad X as neural network
accelerator that can be used to offload calculations from the platform. Net-
works run in FP16 precision compiled through the Intel OpenVINO frame-
work4. Given the drop in precision and separate implementations, a slightly
different result is given for the numbers quoted for the Myriad X is on a differ-
ent network.

8.7.3 Results

Experiment A Tables 8.5, 8.6, and 8.7 present the processing time of matrix
multiplication on CPU and GPU with respect to edge size of matrices in the
reference machines V1605B with TensorFlow 1.14.1, V1605B with Tensor-
Flow 2.0.0, and A10-8700P with TensorFlow 2.0.0, respectively. Tables in-
clude minimum, maximum, average and median values of the processing time.
For the comparison study of CPU and GPU, we focus on median values of
the processing time. We confirm that the processing time on CPU increases
rapidly, while edge size of matrix increases. Under edge size of 100, the usage
of CPU could be better than the usage of GPU. On the other hand, we see that
the processing time (median) on GPU is better than CPU when the edge size
is more than 200.

Table 8.5: Processing time on both CPU and GPU in V1605B (TF 1.14.1) with
respect to edge size of matrix

Edge size On CPU (ms) On GPU (ms)
Min Max Average Median Min Max Average Median

10 0.12 0.20 0.15 0.15 0.39 1.77 0.63 0.58
20 0.12 0.16 0.13 0.12 0.39 1.89 0.66 0.58
50 0.13 1.74 0.24 0.19 0.36 3.82 0.58 0.50
100 0.21 0.92 0.31 0.27 0.35 3.17 0.78 0.68
200 2.43 10.64 4.62 4.05 0.32 8.72 0.64 0.53
500 30.71 49.57 36.23 35.57 1.38 32.31 2.10 1.77
1000 199.05 278.22 213.13 211.69 6.30 142.80 8.29 6.98
2000 96.27 125.78 103.78 104.17 34.82 541.33 46.17 41.36
5000 1566.19 1691.06 1631.44 1633.21 639.78 3804.77 733.65 704.74

Furthermore, we can see about 3.1 times improvements between the pro-
cessing time for the edge size of 5000 on CPU, as it is 1633.21–1639.05 ms
in V1605B and 5077.05 ms in A10-8700P. This result explains that the next
generation platform employs a much powerful CPU based on AMD ZEN ar-
chitecture. In the case of the GPU, we can see 2 times improvements between
the GPUs employed in V1605B (about 704 ms for the edge size of 5000) and

4https://docs.openvinotoolkit.org/

Chapter 8. Paper C 113

Table 8.6: Processing time on both CPU and GPU in V1605B (TF 1.14.1) with
respect to edge size of matrix

Edge size On CPU (ms) On GPU (ms)
Min Max Average Median Min Max Average Median

10 0.13 0.33 0.16 0.16 0.37 2.56 0.77 0.65
20 0.13 0.63 0.24 0.21 0.38 2.35 0.61 0.55
50 0.12 0.21 0.13 0.13 0.40 3.54 0.62 0.56
100 0.23 1.56 0.45 0.39 0.36 3.64 0.54 0.47
200 2.90 14.41 6.49 6.65 0.36 8.93 0.65 0.51
500 17.89 73.60 45.14 45.27 1.14 32.49 1.71 1.31
1000 15.60 342.25 259.27 273.90 5.85 139.83 7.86 6.46
2000 99.04 2075.00 487.88 107.33 35.27 525.53 46.10 41.39
5000 1573.95 7671.68 1696.15 1639.05 653.73 3839.39 733.60 704.28

Table 8.7: Processing time on both CPU and GPU in V1605B (TF 1.14.1) with
respect to edge size of matrix

Edge size On CPU (ms) On GPU (ms)
Min Max Average Median Min Max Average Median

10 0.29 0.96 0.48 0.44 0.99 2.36 1.27 1.17
20 0.37 1.15 0.46 0.42 0.92 2.44 1.29 1.22
50 0.41 0.89 0.50 0.46 0.85 2.31 1.20 1.11
100 0.45 1.15 0.63 0.56 0.78 1.69 1.04 0.99
200 1.32 2.69 1.63 1.56 0.68 2.18 1.12 1.07
500 6.46 9.92 7.61 7.48 1.86 5.69 2.68 2.66
1000 37.06 41.46 38.80 38.75 11.32 27.72 13.48 13.39
2000 273.60 322.30 283.77 282.65 85.70 124.89 90.36 89.88
5000 4336.91 5259.34 4948.74 5077.05 1458.28 1770.54 1472.15 1464.71

A10-8700P (1464.71 ms). In addition, we do not confirm big difference be-
tween the different versions of TensorFlow used for the experiments in V1000.

Experiment B Table 8.8 presents the comparison study of processing times
of the different implementations of matrix multiplication. TF-GPU and TF-
CPU describe a matrix multiplication code using TensorFlow 2.0.0 on GPU
and CPU, respectively. HIP means a code provided in ROCm software stack
and is implemented for GPU using HIP compiler. BLAS describes a matrix
multiplication code for CPU computation using BLAS library. We consider
both HIP and BLAS as optimized codes, since they are provided by vendors
or a well-known benchmarking library. TF is our target framework in this pa-
per, and we evaluate it by conducting the comparison study with the optimized
codes. Naı̈ve is a naı̈ve implementation of matrix multiplication for CPU writ-
ten in C. As a note, both HIP and BLAS are written in C/C++, and TF-CPU
and TF-GPU are written in Python.

Matrices with edge sizes larger than 128, we see that TF-GPU performs
better than HIP for both reference machines. Moreover, TF-CPU on A10-
8700P leads BLAS on A10-8700P as well. Only TF-CPU on V1605B per-
forms less compared to BLAS on V1605B. Since BLAS on V1605B leads
BLAS on A10-8700P, it can be concluded that TensorFlow 2.0.0 is not op-
timized well for Ryzen CPU in V1605B. Although GPU in A10-8700P has
less performance capability compared to GPU in V1605B, HIP on A10-8700P

114 8.7. Intelligent data processing performance evaluation

Table 8.8: Comparison of processing times on both CPU and GPU in V1605B
and A10-8700P

Edge
size

Processing time on V1605B (ms) Processing time on A10-8700P (ms)

GPU CPU GPU CPU
TF-

GPU HIP TF-
CPU BLAS Naı̈ve TF-

GPU HIP TF-
CPU BLAS Naı̈ve

8 0.88 3.257 0.3 0.025 0.004 0.94 0.16 0.46 0.034 0.004
16 1.06 2.935 0.33 0.027 0.035 0.96 0.161 0.53 0.049 0.031
32 0.87 2.262 0.36 0.042 0.27 1.25 0.178 0.48 0.077 0.247
64 0.94 3.238 0.45 0.133 1.957 1.06 0.298 0.5 0.188 1.562

128 0.91 4.175 1.09 0.564 14.967 1.05 1.23 0.92 1.007 17.425

256 0.96 13.307 6.36 2.909 120.50 1.29 2.815 2.26 4.428 116.73

512 2.82 72.74 39.34 21.141 1066.4 2.7 12.926 7.7 19.411 3899.4

1024 15.72 314.85 306.98 110.22
70.457

s 12.58 56.747 42.87 126.08
45.277

s

2048 100.2 1491.3 2109.1 574.4 364.58
s 87.22 319.16 303.18 1034.3

396.45
s

4096 774.51 6738.6 1742.0 4692.9 - 607.42 2100.3 2560.7 8286.7
3339.6

s

performs better than HIP on V1605B. This could be explained that the opti-
mization of ROCm for A10-8700P is better than V1605B, since A10-8700P
is one of the oldest platforms started with the ROCm development. In other
words, there are room for more improvement in ROCm for gfx902 (Vega)
GPU. The results of matrices with edge sizes smaller than 64 are less infor-
mative. This is, because, the different programming languages use, and their
time measurement methods are slightly different. Hence, we can explain the
overhead time influences on the results a lot in these cases. As a conclusion
of this experiment, we can emphasize the optimization of TensorFlow fits well
with our reference machines.

Experiment C Two pre-trained models, Model A and Model B, are consid-
ered in this experiment. Model A is a mobilenet with ssd5 and Model B is a
resnet50 with faster rcnn6. The experiment is run on randomized data across
256 images split into 16 batches and on 32-bit floating point (single precision).
The APU is set to do automatic thermal management (to the threshold 12 W or
15 W TDP) to get a balanced overall system performance. Adding additional
priority to the GPU can yield faster inference as indicated in the GPU high col-
umn but with CPU clocks dropping to 400 MHz and the total power increasing
to maximum TDP (Table 8.9).

Experiment D Figure 8.6 shows that the maximum throughput of 2.2 TFLOP

5https://github.com/tensorflow/models/blob/master/research/object detection/g3doc/detec
tion model zoo.mdssd mobilenet v1 coco

6https://github.com/tensorflow/models/blob/master/research/object detection/g3doc/detec
tion model zoo.mdfaster rcnn resnet50 coco

Chapter 8. Paper C 115

Table 8.9: Comparison results of Model A and Model B
Model V1605B A10-8700P

CPU GPU GPU high
priority mode CPU GPU

A. Mobilenet SSD (512 × 512 pixel
images per second) 7.7 6.2 5.3 8.3 5.4

B. Resnet50 faster rcnn (512 × 512
pixel images per second) 0.28 0.28 0.44 0.20 N/A

is reach at 9 GB/s bandwidth and 2 TFLOP throughput at 16.5 GB/s bandwidth
is measured using mixbench (HIP, alt mode) for the AMD V1605B embedded
APU in single memory configuration. The V1605b support dual memory con-
figuration.

Figure 8.6: Throughput vs bandwidth benchmark of ROCm v3.3.0 on AMD
V1605b using mixbench

Experiment E The training benchmark is run using a 128 LSTM run on
a single dimensional temperature dataset. While this is limited in scope this
mirrors the usefulness of, e.g., monitoring sensors on board and finding out
when adjustments needs to be done to various instruments. This training is
compared to a typical server as found on the ground, in this case a 24 core
AMD ThreadRipper with a Nvidia 2080 RTX GPU. Given the limited size of
the network this perform similarly on a server class cpu and gpu and the dif-
ference to the embedded platform for this type of workload is smaller making
the case for training directly on the V1605B platform stronger.

Experiment F The Myriad X experiment is run over USB 3.0 on a Mo-
bilenet SSD (depth multiplier 1.0) with only 1 output category and 16-bit float-
ing point. The network has a fixed input resolution of 480 × 384.

116 8.8. Conclusions

Model V1605B Ground based server
CPU GPU CPU GPU

Time series anomaly detection (steps/s) 10 50 175 280

Using both execution slots and queuing up 32 jobs the average rate that can
be processed is 29.8 fps.

8.8 Conclusions

A radiation tolerant CubeSat compatible onboard information processing ar-
chitecture have been prototyped and evaluated. Evaluation of AMD 28 nm
and 14 nm embedded products with multicore CPU and GPU have shown sig-
nificant benefits in acceleration of radiation tolerant and potentially radiation
hardened compute tasks.

AMD’s high performance computing software stack ROCm have been
patched to enable embedded devices and shown to support machine learning
software like TensorFlow and execution of CUDA code in a radiation toleran-
t/hardened silicon.

The experiments show that the theoretical compute throughput is reached
in benchmarks but real applications using TensorFlow can be further opti-
mized.

It has been shown that deep learning training can efficiently be performed
in orbit and that neural networks tuned for Earth observation applications can
be used for near real-time onboard information processing and onboard train-
ing.

The heterogeneous architecture is tested by expanded the AMD SOC with
an Intel Movidius Myriad X neural accelerator which can significantly increase
the AI processing speeds but at lower bit resolution.

Bibliography 117

Bibliography

[1] G. Richardson, K. Schmitt, M. Covert, and C. Rogers, “Small satellite
trends 2009-2013,” 2015.

[2] T. Segert, “Why did Google dump Skybox?” [Online]. Avail-
able: https://www.linkedin.com/pulse/why-did-google-dump-skybox-
tom-segert/ (Accessed Nov 14, 2019)

[3] M. T. Hicks and C. Niederstrasser, “Small sat at 30: trends, patterns, and
discoveries,” 2016.

[4] P.-P. Mathieu, S. Loekken, and et al., “Towards a european ai4eo research
and innovation agenda,” in ESA Phi-lab workshop proceedings. ESA,
28 September 2018, pp. 1–16.

[5] ESA-TECT, GSTP Element 1 “Develop” compendium 2019.
ESA, 2019. [Online]. Available: http://emits.sso.esa.int/emits-
doc/ESTEC/News/GSTPAICompedium2019.pdf

[6] J. R. Behrens and B. Lal, “Exploring trends in the global small satellite
ecosystem,” New Space, vol. 7, no. 3, pp. 126–136, 2019.

[7] F. Bruhn, K. Brunberg, J. Hines, L. Asplund, and M. Norgren, “Intro-
ducing radiation tolerant heterogeneous computers for small satellites,”
in 2015 IEEE Aerospace Conference. IEEE, 2015, pp. 1–10.

[8] AMD, “AMD V1000 Series SOC.” [Online]. Available:
https://www.amd.com/en/products/embedded-ryzen-v1000-series (Ac-
cessed Nov 3, 2019)

[9] R. Wright, M. Nunes, P. Lucey, L. Flynn, T. George, S. Gunapala,
D. Ting, A. Soibel, C. Ferrari-Wong, A. Flom et al., “Hyti: thermal
hyperspectral imaging from a cubesat platform,” in IGARSS 2019-2019
IEEE International Geoscience and Remote Sensing Symposium. IEEE,
2019, pp. 4982–4985.

[10] A. D. George and C. M. Wilson, “Onboard processing with hybrid and
reconfigurable computing on small satellites,” Proceedings of the IEEE,
vol. 106, no. 3, pp. 458–470, 2018.

[11] C. Adams, A. Spain, J. Parker, M. Hevert, J. Roach, and D. Cotten, “To-
wards an integrated gpu accelerated soc as a flight computer for small
satellites,” in 2019 IEEE Aerospace Conference. IEEE, 2019, pp. 1–7.

118 Bibliography

[12] L. Kosmidis, J. Lachaize, J. Abella, O. Notebaert, F. J. Cazorla, and
D. Steenari, “Gpu4s: Embedded gpus in space,” in 2019 22nd Euromicro
Conference on Digital System Design (DSD). IEEE, 2019, pp. 399–405.

[13] G. A. Salazar and G. F. Steele, “Commercial off-the-shelf (cots) graphics
processing board (gpb) radiation test evaluation report,” National Aero-
nautics and Space Administration, 2013.

[14] N. Tsog, M. Behnam, M. Sjödin, and F. Bruhn, “Intelligent data process-
ing using in-orbit advanced algorithms on heterogeneous system archi-
tecture,” in 2018 IEEE Aerospace Conference. IEEE, 2018, pp. 1–8.

[15] Microchip, “Microchip PolarFire FPGA.” [Online]. Avail-
able: https://www.microsemi.com/product-directory/fpgas/3854-
polarfire-fpgas (Accessed Nov 4, 2019)

[16] HSAFoundation, “HSA Foundation.” [Online]. Available:
https://www.hsafoundation.com/ (Accessed May 14, 2020)

[17] AMD, “ROCm Platform.” [Online]. Available:
https://rocmdocs.amd.com/en/latest (Accessed May 14, 2020)

[18] Samtec, “Fine Pitch Self Mating Connectors.” [Online]. Avail-
able: https://suddendocs.samtec.com/catalog english/lshm dv.pdf (Ac-
cessed May 14, 2020)

[19] Pumpkin, “CubeSat Kit PCB Specification.” [Online]. Available:
http://www.cubesatkit.com/docs/CSK PCB Spec-A5 (Accessed May 14,
2020)

[20] N. F. Haddad, R. D. Brown, R. Ferguson, A. T. Kelly, R. K. Lawrence,
D. M. Pirkl, and J. C. Rodgers, “Second generation (200mhz) rad750
microprocessor radiation evaluation,” in 2011 12th European Conference
on Radiation and Its Effects on Components and Systems. IEEE, 2011,
pp. 877–880.

[21] BAE Systems, “RAD5545 data sheet.” [On-
line]. Available: https://www.baesystems.com/en/download-
en/20190327203103/1434571328901.pdf (Accessed May 29, 2020)

[22] F. Sturesson, J. Gaisler, R. Ginosar, and T. Liran, “Radiation characteri-
zation of a dual core leon3-ft processor,” in 2011 12th European Confer-
ence on Radiation and Its Effects on Components and Systems. IEEE,
2011, pp. 938–944.

Bibliography 119

[23] J. J. Schaefer, I. A. Troxel, M. Gruber, C. Conger, J. Schaf, and K. Narve-
son, “Heavy ion test results for the moog broad reach bre440 processor,”
in 2019 IEEE Radiation Effects Data Workshop. IEEE, 2019, pp. 1–6.

[24] I. Troxel, “Radiation tolerant technology: enabling new mission capabili-
ties,” in Proc. Hardened Electronics and Radiation Technology (HEART)
Conference, Albuquerque, NM, March 19–22, 2013. Hardened Elec-
tronics and Radiation Technology (HEART) Conference, 2013.

[25] Office of the Chief Technologist, “2015 nasa technology roadmaps,” July
2015.

[26] M. B. Goforth, “Nasa avionics architectures for exploration (aae) and
fault tolerant computing,” 2014.

[27] C. Moore, “Technology development for nasa’s asteroid redirect mis-
sion,” in 65th International Astronautical Congress, IAC-14-D2, 2014,
pp. 8–A5.

[28] D. R. Thompson, A. Altinok, B. Bornstein, S. A. Chien, J. Doubleday,
J. Bellardo, and K. L. Wagstaff, “Onboard machine learning classification
of images by a cubesat in earth orbit,” AI Matters, vol. 1, no. 4, pp. 38–40,
2015.

[29] Bhat, Krishnaraj, “clpeak.” [Online]. Available:
https://github.com/krrishnarraj/clpeak (Accessed Nov 1, 2019)

[30] Konstantinidis, Elias, “mixbench.” [Online]. Available:
https://github.com/ekondis/mixbench (Accessed Nov 3, 2020)

[31] Bruhnspace, “ROCm APU.” [Online]. Available:
https://bruhnspace.com/rocm-apu (Accessed Nov 2, 2019)

[32] AMD, “AMD Ryzen™ Embedded V1000 Series.” [Online]. Avail-
able: https://www.amd.com/en/products/embedded-ryzen-v1000-series
(Accessed May 30, 2020)

[33] CPU-World, “AMD Ryzen™ Embedded V1000 Series.” [On-
line]. Available: https://www.cpu-world.com/CPUs/Bulldozer/AMD-
A10-Series%2520A10-8700P.html (Accessed May 30, 2020)

[34] OpenAI, “AI and Efficiency.” [Online]. Available:
https://openai.com/blog/ai-and-efficiency/ (Accessed May 26, 2020)

120 Bibliography

Chapter 9

Paper D
Simulation and Analysis of
In-Orbit Applications under
Radiation Effects on COTS
Platforms

Nandinbaatar Tsog, Saad Mubeen, Moris Behnam, Mikael Sjödin, Fredrik
Bruhn
In the Proceedings of the 42nd International IEEE Aerospace Conference,
AeroConf 2021

121

Abstract

Radiation effects research is crucial as it defines risk to both human bodies
and spacecraft. Employing radiation-hardened products is one way to mitigate
radiation effects on in-orbit systems. However, radiation effects prohibit most
of the state-of-the-art commercial off-the-shelf (COTS) technologies from use
in space. Furthermore, radiation effects on software components are less stud-
ied compared to hardware components. In this work, we introduce a simula-
tion tool that simulates and performs post-simulation analysis of the impact
of radiation effects on schedulability of the software task sets that execute on
COTS system-on-chip (SoC) platforms within in-orbit systems. In order to
provide a meaningful verification environment, single-event effects (SEEs) are
introduced as aleatory disturbances characterized by probability distribution
of occurrence using their predefined models. The tool supports interoperabil-
ity with several other tools as it uses the extensible markup language (XML)
model files for input and output, i.e., for importing input task sets and radiation
effects and exporting the simulation and analysis results. The proposed tool is
extensively by running simulations using a use case of an in-orbit onboard
monitoring system.

Chapter 9. Paper D 123

9.1 Introduction

Radiation effects increase the complexity of space explorations. The radia-
tion challenge is crucial to consider risks on both biological and mechanical
systems, including equipment used in orbit such as onboard computers. As ra-
diation effects are cumulative on the one hand, although the dose of space radi-
ation is mostly low, its risk increases by the total time traveled in space [1, 2].
This characteristic is described by total dose of radiation, i.e., total ionizing
dose (TID). Developing shielding materials or radiation-hardened products in
order to mitigate radiation effects in orbit components could worsen the other
limitations such as size, weight, and power (SWaP), cost, and development
time. On the other hand, particles such as electrons cause electrostatic dis-
charge, single-event effects (SEEs). Therefore, radiation effects can hinder the
usage of commercial off-the-shelf (COTS) technologies that have been suc-
cessful in the systems used the earth, such as COTS system on chip (SoC),
including the use of integrated graphics processing units (GPUs), which im-
prove the quality of onboard data processing [3].

Technology advancements of COTS SoC accelerators bring the possibil-
ity of intelligent onboard data processing instead of transmitting all massive
raw data to ground stations via narrow downlink. Examples of onboard data
processing include image processing and smart decisions based on artificial in-
telligence (AI), to mention a few. However, system developers need to tackle
radiation risks to the systems that use COTS SoCs. A task set is said to be
schedulable if all tasks complete their executions before the corresponding
deadlines. Schedualbility of the task set is its property that determines if the
task set is schedulable or not.

The radiation environment of deep space and on the earth’s surface or in
low earth orbit (LEO) are different. The radiation in LEO even varies as the
reason for solar activity fluctuations [4]. The study of radiation effects on
the human body and materials of components used in-orbit systems, including
hardware [5, 6], is well-known and on-going. However, the study of how the
radiation effects impact at the software application level is a spotless research
area due to their complex and broad characteristics covering various radiation
types, different types of hardware, and die revision changes through each fam-
ily of hardware [7].

9.1.1 A. Contributions

This paper aims at investigating and demonstrating the impact of radiation
effects on the schedulability of task sets that run on COTS SoC platforms con-

124 9.2. MUST: System architecture

sisting of heterogeneous processing units. In this regard, the paper introduces
a simulation tool, namely Mälardalen-Unibap Simulation Tool (MUST). The
tool supports several types of probability distributions and models to describe
the radiation effects in the simulation. Furthermore, the simulation tool is
able to add processing units such as central processing unit (CPU), graphics
processing unit (GPU), field-programmable gate array (FPGA) as using their
settings. Our aim in this paper is to identify how the probability distributions
of radiation affect the timing schedulability of the task sets using the simula-
tion tool. Note that we consider the challenges arising due to radiation effects
at the software (program) level, particularly at the granularity of operating sys-
tem task and task sets. Hence, the proposed tool, MUST, can be useful for
simulating the schedulability of task set under aleatory disturbances of radia-
tions to devices when developers need to start considering unknown working
environment such as space.

9.1.2 B. Organization

The rest of the paper is organized as follows. In Section 9.2, the system archi-
tecture of MUST and other background information are provided. The layout
and implementation of the tool is discussed in Section 9.3. Experimental eval-
uation and a discussion of the tool is followed in Section 9.4. Related work and
related tools are introduced in Section 9.5. Section 9.6 concludes the paper and
discusses future work.

9.2 MUST: System architecture

9.2.1 A. System Model

The system model considered in Mälardalen-Unibap Simulation Tool (MUST)
consists of a system S. The system S comprises of radiation effect χ, m
numbers of devices {Pm} employed in onboard computer platforms including
heterogeneous processing units (such as CPU and GPU), and a task set Γ. A
task set means a set of programs/applications such as threads in Linux. The
system is represented by the following tuple:

S = 〈χ, {Pm},Γ〉 (9.1)

We consider the fixed priority preemptive scheduling policy for CPU sched-
uler and non-preemptive fixed priority scheduling policy for GPU scheduler [8].

Chapter 9. Paper D 125

9.2.2 B. Task Model

Each task τi ∈ Γ is executed periodically and described with its worst case
execution time Ci, its activation period Ti, and its relative deadline Di (the
deadline considered from the beginning of its activation period), i.e.,

τi = 〈Ci, Ti, Di〉 (9.2)

In order to simulate the task set Γ and check its schedulability, all tasks will
be executed for the time interval that is equal to the hyperperiod of all tasks,
which is calculated as the least common multiple of periods of all tasks, i.e.,

HP (Γ) = LCM(Ti) (9.3)

for all τi ∈ Γ. In other words, a task τi could be executed several times during
the hyperperiod HP (Γ). Therefore, we consider jobs of task τi and jth job of
task τi is denoted as τi,j . Jobs are the released execution instances of a peri-
odic task in each period. Every task consists of sequential, parallel, sequential
segments. Sequential segments highlighted with blue color can be executed
only sequential manner using CPU, while parallel segments highlighted with
red color can be executed either on CPU sequential or on GPU parallel manner
as depicted in Figure 9.1. Ci is expressed with an idea of alternative executions
for parallel segments [9] on heterogeneous processing units {Pm}.

Figure 9.1: Alternative executions of parallel segment

As illustrated in Figure 9.1, this idea means that any parallel segment of

126 9.2. MUST: System architecture

a task can be executed on different processing units for different jobs, i.e.,
the execution of a parallel segment of a particular task is not always allocated
to one particular processing unit. For example, while a parallel segment of
job τi,j executes on CPU, the same parallel segment of job τi,k may execute
on GPU in order to avoid using one particular processing unit. Because, the
intensive use of one particular processing unit can consequence a bottle neck.

9.2.3 C. Radiation Effect Model

The occurrence of a radiation effect generally follows the fault burst model [10,
11] in real-time systems as illustrated in Figure 9.2. The fault burst model de-
scribes the occurrence of multiple single radiation effects in radiation effect
interval. This means that their distributions and total amount of radiation ef-
fects in the radiation effect interval can differ in each time, however, the burst
of radiation effects can be bounded by the radiation effect interval.

Figure 9.2: The fault burst model expressing radiation effects

Based on this model, we propose the following extended model of radia-
tion effects employing probability distributions to radiations of environments.
We consider that the system S performs under continuous radiation effects.
However, the strength of radiation effect is distributed with the given probabil-
ity distribution. Moreover, each device in the system S has different level of
tolerances against radiations. We define it as a radiation tolerance of a device
Pl (where l ≤ m) and denote it as σl. Hence, the system can be executed
normally under the following condition:

χ(t) ≤ σl (9.4)

where t is the current clock tick and l is an index of the busy device Pl as
executing a job τi,j . A job τi,j needs to be re-executed if it does not satisfy the

Chapter 9. Paper D 127

Figure 9.3: Layout of the MUST simulation tool under radiation effects

128 9.2. MUST: System architecture

(a) Option of registered radia-
tions

(b) Results for selected radia-
tion types

(c) Option of registered CPUs (d) Option of registered GPUs

Figure 9.4: Option of settings

Chapter 9. Paper D 129

condition described in Equation 9.4.
In this paper, we consider the following four well-known probability dis-

tributions for radiation effect χ: i) uniform distribution, ii) normal distribution,
iii) triangular distribution, and iv) exponential distribution.

9.3 MUST: Design and implementation

This section briefly discusses the inputs and outputs of the tool, design of the
user interface of the tool, simulation mechanism, and implementation and dis-
tribution of the tool.

9.3.1 A. Input & Output

This tool performs simulations of the systems based on the input provided by
the user. The input consists of number and type of devices, task sets, number of
tasks and their properties in each task set, and radiation effects according to the
system, task and radiation effect models discussed in Section 3. The overview
of the simulation page of this simulation tool is illustrated in Figure 9.3. The
necessary setting parameters are located at the upper part of the simulation
page of the tool.

As depicted in Figures 9.3, 9.4(a), 9.4(c), and 9.4(d), both radiation and
device settings are easily selected from the list of registered radiation types and
devices, respectively. On the pages of device and radiation effect, a user can
register their related information such as the radiation tolerance for devices,
and probabilistic distribution and radiation type (SEE or TID) for radiations.
The tool allows the users to register new devices and radiation effects. This
allows the users to utilize the tool for the devices with known properties as well
as for the prospective devices that the users expect to have. Regarding creating
a new radiation effect, any probabilistic distributions can be used along with
the existing radiation models provided in the tool. For example, the tool has
the default radiation effects based on AP-8 and AE-8 models [12].

As the main output of the tool, a number of schedulable task sets (i.e., the
task sets in which all tasks completed their executions before the correspond-
ing deadlines) is reported based on the simulation results. Furthermore, the
detailed results of each simulation trial are illustrated in the result part of the
tool. This includes the execution trace of each simulation and radiation graph
with respect to the clock tick used in the execution trace. As shown in Fig-
ure 9.4(b), the radiation graph can be illustrated with either ”TID [krad]” or
”Energy [MeV]” on the vertical axis.

130 9.3. MUST: Design and implementation

(a) Layout of overview page

(b) Layout of device list page

Figure 9.5: Layout of various pages in the MUST tool

Chapter 9. Paper D 131

(a) Layout of radiation effect list

(b) Layout of task set list

Figure 9.6: Layout of various pages in the MUST tool

132 9.3. MUST: Design and implementation

9.3.2 B. Design

The layout of the main pages are depicted in Figures 9.5 and 9.6. The tool con-
sists of 3 parts, the input/setting part, the operation part, and the output/moni-
toring/archive part. As we discussed in the previous subsection, the device and
radiation effect settings belong to the input part as illustrated in Figures 9.5(b)
and 9.6(a), respectively. Based on the data received from the input part, the
operation part performs simulations and produces analysis results as outputs.
Hence, as depicted in Figure 9.3, the simulation page belongs to the operation
part. The information generated through simulations is stored in the task lists
(see Figure 9.6(b)). The created task set and radiation effects can be exported
as an extensible markup language (XML) model file, which can be input to
any other tool conforming to the XML format.

Further, as illustrated in Figure 9.4(a), the overview page shows the basic
statistics of the tool such as the total number of the performed simulations and
the created radiation effects.

9.3.3 C. Simulation Mechanism

Each task created in the tool has its own priority that depends on the setting.
The different priority assignment policies such as rate monotonic (RM), dead-
line monotonic (DM) and earliest deadline first (EDF) can be used. In this
paper, we consider only EDF priority assignment policy.

1) Generating a task set

First of all, the tool creates a task set with the assigned number of tasks. Each
task is assigned an execution time, period, and deadline.

2) Assigning priorities

Since, we consider EDF, the priorities of tasks are dynamic. Thus, a job of
the task with the earliest deadline gets the highest priority. In the case if two
or more jobs of different tasks have the same deadlines then the priorities are
assigned according to the ID numbers of the corresponding tasks, i.e., higher
the ID of the task higher the priority of the corresponding job in case multiple
jobs have the same deadlines. In order to perform a simulation, the allocation
of parallel segments of each task to the appropriate processing unit should be
handled.

Chapter 9. Paper D 133

3) Simulation

The simulation process continues until the clock tick reaches the time equal
to the hyperperiod of the task set, HP (Γ). At every clock tick, the simulator
checks the priorities of tasks and selects the task that should be executed at this
clock tick. The job of a task that has completed its execution is not considered
until the release time of the next job that occurs periodically. Before executing
a task, the simulator generates the environment radiation based on the type of
radiation effect setting (TID or SEE). As the environment radiation is smaller
than the radiation tolerance of the allocated processing unit (device) in the
case of SEE, the simulator executes the task with 1 clock tick. In the case
of TID, if the total exposure including current TID is still smaller than the
radiation tolerance of the allocated device, the simulator executes the task with
1 clock tick as well. Otherwise, the simulator resets all the execution until this
moment. This means that the task set starts from the beginning of the next
clock tick, however, the current clock tick will continue. Then the simulator
checks the deadline of the job. If the job misses its deadline, the simulator
counts the deadline miss and ends this simulation trial.

9.3.4 D. Implementation

The user interface of the tool is developed considering the web browser based
solution using the MERN stack1 in order to be less platform dependent. The
MERN stack is a combination of four web technologies, MongoDB2, Express
JS3, React JS4 and Node JS5. The user interface is based on [13], where the
detailed development guide of the MERN stack can be found.

The back-end of the simulator is implemented in Python programming
language6 using MongoClient, datetime, logging, random, time, and count li-
braries. Hence, the simulator is less dependent on underlying platforms. As
using MongoDB as NoSQL, the data structure can be extended and customized
easily without destroying data in the current experiment. This means that the
tool can be easily adapted for new devices and radiation models.

The tool is published and distributed to GitLab repository page7 freely.
The tool can be extended with different types of radiation models, devices and

1https://www.mongodb.com/mern-stack
2https://www.mongodb.com/
3https://expressjs.com/
4https://reactjs.org/
5https://nodejs.org/
6https://www.python.org/
7https://gitlab.com/nabarja/must aeroconf2021

134 9.4. MUST: Use case

new execution models, for example, the adaption of CRÈME96 [14], SPEN-
VIS [15], TASTE [16], and Radeon™ GPU Profiler8. All changes regarding
these extensions can be tracked on this page.

9.4 MUST: Use case

This section evaluates the MUST tool using a monitoring use case of an in-
orbit system and discusses how the schedulability of task sets can be improved.

9.4.1 A. Use Case Description

The evaluation of the MUST tool is considered to apply a use case of moni-
toring system. This use case is inspired by a smallsat computer system [17],
which presents a pre-operational task-set and logging software. Satellites con-
sist of several peripherals and it is significant to monitor their abnormal activ-
ity. As depicted in Figure 9.7, an onboard computer (OBC) handles a moni-
toring system with two tasks, namely τ0 and τ1. Task τ0 detects and collects
status of peripherals to the storage employed in the OBC. Task τ1 analyzes
the stored logs and makes an appropriate decision such as sending report to
the ground station, rebooting the system, and restarting a particular peripheral,
and so on.

The periods of τ0 and τ1 are 900 ms and 1200 ms, respectively. We
consider implicit deadlines for the tasks. This means that the deadline of a
task is considered to be equal to its period. Thus, the hyperperiod of the
task set is 3600 ms. Each task has a parallel segment which is allocated to
CPU. The execution times of the sequential, parallel, sequential segments of
τ0 and τ1 are {20 ms, 20 ms, 30 ms} and {40 ms, 40 ms, 50 ms} respec-
tively. The scheduling policy is EDF. Hence, the utilization of the task set is
U = 70/900+130/1200 = 0.186, which satisfies the schedulability condition
of EDF: U ≤ 1.

The radiation tolerances of the devices, CPU and GPU, are given as 10
MeV. The environment radiation is created using the uniform distribution with
the ranges’ [1 MeV; 10.5 Mev]. This means that the environment radiation
exceeds only 5% probability of the devices’ radiation tolerance.

9.4.2 B. Evaluation and Discussion

Table 9.1 reports the simulation results of the experiment. There are 4 and 3
jobs of tasks τ0 and τ1 in the hyperperiod of 3600 ms. The table shows that

8https://gpuopen.com/rgp/

Chapter 9. Paper D 135

Figure 9.7: Use case: Monitoring system

each of two jobs of τ0 within the hyperperiod complete their executions before
and after the corresponding deadlines. In the case of τ1, only one job completes
its execution before the deadline, while two of its jobs miss their deadlines in
the hyperperiod. Thus, the task set is not schedulable under the given radiation
effect.

Let us focus on the job τ0,1. During 483 ms, the first and second segments
of the job restarted 26 and 5 times, respectively. Furthermore, in this simula-
tion, the first segment of any job needs to restart even if the second or the third
segments experience the radiation effect while they are executing.

This experiment reveals that the smaller the size of the segment the lesser
it is affected by the radiation effect. Hence, an important take-away from this

136 9.5. Related work and tools

Table 9.1: Experiment results
Job τi,j Execution

time
Response
time

Result

τ0,1 70 ms 483 ms pass
τ0,2 70 ms >864 ms misses deadline
τ0,3 70 ms >268 ms misses deadline
τ0,4 70 ms 169 ms pass
τ1,1 130 ms 451 ms pass
τ1,2 130 ms 600 ms misses deadline
τ1,3 130 ms 729 ms misses deadline

experiment is that the schedulability of the systems under radiation effects
can be improved if the the execution times of the jobs are partitioned into
smaller chunks so that the partial execution results can be more frequently
saved. Developing such a technique to determine optimized chunks of the
executions is left for the future work.

9.5 Related work and tools

Space missions are limited to bring the technological advances in COTS plat-
forms due to the radiation effects. There are many works that focus on mea-
suring the behaviour of COTS platforms under radiation effects [7], [18], [5].
These works consider the effect of radiation regarding total ionizing dose (TID)
and single-event effects (SEEs) on in-orbit hardware and materials used in the
spacecraft. Miller et al. [6] and Troxel [7] consider the radiation effect on
commercial DRAMs. The exposed particle can damage hardware, which can
end up with data loss as well. Moreover, the authors mention the changes of
chip revision within each family can be another concern of radiation effects.
Therefore, the current state of the art focuses on how radiation effects can af-
fect materials of hardware that, in turn damages the stored data. There is a lack
of research on investigation of radiation effects on the execution behavior of
applications that are stored in the hardware.

Besides performing radiation testing, the space missions predict the radi-
ation effects using several existing tools. CRÈME96 is a state-of-the-art pre-
diction tool for SEEs based on the Cosmic Ray on Micro-Electronics code that
provides better description of the environment with ionizing radiations and im-
proved calculations of single-event upsets (SEUs) [14]. CRÈME96 provides

Chapter 9. Paper D 137

the prediction models that predict how cosmic ray affects microelectronics.
The European Space Agency (ESA) provides space environment information
system (SPENVIS) [15]. SPENVIS provides models of the hazardous space
environment including cosmic rays, radiation belts, solar energetic particles,
among others. OMERE9 is a freeware radiation software dedicated to radia-
tion effects to electronic devices in space environment. This tool is developed
with the support of the National Centre for Space Studies (CNES) based on the
industrial requirements from several organizations and companies. OMERE
computes particle fluxes as the space environment, and dose, displacement
damage, SEEs and solar cell degradation as radiation effects on electronic de-
vices. We plan to add models from both CRÈME96, SPENVIS, and OMERE
in future release of our tool.

Under the ESA initiative, TASTE is developed as a development tool-chain
that targets heterogeneous, real-time, and embedded systems [16]. TASTE
supports model-based development and provides early verification and testing
of generated applications. We consider that bringing a possibility to import the
TASTE generated applications as tasks to our tool can broaden the usability
of it. Further, Radeon™ GPU Profiler provides the detailed execution trace of
tasks on GPU computing. We plan to include it in the future release of our tool
as this will help to consider the reality of task segments.

9.6 Conclusions

This paper introduced the architecture, design, implementation and simulation
mechanisms of a new simulation tool for the task sets running on heteroge-
neous processing units that are subject to radiation effects. Furthermore, the
tool performs post-simulation analysis to check the schedulability of the task
set. The occurrence of radiation effects in this work is described with common
probability distributions. As one of the outputs, the tool provides the rate of
deadline misses among simulated task sets. The tool is designed to support
interoperability with other tools that use the XML format for inter-tool com-
munication. That is, the task sets and radiation models can be exchanged with
the XML model files.

The preliminary experiment using the tool shows that a technique splits
a task into small segments and guarantee to save their executed results from
radiation effects can improve schedulability of task sets. As future work, the
tool can be extended to interoperate with the existing tools such as the cosmic
ray effects on micro-electronics CRÈME 96, ESA’s space environment infor-

9https://www.trad.fr/en/space/omere-software/

138 9.6. Conclusions

mation system SPENVIS, and Radeon™ GPU Profiler. Further, although the
tool includes the simplified NASA radiation belt models, AP8 and AE8, we
continue to improve this simplified model in the tool.

Bibliography 139

Bibliography

[1] L. Walsh, U. Schneider, A. Fogtman, C. Kausch, S. McKenna-Lawlor,
L. Narici, J. Ngo-Anh, G. Reitz, L. Sabatier, G. Santin et al., “Research
plans in europe for radiation health hazard assessment in exploratory
space missions,” Life sciences in space research, vol. 21, pp. 73–82,
2019.

[2] J. Rask, W. Vercoutere, B. Navarro, and A. Krause, “Space faring: The
radiation challenge,” Nasa, Module, vol. 3, no. 8, p. 9, 2008.

[3] L. L. Bello, R. Mariani, S. Mubeen, and S. Saponara, “Recent advances
and trends in on-board embedded and networked automotive systems,”
IEEE Transactions on Industrial Informatics, vol. 15, no. 2, pp. 1038–
1051, 2018.

[4] L. M. Martines S, “Analysis of leo radiation environment and its effects
on spacecraft’s critical electronic devices,” 2011.

[5] R. Kingsbury, F. Schmidt, W. Blackwell, I. Osarentin, R. Legge, K. Ca-
hoy, and D. Sklair, “Tid tolerance of popular cubesat components,” in
2013 IEEE Radiation Effects Data Workshop (REDW). IEEE, 2013, pp.
1–4.

[6] C. Miller, R. Owen, M. Rose, P. M. Rutt, J. Schaefer, and I. A. Troxel,
“Trends in radiation susceptibility of commercial drams for space sys-
tems,” in 2009 IEEE Aerospace conference. IEEE, 2009, pp. 1–12.

[7] I. Troxel, “Memory technology for space,” Military and Aerospace Pro-
grammable Logic Devices (MAPLD), 2009.

[8] L. Sha, T. Abdelzaher, A. Cervin, T. Baker, A. Burns, G. Buttazzo,
M. Caccamo, J. Lehoczky, A. K. Mok et al., “Real time scheduling the-
ory: A historical perspective,” Real-time systems, vol. 28, no. 2, pp. 101–
155, 2004.

[9] N. Tsog, M. Becker, F. Bruhn, M. Behnam, and M. Sjödin, “Static alloca-
tion of parallel tasks to improve schedulability in cpu-gpu heterogeneous
real-time systems,” in IECON 2019-45th Annual Conference of the IEEE
Industrial Electronics Society, vol. 1. IEEE, 2019, pp. 4516–4522.

[10] F. Many and D. Doose, “Fault tolerance evaluation and schedulability
analysis,” in Proceedings of the 2011 ACM Symposium on Applied Com-
puting, 2011, pp. 729–734.

140 Bibliography

[11] A. Burns, R. Davis, and S. Punnekkat, “Feasibility analysis of fault-
tolerant real-time task sets,” in Proceedings of the Eighth Euromicro
Workshop on Real-Time Systems. IEEE, 1996, pp. 29–33.

[12] C. E. Jordan, “NASA radiation belt models AP-8 and AE-8,” RADEX
INC BEDFORD MA, Tech. Rep., 1989.

[13] C. Bonneau, “Internship report,” Mälardalen University, Sweden, 2020.

[14] A. J. Tylka, J. H. Adams, P. R. Boberg, B. Brownstein, W. F. Diet-
rich, E. O. Flueckiger, E. L. Petersen, M. A. Shea, D. F. Smart, and
E. C. Smith, “CREME96: A revision of the cosmic ray effects on micro-
electronics code,” IEEE Transactions on Nuclear Science, vol. 44, no. 6,
pp. 2150–2160, 1997.

[15] D. Heynderickx, B. Quaghebeur, E. Speelman, and E. Daly, “ESA’s
Space Environment Information System (SPENVIS)-A WWW interface
to models of the space environment and its effects,” in 38th Aerospace
Sciences Meeting and Exhibit, 2000, p. 371.

[16] M. Perrotin, E. Conquet, J. Delange, A. Schiele, and T. Tsiodras, “Taste:
a real-time software engineering tool-chain overview, status, and future,”
in International SDL Forum. Springer, 2011, pp. 26–37.

[17] C. R. Julien, B. J. LaMeres, and R. J. Weber, “An fpga-based radiation
tolerant smallsat computer system,” in 2017 IEEE Aerospace Conference.
IEEE, 2017, pp. 1–13.

[18] D. Sinclair and J. Dyer, “Radiation effects and cots parts in smallsats,”
2013.

Chapter 10

Paper E
Static Allocation of Parallel
Tasks to Improve Schedulability
in CPU-GPU Heterogeneous
Real-Time System

Nandinbaatar Tsog, Matthias Becker, Fredrik Bruhn, Moris Behnam, Mikael
Sjödin
In the Proceedings of the 45th Annual Conference of the IEEE Industrial Elec-
tronics Society, IECON 2019

141

Abstract

Autonomous driving is one of the main challenges of modern cars. Computer
visions and intelligent on-board decision making are crucial in autonomous
driving and require heterogeneous processors with high computing capability
under low power consumption constraints. The progress of parallel computing
using heterogeneous processing units is further supported by software frame-
works like OpenCL, OpenMP, CUDA, and C++AMP. These frameworks allow
the allocation of parallel computation on different compute resources. This,
however, creates a difficulty in allocating the right computation segments to
the right processing units in such a way that the complete system meets all its
timing requirements. In this paper, we consider pre-runtime static allocations
of parallel tasks to perform their execution either sequentially on CPU or in
parallel using a GPU. This allows for improving any unbalanced use of GPU
accelerators in a heterogeneous environment. By performing several heuristic
algorithms, we show that the overuse of accelerators results in a bottle-neck of
the entire system execution. The experimental results show that our allocation
schemes that target a balanced use of GPU improves the system schedulability
up to 90%.

Chapter 10. Paper E 143

10.1 Introduction

Modern cars face several cases to be solved, such as environmentally friendly
vehicles, connected vehicles, and self-driving cars. For example, while identi-
fying obstacles using computer vision applications or making more smart deci-
sions by on-board AI (artificial intelligence) applications, modern cars should
be energy efficient. In order to cope with these challenges, thus, efficient en-
ergy consumption and intelligent on-board processing are crucial. With the
increasing demand on processing capability with low power-consumption, the
trend of processing units in real-time systems has started to shift from single
core to multi- and many-core CPUs as well as heterogeneous processing units
[1]. For example, a CPU is preferred for sequential computation while a GPU
shows its advantages in parallel numerical computation.

Academic work on sequential and parallel computation is broadly con-
ducted in the real-time and high performance computing communities. In
heterogeneous computing[2, 3], a task is often considered as a sequence of
multiple segments. A task segment can represent either sequential execution
or parallel execution, where the same function is applied on different parts of
the data as shown in Figure 10.1. A parallel segment can be executed by differ-
ent processing units (not only GPU), however, in this paper we only consider
GPU and CPU resources. Furthermore, the allocation of parallel segments of
the program to compute resources is typically done at design time. However,
allocating all parallel segments to the same resource might over-restrict the
systems. In high performance computing and supercomputer community, dis-
tributed computing is considered in order to decrease the overuse of the same
resource [3].

Figure 10.1: The execution alternatives of a parallel segment of tasks

In this work, we consider an extension of the fork-join task model [4],
by adopting the alternative executions of parallel segments since this extended

144 10.1. Introduction

model has been introduced in the real-time community just recently [5]. A par-
allel segment can either be mapped to a GPU for parallel execution (alternative
B) or to a CPU for sequential execution of the same code segment (alternative
A), see Figure 10.1. This then allows to take the characteristics of the exe-
cution on the different processing units into account during the system design
phases where mapping decisions are taken.

Traditionally, parallel computations are often allocated to the GPU re-
sources as it provides better performance compared to sequential execution
on the CPU. However, the overuse of GPUs may end up in a bottle-neck situ-
ation [6]. Therefore, a study of how we can balance the allocation of parallel
tasks to different processing units is warranted and important.

10.1.1 Contributions

In this work, we study how static allocation of parallel tasks can improve
schedulability of task sets in GPU accelerated real-time systems. This allows
to eliminate the bottle-neck caused by overuse of GPUs. Our main contribu-
tions in this paper are:

• We show that the overusing of GPU might bring a negative impact to the
schedulability of real-time systems.

• We tackle this problem by offloading GPU computation to CPU. In other
words, we conduct pre-runtime static allocations of the parallel segments
either on CPU or GPU.

• We adapted the following heuristic approaches using synthetic work-
loads: Non-Greedy Resource Allocation Heuristic Approach (NHA),
Speedup Classifier based Heuristic Approach (SHA), and Min-Min Ap-
proach (MMA). We show that the algorithms based on these approaches
improve the schedulability of task sets compared to their default task
mapping on the GPUs using Baseline Task Set (BTS) approach, see Sec-
tion 10.5.2).

• Our synthetic experiments show up to 90% of improvement of the schedu-
lability of task sets depending on the platform size compared to the de-
fault task mapping on the GPUs (BTS).

10.1.2 Organization

In the rest of this paper, we motivate this paper in Section 10.2. Section 10.3
presents a description of our system model, followed by detailed explanation of

Chapter 10. Paper E 145

the task model. Heuristic task allocation approaches are introduced in Section
10.4. In Section 10.5, we describe experiments and their setups and report
our experimental evaluation. We discuss the related work in Section 10.6 and
lastly, conclusions are presented in Section VII.

10.2 Motivation

Due to the following two reasons, we strongly consider the importance of bal-
anced use of CPU and GPU in real-time systems with the partitioned fixed
priority preemptive scheduling for CPU and the fixed priority non-preemptive
scheduling for GPU.

• As the GPU is a single shared resource under the fixed priority non-
preemptive scheduler, a higher priority task could be blocked by lower
priority tasks. The blocking is well known in real-time community and
it appears in many ways such as priority inversion problem.

• Interference from higher priority tasks extends the response time of a
lower priority task that may result in the deadline miss.

As shown in Figure 10.2, assume a scenario for the first case above by
considering the scheduling of three tasks, τh, τm and τl, with high, middle and
low priorities, respectively. The system has 2 CPU cores and a single GPU,
and follows rate-monotonic priority assignment on CPU and non-preemptive
on GPU. We assume that task τh has 3 segments with sequential, parallel,
sequential order. The worst case execution times (WCETs) of each segment
are 2, 1, and 3 time units. As we focus on task τh, we do not consider all
the segments of tasks τm and τl. Only necessary segments of these tasks are
given as follows. The first segment of task τm is sequential with 3 time units
of WCET. The first two segments of τl are sequential (WCET: 1 time unit) and
parallel (WCET: 11 time units).

Then, task τl releases at 0 for 1 time unit on CPU core 2 and executes then
with 11 time units on GPU. Task τm starts at 1 for 3 time units on CPU core
1 and tries to run on GPU. However, this execution will be blocked by task
τl. Later, task τh releases at 4 on CPU core 1 for 2 time units. At 6, task τh
tries to run on GPU, however, GPU is still occupied with task τl. Task τh starts
running on GPU at 12 for 1 time unit and runs back on CPU core 1 from 13 for
3 time units. Therefore, task τh completes at 16 and the response time is 12.

Now we consider the alternative executions of parallel segments shown in
Figure 10.3. In addition to the previous case, we assume that the WCET of the

146 10.3. System and task model

Figure 10.2: The execution of parallel segment on GPU

Figure 10.3: The execution of parallel segment either on GPU or CPU

parallel segment of task τh on CPU is 4 time units, which is 4 times longer than
the WCET on GPU. In order to identify both alternatives, we use the notation
of τCh and τGh , which are the executions of parallel segment on CPU and GPU,
respectively. In Figure 10.3, we can see that the previous case is described
as τGh . Then, let us consider the case of τCh . Until 6, the executions of both
τGh and τCh are the same. As we know GPU is busy with τl at 6, τCh can be
executed on CPU. This execution finishes at 10, and the third segment of task
τh is executed on CPU continuously. In this case, task τh finishes at 13 and
its response time is 9. This means that the execution on CPU (τCh) has shorter
response time than the execution on GPU (τGh).

10.3 System and task model

10.3.1 System model

We consider a system S, that consists of a task set Γ with n tasks. A hardware
platform has m identical CPUs {PCPUm } and a single GPU device PGPU .

S =< Γ, {PCPUm }, PGPU > (10.1)

Chapter 10. Paper E 147

For CPU scheduler, the partitioned fixed priority preemptive scheduling tech-
nique is assumed. GPU allows to execute tasks with non-preemptive fixed
priority scheduling.

10.3.2 Task Model

A task τi ε Γ is represented by the fork-join task model, where parallel work-
load is modelled by fork/join segments. τi can be characterized by the tuple
{Si, Di, Ti}, where Di is the relative deadline of the task and Ti is the pe-
riod of the task. Si is composed of a finite sequence of l different execution
segments {Si,1, Si,2, . . . , Si,l}, where l ∈ N (see Figure 10.4). Each of the seg-
ments Si,j ∈ Si represents a number of k sub-tasks τ1i,j , . . . , τ

k
i,j , where k ∈ N,

and has an assigned Worst-Case Execution Time (WCET) for each segment,
denoted by Ci,j . We define a sequential segment for Si,j where k=1 (having
a single sub-task), and a parallel segment for Si,j where k >1 (having mul-
tiple sub-tasks). We further require that the first and last segment of the task
have a segment with only one sub-task. During execution, the sub-tasks of a
segment Si,j can only be released once all sub-tasks of prior segments Si,j−1,
completed their execution. As this model defines the application, at this stage,
no allocation to the different compute resources (CPU or GPU) is included
and the WCET estimates are generally not known. We assume the allocation
of the sequential segments on CPU is predefined. We are aware that changing
this allocation might have a big impact on the performance and combining this
with our solutions might provide better result. However, we leave this part as
future work.

Figure 10.4: Execution segments of task τi and their allocations on the differ-
ent resources

As the main focus of this work is the allocation of computation (parallel
segments) to the different hardware types, the model is further extended. A
parameter hi,j is added for each segment Si,j ∈ Si of a task τi. hi,j encodes

148 10.3. System and task model

the allocation decision, i.e. hi,j = CPU or hi,j = GPU, where CPU and GPU
are different constants.

The execution time Ci,j is then dependent on the selected compute re-
source, and is represented as:

Ci,j =

{
CCPU
i,j · k if hi,j = CPU

CGPU
i,j if hi,j = GPU

(10.2)

This represents the parallel execution of a segment, when assigned to the
GPU (denoted by CGPU

i,j) and the sequential execution of all k sub-tasks on
the CPU(denoted by CCPU

i,j). It also needs to be noted that typically execu-
tion on the GPU requires miscellaneous operations (such as copying of data).
To model this, the execution time on the GPU can further be divided into
CGPU
i,j = Gmi,j + GCi,j . Where Gmi,j represents miscellaneous computation and

GCi,j represents actual computation on the GPU.

To ease the later presentation of our approach we define CCPU
i (or simply

Ci) andCGPU
i (or simplyGi) as the total execution time that the task τi requires

from CPU and GPU respectively:

CCPU
i =

∑
∀τi,j |hi,j=CPU

Ci,j (10.3)

CGPU
i =

∑
∀τi,j |hi,j=GPU

Ci,j (10.4)

To give a estimate if a task τi is CPU-heavy or GPU-heavy, a metric is used
as conversion ratio between the two options. This conversion ratio is denoted
by µi and gives the ratio of required execution on CPU to GPU for all parallel
segments (i.e. segments that have more than 1 sub-task, k > 1):

µi =

∑
1≤j≤l, k>1, hi,j=CPU

Ci,j∑
1≤j≤l, k>1, hi,j=GPU

Ci,j
(10.5)

Smaller values of µi indicate that the benefit of execution on the GPU is smaller
compared to larger values of µi.

As all segments τi,j , where k = 1, represent purely sequential segments of
execution, they must be executed on the CPU and hi,j = CPU. For all other
segments hi,j depends on the concrete allocation.

Chapter 10. Paper E 149

10.4 Heuristic Task Allocation Approaches

The response time of a task can be improved by selectively assigning paral-
lel segments to CPU or GPU as highlighted in Section 10.2. The allocation
of parallel segments is considered as one dimensional bin packing problem
since it is defined as a problem of finding an optimal allocation of the parallel
segments to the suitable processing resources. However, finding an optimal
solution ends up with time complexity, which may be described with a year-
unit. Thus, improved exhaustive algorithms and heuristic algorithms should
be taken into account in order to decrease the search space and to find some
reasonable results, respectively. Due to the limited space, in this section, we
only skim an overview of heuristic approaches to allocate the tasks into their
preferable processors instead of concerning the optimal allocation. The aim of
these approaches is to improve the schedulability of a given task set. These
approaches take a task set as an input and returns the schedulability of the task
set. We assume that all the parallel segments of tasks are allocated to GPU by
default.

10.4.1 Non-Greedy Resource Allocation Heuristic Approach (NHA)

NHA is a simple allocation approach, which is intended to reveal the impor-
tance of the balanced use of CPU and GPU. This approach performs the fol-
lowing steps.

• Step 1. Check the schedulability of the input task set by using a schedu-
lability analysis test. This approach returns schedulable and stops if the
task set is schedulable.

• Step 2. Identify a task that misses its deadline.

• Step 3. Return not schedulable if the task has been allocated on CPU
already. Otherwise, allocate the task to CPU and goto Step 1 again.

10.4.2 Speedup Classifier based Heuristic Approach (SHA)

This approach is inspired by [3]. As illustrated in Figure 10.5, the idea of SHA
is based on a queue of GPU-using tasks which is sorted by a speedup classifier.
SHA follows the steps below.

• Step 1. Add tasks to a queue.

• Step 2. Sort them in order of speedup classifier as the task with the
largest classifier is first and the task with the smallest classifier is last.

150 10.4. Heuristic Task Allocation Approaches

Figure 10.5: A sorted task queue based on speedup classifier

• Step 3. Allocate the parallel segments of tasks on the left side of limiter
on GPU and the parallel segments of tasks on the right side of limiter
on CPU. In order to find the suitable limiter, we perform the following
different cases that 0%, 20%, 40%, 60%, 80% and 100% of the tasks are
allocated on the left side of the limiter.

• Step 4. To check and returns the schedulability test of the task set.

In [3], the speedup classifiers are calculated by using a support vector machine
(SVM). However, using machine learning algorithms may require longer al-
location time, which will be a disadvantage in real-time systems. Therefore,
instead of the speedup classifiers based on SVM, we consider the conversion
ratio of parallel segment(µi), priority, and utilization of tasks. We call the algo-
rithms used these classifiers as SHA-µ, SHA-prio, and SHA-util, respectively.

10.4.3 Min-Min Approach (MMA)

Braun et al. [7] report the Min-min approach shows the second best results
among eleven static heuristics for mapping tasks onto heterogeneous distributed
computing systems. The best heuristic is GA (Genetic Algorithms). However,
similar to the SVM based speedup classifiers, we have adapted GA as its allo-
cation time can be longer. In this paper, we consider the Min-min fashioned
approach which is described in the steps below.

• Step 1. Initially, there is no task allocated to any processors.

• Step 2. All the CPU-using tasks are allocated to each processor which
is allocated to when tasks are generated. All the GPU-using tasks are
placed in a queue in order of priority.

Chapter 10. Paper E 151

• Step 3. Pick the highest priority task from the queue and calculates
the two response times of this task using CPU or GPU for the parallel
segment, respectively. If there is no more task in the queue and all the
response-times are no greater than the deadlines, we say the task set is
schedulable and the solution is provided.

• Step 4. Allocate the parallel segments of the task either on CPU or GPU
according to the lowest response time of these cases.

• Step 5. Stop the algorithm if the systems is not schedulable when the
task is allocated to the suitable processor(s) in Step 4. Otherwise, re-
move the task from the queue and go to Step 3.

10.5 Synthetic Experiments

In order to evaluate a wide range of application parameters with our proposed
approach, synthetic experiments are performed.

Table 10.1: Initial configuration of task set generation

Parameters Values
Number of CPU cores (Np) 4, 8
Number of tasks (n) [2Np, 6Np]
Task utilization (Ui) [0.1, 0.2]
Task period and deadline (Ti = Di) [30, 500]ms
Percentage of GPU-using tasks [10, 30]%
Ratio of GPU segment len. to normal WCET (Gi/Ci) [10, 30]%
Number of parallel segments per task (ηi) 0 or 1-3
Ratio of misc. operations in Gi,j (Gmi,j/C

GPU
i,j) [10, 20]%

GPU server overhead (ε) 50µs
Conversion ratio of parallel segments (µi) [3-10]

10.5.1 Task set generation

The mechanism of task generation is based on the UUniFast algorithm, which
is proposed by Bini and Buttazzo [8]. Necessary configuration values are de-
scribed in Table 10.1. First, in order to generate both alternatives (the execution
either on CPU or GPU), we generate the WCET of parallel segments, which
is generated by using the ratio of GPU segment length to sequential segment’s

152 10.5. Synthetic Experiments

WCET. Then, we create the WCET of the sequential execution of the paral-
lel segment by using a conversion ratio of parallel segments, µi, which is in
default a random number between 3 and 10 brought from the experimental
studies from [9, 10].

10.5.2 Comparative algorithms

In order to evaluate our idea of the removal of bottlenecks of CPU-GPU, we
consider 6 comparative algorithms (BTS (Baseline Task Set), NHA, SHA-µ,
SHA-prio, SHA-util, and MMA) using the proposed heuristic approaches in
Section 10.4. Baseline Task Set (BTS) is a task set that all the parallel segments
of the tasks are allocated on GPU. We choose BTS as a baseline for comparison
investigation. The other algorithms are based on the proposed approaches.

The input to the approaches is a set of tasks that must fulfill the input
requirements of the task model (Section 10.3.2) such as segments, deadlines
and periods. As we defined in 10.3.2, the sequential segment of tasks is pre-
emptible and self-suspending [6, 11]. Further, a parallel segment of tasks is
stored in the priority-based GPU scheduler queue. The current executing paral-
lel segment on the GPU is non-preemptive. In other words, a parallel segment
can only be delayed by the higher priority parallel segments when this seg-
ment is on the GPU scheduler queue. Any schedulability analyzing test [11]
for the given execution model can be used together with the proposed heuris-
tic algorithms. We assume that the schedulability analysis returns the highest
priority task which misses its deadline among tasks in the task set. Otherwise,
the algorithm finishes its schedulability analysis and classifies the task set as
schedulable.

10.5.3 Experiment setup

In the experiments, we used 10,000 randomly generated task sets in general.
The experiments are based on the parameters as they shown in Table 10.1 ex-
cept for the parameters that are varied in the respective experiment. To decide
upon the schedulability of the task sets under the mapping that is created by our
proposed approaches, the schedulability analysis for server-based approaches
of [11, 12] are used.

10.5.4 Result

In this section, we describe the following 3 groups of experiments. Experi-
ment A focuses on the understanding of the balanced use of CPU-GPU and
Experiment B is a comparison study between 5 comparative algorithms under

Chapter 10. Paper E 153

Figure 10.6: Schedulable task sets w.r.t. the fixed conversion ratio (4 CPU
cores, 24 tasks)

different experiment setups. Experiment C is focusing on the experiment time
for the heuristic algorithms. The experiments are targeting a system that has
either 4 or 8 CPU cores and 1 GPU. Due to the limited space, we show only
the results with 24 tasks on 4 CPU cores.

Experiment A In this experiment, we focus on the change of schedulable
task sets as the task set changes from 0% of GPU-using tasks (i.e., 100% of
CPU-using tasks) to 100% of GPU-using tasks (i.e., 0% of CPU-using tasks).
The peak value of the change describes the balanced use of CPU-GPU. For
example, in Figure 10.6, the curve for µi = 5 gets the peak value of around
70% of schedulable tasksets at 20% of GPU-using tasks and 80% of CPU-
using tasks. Furthermore, the schedulability of task sets with the different
µi = 5 and µi = 15 results in about 0% and 97%, respectively. In other words,
in case of µi = 5, the execution time on GPU is 3 times smaller than the case
of µi = 15 where the total execution times are the same for both cases. Hence,
this result could be explained that the tasks with the shorter execution time on
GPU can block and interfere the other tasks less compared to the tasks with
the longer execution time on GPU. This shows the importance of the balanced
use of CPU-GPU. We note that this experiment uses NHA algorithm in order
to understand and optimize task sets.

Experiment B Figure 10.7 illustrates the percentage of schedulable task
sets with respect to the percentage of GPU using task with the default settings.
We see that MMA is the best performing heuristics, since the percentage of
schedulable task set is 100% in all the cases. NHA is the second best heuris-
tics, and SHA-prio and SHA-util follow. In this case, SHA-µ did not perform

154 10.5. Synthetic Experiments

Figure 10.7: Schedulable task sets w.r.t GPU using task with the default set-
tings

well compared to the other heuristics. Here, in 100% of GPU using task, we
confirm that NHA and MMA perform about 70% and 90% better than BTS,
respectively.

Figure 10.8 shows the results when the range of µi has been extended from
[3-10] to [3-100]. This change, obviously, worsens the execution of parallel
segment on the CPU as it may take 100 times longer on CPU than GPU. In
this case, we see only NHA improves BTS. Further, the algorithms SHA-prio,
SHA-util and MMA could not succeed for the allocation. Because, these al-
gorithms allocate tasks with longer execution times (about 100 times) on CPU
compared to the tasks in BTS. Moreover, all these algorithms would not con-
sider the results of BTS whether they are schedulable or not. Hence, the results
of these algorithms are lower than BTS (see Figure 10.8). The schedulability
of task set could be improved when these algorithms include the knowledge of
whether BTS is schedulable or not although the experiment time gets longer.
For example, the schedulability result of BTS is the same in both Figures 10.7
and 10.8. However, these algorithms result worse than BTS in Figure 10.8,
and better in Figure 10.7 On the other hand, NHA improves the results all the
time compared to BTS as NHA is based on the results of BTS.

Experiment C Table 10.2 shows the experiment time of the heuristic al-
gorithms for a task set measured 10,000 times. The experiment time consists
of the times of the task generation, task allocation and schedulability analy-
sis for a task. Max, median, mean and min values of 99.9th percentile of the
experiment time are shown in Table 10.2.

We can see that the median value of NHA (40us) is the best among all the
heuristic algorithms. SHA-µ (55us), SHA-prio (51us), and SHA-util (51us)
are in the same level although SHA-µ takes a bit longer time compared to

Chapter 10. Paper E 155

Figure 10.8: The extended range of µi (between 3-100)

Table 10.2: The experiment time for heuristics algorithms for a task set

No. Heuristic Algorithm Experiment time [us]
max median mean min

1 BST 71.0 25.5 27.0 19.0
2 NHA 121.0 40.0 43.9 22.0
3 SHA-µ 134.0 55.0 58.2 34.0
4 SHA-prio 116.0 51.0 53.6 42.0
5 SHA-util 103.0 51.0 53.0 43.0
6 MMA 930.0 419.0 433.8 249.0

other 2 algorithms. MMA requires the longest experiment time among all the
algorithms while MMA gives the best schedulability results in most of the
scenarios. In conclusion of the experiment C, we could say that NHA is the
best choice from the time-wise.

10.6 Related work

Heterogeneous computing is well studied in high performance community,
especially, in supercomputers as an extension of the distributed computing
[13, 14, 15, 3]. However, these techniques are not investigated targeting the
real-time embedded systems. Furthermore, the techniques are mostly focused
on the distributed heterogeneous systems, not on the heterogeneous systems
included in the system on chips although their architecture may be similar to
each other.

There exist several approaches considering the use of GPU in real-time
embedded systems. Kato et al. introduced TimeGraph [16], RGEM [17] and
Gdev [18] along with zero-copy I/O processing for low-latency GPU com-

156 10.7. Conclusions

puting [19]. In addition, self-suspending task techniques [20, 6] are broadly
studied in real-time systems, and they are applicable to GPU accelerated real-
time systems. Most of these works consider compensating the limitation of
early existing GPU hardware and device drivers such as a zero-copy technique
for accelerators’ memory and splitting tasks into smaller chunks for allowing
preemption. However, these limitations will be solved by coming new tech-
nologies such as unified memory, zero-copy and preemption technologies in
CUDA[21] and Heterogeneous System Architecture (HSA)[22, 9, 10]. Fur-
thermore, the works of Elliott et al. [23, 24] and Kim et al. [11, 12] con-
sider worst-case timing behavior in GPU accelerated real-time systems. These
works could be used as the timing analysis tool.

The bin-packing problem is one of the most important optimization prob-
lems. In our work, the problem is to find an optimal solution for the allocation
of tasks to different processing units. The study of the bin-packing problem has
been done widely in parallel processing [25, 26, 27, 28] and real-time systems
[29]. However, due to its NP-hard nature, it is common to introduce heuristic
approaches to figure out the system in an affordable time. Moreover, there are
many works regarding the resource mapping in heterogeneous platforms such
as [30, 31, 7, 13]. In this paper, we adopt the heuristic approaches from [7, 3]
in order to understand how the behavior of the alternative execution (either on
CPU or GPU) of parallel segment affects the schedulability of task sets.

10.7 Conclusions

In this paper, we target the mapping of parallel segments to either the GPU
or CPU. While GPU resources can boost the performance, heavy usage can
result in a bottleneck for the system. This affects on one hand tasks that want
to access the shared GPU resource, as they can be blocked by other GPU seg-
ments, and on the other hand tasks that receive additional interference due to
blocking by the GPU-handler task that is executed on the CPU. Thus, always
executing parallel code segments on the GPU potentially degrades the system
performance. We demonstrate that selective mapping of parallel segments to
either CPU or GPU can improve the system performance. Heuristic algorithms
are described to select the respective compute resource for such tasks. Syn-
thetic evaluations reveal that our proposed heuristics are able to improve the
schedulability of task sets up to 90% compared to task sets where no mapping
decisions are taken.

Future work will focus on runtime assignment of parallel segments to CPU
or GPU. Furthermore, we hope to expand our investigation to the use of mul-
tiple GPUs or any other accelerators.

Bibliography 157

Bibliography

[1] L. L. Bello, R. Mariani, S. Mubeen, and S. Saponara, “Recent advances
and trends in on-board embedded and networked automotive systems,”
IEEE Transactions on Industrial Informatics, vol. 15, no. 2, pp. 1038–
1051, 2019.

[2] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous comput-
ing,” in 2009 IEEE international symposium on workload characteriza-
tion (IISWC). Ieee, 2009, pp. 44–54.

[3] Y. Wen, Z. Wang, and M. F. O’boyle, “Smart multi-task scheduling for
opencl programs on cpu/gpu heterogeneous platforms,” in 2014 21st In-
ternational conference on high performance computing (HiPC). IEEE,
2014, pp. 1–10.

[4] C. Maia, M. Bertogna, L. Nogueira, and L. M. Pinho, “Response-time
analysis of synchronous parallel tasks in multiprocessor systems,” in Pro-
ceedings of the 22Nd International Conference on Real-Time Networks
and Systems, 2014, pp. 3–12.

[5] S. Baruah, “Resource-efficient execution of conditional parallel real-time
tasks,” in European Conference on Parallel Processing. Springer, 2018,
pp. 218–231.

[6] K. Bletsas, N. Audsley, W.-H. Huang, J.-J. Chen, and G. Nelissen,
“Errata for three papers (2004-05) on fixed-priority scheduling with
self-suspensions,” CISTER-Research Centre in Realtime and Embedded
Computing Systems, Tech. Rep., 2015.

[7] T. D. Braun, H. J. Siegel, N. Beck, L. L. Bölöni, M. Maheswaran, A. I.
Reuther, J. P. Robertson, M. D. Theys, B. Yao, D. Hensgen et al., “A
comparison of eleven static heuristics for mapping a class of indepen-
dent tasks onto heterogeneous distributed computing systems,” Journal
of Parallel and Distributed computing, vol. 61, no. 6, pp. 810–837, 2001.

[8] E. Bini and G. C. Buttazzo, “Measuring the performance of schedulabil-
ity tests,” Real-Time Systems, vol. 30, no. 1-2, pp. 129–154, 2005.

[9] N. Tsog, M. Behnam, M. Sjödin, and F. Bruhn, “Intelligent data process-
ing using in-orbit advanced algorithms on heterogeneous system archi-
tecture,” in 2018 IEEE Aerospace Conference. IEEE, 2018, pp. 1–8.

158 Bibliography

[10] N. Tsog, M. Sjödin, and F. Bruhn, “Advancing on-board big data pro-
cessing using heterogeneous system architecture,” in ESA/CNES 4S Sym-
posium 4S 2018, 28 May 2018, Sorrento, Italy, 2018.

[11] H. Kim, P. Patel, S. Wang, and R. R. Rajkumar, “A server-based ap-
proach for predictable gpu access control,” in 2017 IEEE 23rd Interna-
tional Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA). IEEE, 2017, pp. 1–10.

[12] ——, “A server-based approach for predictable gpu access with improved
analysis,” Journal of Systems Architecture, vol. 88, pp. 97–109, 2018.

[13] D. Grewe and M. F. O’Boyle, “A static task partitioning approach for het-
erogeneous systems using opencl,” in International Conference on Com-
piler Construction. Springer, 2011, pp. 286–305.

[14] P. Czarnul and P. Rościszewski, “Optimization of execution time under
power consumption constraints in a heterogeneous parallel system with
gpus and cpus,” in International Conference on Distributed Computing
and Networking. Springer, 2014, pp. 66–80.

[15] H. Zhou and C. Liu, “Task mapping in heterogeneous embedded systems
for fast completion time,” in 2014 International Conference on Embed-
ded Software (EMSOFT). IEEE, 2014, pp. 1–10.

[16] S. Kato, K. Lakshmanan, R. Rajkumar, and Y. Ishikawa, “Timegraph:
Gpu scheduling for real-time multi-tasking environments,” in 2011
USENIX Annual Technical Conference (USENIX ATC 11), 2011, pp. 17–
30.

[17] S. Kato, K. Lakshmanan, A. Kumar, M. Kelkar, Y. Ishikawa, and R. Ra-
jkumar, “Rgem: A responsive gpgpu execution model for runtime en-
gines,” in 2011 IEEE 32nd Real-Time Systems Symposium. IEEE, 2011,
pp. 57–66.

[18] S. Kato, M. McThrow, C. Maltzahn, and S. Brandt, “Gdev: First-class
gpu resource management in the operating system,” in 2012 USENIX
Annual Technical Conference (USENIX ATC 12), 2012, pp. 401–412.

[19] S. Kato, J. Aumiller, and S. Brandt, “Zero-copy i/o processing for low-
latency gpu computing,” in Proceedings of the ACM/IEEE 4th Interna-
tional Conference on Cyber-Physical Systems, 2013, pp. 170–178.

Bibliography 159

[20] J.-J. Chen, G. Nelissen, W.-H. Huang, M. Yang, B. Brandenburg, K. Blet-
sas, C. Liu, P. Richard, F. Ridouard, N. Audsley et al., “Many suspen-
sions, many problems: a review of self-suspending tasks in real-time
systems,” Real-Time Systems, vol. 55, no. 1, pp. 144–207, 2019.

[21] M. Harris, “”Unified Memory for CUDA Beginners.” June 19, 2017.”
available: https://devblogs.nvidia.com/unified-memory-cuda-beginners/
[Oct 16, 2018].

[22] HSA Foundation, “”Heterogeneous System Architecture.”,” available:
http://www.hsafoundation.com/ [Oct 16, 2018].

[23] G. A. Elliott, B. C. Ward, and J. H. Anderson, “Gpusync: A framework
for real-time gpu management,” in 2013 IEEE 34th Real-Time Systems
Symposium. IEEE, 2013, pp. 33–44.

[24] G. A. Elliott and J. H. Anderson, “Globally scheduled real-time multipro-
cessor systems with gpus,” Real-Time Systems, vol. 48, no. 1, pp. 34–74,
2012.

[25] J. O. Berkey, “Massively parallel computing applied to the one-
dimensional bin packing problem,” in Proceedings 2nd Symposium on
the Frontiers of Massively Parallel Computation. IEEE Computer So-
ciety, 1988, pp. 317–318.

[26] E. G. Coffman, M. R. Garey, and D. S. Johnson, “Approximation al-
gorithms for bin-packing—an updated survey,” in Algorithm design for
computer system design. Springer, 1984, pp. 49–106.

[27] D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L. Graham,
“Worst-case performance bounds for simple one-dimensional packing al-
gorithms,” SIAM Journal on computing, vol. 3, no. 4, pp. 299–325, 1974.

[28] J. D. Ullman, “Np-complete scheduling problems,” Journal of Computer
and System sciences, vol. 10, no. 3, pp. 384–393, 1975.

[29] D. De Niz and R. Rajkumar, “Partitioning bin-packing algorithms for dis-
tributed real-time systems,” International Journal of Embedded Systems,
vol. 2, no. 3-4, pp. 196–208, 2006.

[30] A. Schranzhofer, J.-J. Chen, and L. Thiele, “Dynamic power-aware map-
ping of applications onto heterogeneous mpsoc platforms,” IEEE Trans-
actions on Industrial Informatics, vol. 6, no. 4, pp. 692–707, 2010.

160 Bibliography

[31] A. H. Alhusaini, V. K. Prasanna, and C. S. Raghavendra, “A framework
for mapping with resource co-allocation in heterogeneous computing sys-
tems,” in Heterogeneous Computing Workshop, 2000.(HCW 2000) Pro-
ceedings. 9th. IEEE, 2000, pp. 273–286.

Chapter 11

Paper F
Offloading
Accelerator-intensive
Workloads in CPU-GPU
Heterogeneous Processors

Nandinbaatar Tsog, Saad Mubeen, Fredrik Bruhn, Moris Behnam, Mikael
Sjödin
In the Proceedings of the 26th International Conference on Emerging Tech-
nologies and Factory Automation, ETFA 2021

161

Abstract

Autonomous vehicular systems require computer vision and intelligent on-
board decision making functionalities that include a mix of sequential and
parallel workloads. The execution times of the workloads and power con-
sumption in these functionalities can be lowered by utilizing the accelerators
(e.g., GPU) instead of running the workloads entirely on the host processing
units (CPU). However, allocating all the parallelizable workload to accelera-
tors can create a computation bottleneck in the accelerators that, in turn, can
have an adverse effect on schedulability of the systems. This paper presents
a novel framework that can allocate the accelerate-intensive workloads to the
accelerators as well as to the non-accelerated host processing units. Within
the context of this framework, the paper introduces five offloading techniques
to mitigate the accelerator-intensive workloads by utilizing excess capacity of
non-accelerated processing units under dynamic scheduling in CPU-GPU het-
erogeneous processors. The proposed techniques are evaluated using simu-
lation experiments. The evaluation results indicate that one of the proposed
techniques can achieve up to 16% improvement in schedulability of the task
sets compared to the traditional non-offloading technique.

Chapter 11. Paper F 163

11.1 Introduction

Employing accelerators in modern embedded platforms increases the diversifi-
cation of embedded system applications. Examples of the accelerators include
graphics processing units (GPUs), field-programmable gate arrays (FPGAs)
and digital signal processors (DSPs), which are often used in parallel pro-
gramming applications like computer vision. The accelerators often perform
better than general-purpose processors (i.e., central processing units (CPUs))
with respect to latency and power consumption. For example, in autonomous
vehicles, computer vision and intelligent decision making often require the use
of heterogeneous processors (e.g., CPU and GPU) [1, 2]. However, the accel-
erators act as shared resources within heterogeneous processors [3, 4], which
brings challenges of synchronization and blocking.

While the processing trend has been shifting from single-core to multi-
and many-core processors as well as to heterogeneous processors, the devel-
opment of single-core processors is also progressing, e.g., AMD Ryzen 5000
series with Zen3 architecture CPUs1 and 11-th Generation Intel Core i9 pro-
cessors2. In other words, the host processing units, CPUs, in heterogeneous
processors are becoming more and more capable of assisting the accelerators in
computing accelerator-intensive workloads. This paper focuses on techniques
to offload accelerator-intensive workloads from GPUs to non-accelerated host
processing units in the systems with heterogeneous processors. We assume
that accelerator-intensive workloads contain a segment, a parallel segment,
which can be parallelizable on the accelerators. Furthermore, in this paper,
we consider that the applications that run on the heterogeneous processors are
constrained by real-time requirements.
The main contributions in this paper are as follows:

• We propose a new framework to allocate accelerator-intensive workloads in
CPU-GPU heterogeneous processors. The proposed framework utilizes the
alternative executions of parallel segments of the workloads [4, 5] and the
server-based scheduling [6, 7, 8].

• Based on the proposed framework, we introduce five techniques for miti-
gating the accelerator-intensive workloads by lowering the overuse of the
accelerators. The proposed techniques use the resource-reservation mecha-
nism by means of servers to offload the execution of parallel segments of the
workload to non-accelerated host processing units.

1https://www.amd.com/en/processors/ryzen
2https://www.intel.com/content/www/us/en/products/details/processors/

core/i9.html

164 11.2. Related Work

• We perform a comparative evaluation of the proposed offloading techniques
with respect to the baseline technique that always executes the parallel seg-
ments on the accelerators. The evaluation is performed on the basis of
schedulability of the task sets and the time to perform the offloading.

The rest of the paper is organized as follows. Section 11.2 discusses the
related work. Section 11.3 presents the proposed system model, followed by
the proposed workload allocation framework in Section 11.4. The offloading
techniques for mitigating the accelerator-intensive workloads are presented in
Section 11.5. Section 11.6 presents the experimental evaluation. Finally, Sec-
tion 11.7 discusses the conclusion and future work.

11.2 Related Work

Historically, the adoption of heterogeneous processors is intimately bound to
the development of supercomputers, especially, in the area of distributed het-
erogeneous supercomputing [9]. The execution times of the workloads can
vary a lot depending on what type of processing units they are executed on. To
this end, there are several existing works that focus on how to allocate applica-
tions to the appropriate processing units in order to achieve the best-case exe-
cution time, i.e., the shortest execution time [5, 10, 11]. In contrast, the work
presented in this paper focuses on offloading the accelerator-intensive work-
loads, constrained by real-time requirements, e.g., deadlines on the response
times of the workloads, to the available non-accelerated host processing units.

The heterogeneous processors considered in this paper consist of mainly
two parts: (i) a host processing unit, CPU, and (ii) accelerator(s) that include
GPUs and FPGAs, among others. There exist several research trends on how
to tackle heterogeneous processors in real-time systems. One of the research
trends is to explore the properties of accelerators in heterogeneous proces-
sors since a host processing unit is a well-studied single-core CPU. The ex-
isting works in this regard include TimeGraph [12], Gdev [13], the black-box
method [14], to mention a few.

Another line of existing works targets resource management in the systems
that use heterogeneous processing units. There are several works [15, 16, 17]
that focus on splitting a task on accelerators for improving the schedulability.
Moreover, TimeGraph [12], GPUSync [18], and the works by Kim et al. [19]
and Biondi et al. [20] consider schedulability analysis of the systems that use
heterogeneous processors. These works focus on accelerators, which obvi-
ously offer better (shorter) execution times of the compute-intensive workloads
compared to the executions on the host processing units. On the other hand,

Chapter 11. Paper F 165

the work in this paper aims at mitigating the accelerator-intensive workload by
efficiently offloading it to the non-accelerated host possessing units.

There exist several works that support server-based scheduling on single-
and multi-core CPU(s) such as the constant bandwidth server (CBS) [6], to-
tal bandwidth server (TBS) [7], polling server (PS), sporadic server (SS) and
deferrable server (DS) [8]. The work presented in this paper uses the DS.
Some of the existing works also address the challenge of using the server-
based scheduling in accelerators. For instance, the works in [21, 22] show that
the server-based scheduling on accelerator(s) can improve the schedulability of
the systems that use heterogeneous processors. In comparison to these works,
the work presented in this paper uses the server-based scheduling in the host
processing units instead of accelerators. The rationale behind this decision is
that the proposed framework offloads the accelerator-intensive workloads to
host processing units for efficiently utilizing their excess resources to assist
the accelerators.

The idea of using alternative executions of parallel segments of real-time
workloads is discussed in a few works [23, 4]. Baruah [23] applies conditional
branching by using the if-then-else construct for two or more alternative execu-
tions of a workload. Moreover, a scheduling approach is introduced based on
the conditional DAG model for reserving the necessary amount of computing
resources. Tsog et al. [4] discuss a static allocation of real-time tasks using al-
ternative execution of parallel segments of the tasks. Both works construct the
fundamental of alternative executions of segments under real-time constraints.
However, dynamic allocation of tasks using the alternative executions of par-
allel segments is missing from the state of the art. Provisioning of such an
allocation is the main focus of the work presented in this paper.

11.3 System Model

We consider compute-intensive tasks that heavily require the use of accelera-
tors such as GPUs. A periodic task, τi, is characterized by the tuple {Si, Di, Ti},
where Si represents the set of finite sequence of execution segments of the task,
Di identifies the relative deadline of the task, and Ti represents the task’s pe-
riod. Furthermore, Si consists of l sequential and parallel segments, {Si,1, . . . , Si,l},
where l ∈ N, i.e., it follows the traditional fork-join task model [24]. Regard-
ing a parallel segment (Si,j , 1 < j < l), we consider the model of alternative
execution of parallel segments according to the work in [4]. Fig. 11.1 illus-
trates these execution segments as well as alternative executions of parallel
segments. Traditionally, a sequential segment is executed on CPU as it can

166 11.3. System Model

only be executed in sequential manner. In contrast, a parallel segment can be
executed either in a sequential/parallel manner.

In most cases, executing a parallel segment in parallel manner improves
its execution time compared to executing it in a sequential manner. Hence,
the developers tend to allocate parallel segments to GPU (or on CPU with
multi-threading techniques) to execute them in parallel manner as shown in
Fig. 11.1(a). This may not be efficient in all cases, especially when a parallel
segment can be executed in a sequential manner if the GPU is busy serving
other parallel segments. Fig. 11.1(b) illustrates the two alternatives to execute
the parallel segments. In this paper, we consider that a parallel segment is
executed in parallel manner only on GPU and in sequential manner only on
CPU. This means that an instance of a parallel segment can be executed on
GPU in parallel manner, while another instance of the same parallel segment
can be executed on CPU in sequential manner.

The execution time Ci,j of any segment Si,j of task τi is described by
(11.1), where hi,j expresses the allocation decision of the segment Si,j to the
processing units, and CCPU

i,j and CGPU
i,j are the execution times of the segment

Si,j on CPU and GPU, respectively. In other words, hi,j = CPU and hi,j =
GPU mean that the segment is allocated to CPU and GPU, respectively.

Ci,j =

{
CCPU
i,j , if hi,j = CPU

CGPU
i,j , if hi,j = GPU

(11.1)

We consider that the execution time Ci of task τi is the summation of the
total execution times of its sequential segments on CPU and parallel segments
on GPU, i.e.,

Ci =
∑

∀τi,j |hi,j=CPU

Ci,j +
∑

∀τi,j |hi,j=GPU

Ci,j (11.2)

We define CCPU
i and CGPU

i as the total execution times of task τi on CPU and
GPU respectively.

CCPU
i =

∑
∀τi,j |hi,j=CPU

Ci,j (11.3)

CGPU
i =

∑
∀τi,j |hi,j=GPU

Ci,j (11.4)

Hence, the execution time Ci can be represented as:

Ci = CCPU
i + CGPU

i (11.5)

Chapter 11. Paper F 167

(a) Sequential and parallel segments

(b) Applying alternative executions to parallel segment

Figure 11.1: Difference between parallel segments applied with and without
alternative executions.

168 11.4. Proposed Workload Allocation Framework

Intuitively, the utilization of task τi is defined as:

Ui = (CCPU
i + CGPU

i)/Ti (11.6)

Note that the value of Ci depends upon how its segments are allocated. To
distinguish if a task τi is CPU-heavy or GPU-heavy, we consider a metric, µi,
which is defined as conversion ratio between CCPU

i and CGPU
i , i.e,

µi = CCPU
i /CGPU

i (11.7)

The objective of this paper is to lower the utilization of highly-utilized
accelerators and reduce the response times of middle and low priority tasks.
The response time of task τi is expressed by the parameter Ri.

Figure 11.2: Proposed workload allocation framework based on server-based
global scheduling of heterogeneous processors.

11.4 Proposed Workload Allocation Framework

The proposed allocation framework, illustrated in Fig. 11.2, considers the allo-
cation of parallel and sequential segments of tasks differently. A given sequen-
tial segment is allocated to a CPU, while different sequential segments might
be allocated to different CPUs, and these allocations are fixed. This means, a
sequential segment that is ready to execute will be allocated to the appropriate
CPU queue. The CPU queues follow the priority-based preemptive scheduling
policy. The priorities are assigned according to the rate-monotonic algorithm.
However, any other scheduling policy can be used in the CPU queues using
the proposed allocation framework, e.g., earliest deadline first.

We introduce an allocator to efficiently manage the execution of parallel

Chapter 11. Paper F 169

segments. All parallel segments that are ready to execute are placed in the
allocator queue as shown in Fig. 11.2. The allocator, in turn, decides which
parallel segment to allocate to the GPU or CPU depending upon the avail-
ability of these compute units. As the first step, we consider the priority-based
arbitration in the allocator queue such that the highest priority parallel segment
is selected for allocation to the GPU or CPU. Other arbitration policies can also
be applied such as the first-come-first-served policy. However, incorporation
of the other policies within the proposed framework is left for the future work.

We assume that only one parallel segment executes on the GPU at a time
and it is non-preemptive. This assumption is in line with the assumption of
running one task on GPU at a time considered in the previous works [18, 19].
Furthermore, the policies for scheduling of tasks in the GPU proposed by Elliot
et al. [18] and Kim et al. [19] can be used. The main difference between these
policies is whether to keep the selected ready parallel segment in busy waiting
or self suspension if the compute resources are busy. In this paper, we consider
the self-suspension policy [19].

The proposed framework relies on the server-based dynamic scheduling to
ensure that CPU resources are reserved to execute the parallel segments. For
this purpose, we adopt the deferrable server (DS) with synchronization to m
multi-core CPUs [8]. Other servers such as the Constant Bandwidth Server,
Total Bandwidth Server, and Sporadic Server are also applicable. The DS,
considered in this paper, is a set of m synchronized deferrable servers (SDS),
which is characterized by an (m+ 1)-tuple {Ts, Qs1 , Qs2 , ..., Qsm}, where Ts
is the common replenishment period of the SDSs and Qsi is the maximum
capacity/budget of the i-th DS. We assume that each server has the highest
priority in its respective CPU queue. Parallel segments are allocated to a single
CPU server at a time. However, this restriction does not limit the execution of a
parallel segment on different CPU servers. Thus, it is possible to dynamically
allocate a given parallel segment to different servers throughout its execution.

11.5 Offloading Techniques

Traditionally, all parallel segments are allocated to accelerators in order to ex-
ploit the high-performance computing potential of the accelerators. However,
this can have an adverse effect on the response times of the middle- and lower-
priority tasks allocated to the accelerators when priority-based arbitration is
used in the allocator queue. To address this, we consider to offload accelerator-
intensive workloads, especially the middle and low priority parallel segments,
to non-accelerated host processing units. However, the execution time of the
parallel segments on non-accelerated devices is mostly longer than the execu-

170 11.5. Offloading Techniques

tion time on the accelerator. That is, µi (see Equation 11.7) can reach up to
20 [25, 26] or even more as it is related to the type of CPU and GPU. In this pa-
per, we consider the value of µi to be between 1.5 and 10. Note that due to the
offloading strategy, the execution of parallel segments on non-accelerated pro-
cessing units using servers can block the sequential segments of higher priority
tasks.

There are two main concerns regarding the offloading techniques: (i) how
to lower the overhead of allocation time while dynamically allocating the par-
allel segments to the compute units using the offloading techniques? and (ii)
how to mitigate the impact of the allocation techniques on higher priority paral-
lel segments? That is, how to reduce the time between the instant when the task
is ready and the instant when it starts executing in the GPU? We introduce five
offloading heuristic techniques for dynamic allocation of accelerator-intensive
tasks in Sections 11.5.2- 11.5.6 in order to explore the potential impacts us-
ing these techniques. Optimal algorithms for allocating tasks to heterogeneous
processing are NP-hard problems [27]. The main difference among these tech-
niques is how they address and balance the above mentioned concerns. Note
that we do not consider the genetic algorithms based techniques as their com-
putation time is very high due to which they are not preferable for dynamic
allocations [28, 4].

11.5.1 Baseline: Default Allocation Technique (DAT)

The DAT allocates all parallel segments to the GPU. Hence, this technique does
not offload parallel segments to the non-accelerated host processing units. We
consider the DAT as the baseline for comparative evaluations (discussed in the
next section).

11.5.2 Naive Offloading Technique (NOT)

The NOT has no intelligent decision mechanism for offloading the parallel seg-
ments. This technique is intended to reveal the difference of computing perfor-
mance between the host processing unit and accelerator devices. In short, this
technique allocates parallel segments to the devices in the order of their avail-
able computing capacity. This technique can be expressed in the following
steps.

• Step 1. Compute a list of available devices based on their computing capac-
ity.

Chapter 11. Paper F 171

• Step 2. Allocate the parallel segment with the highest priority in the allo-
cator queue to the device with the highest computing capacity in the list of
available devices.

• Step 3. Repeat Step 2 until there are no available devices or no tasks in the
allocator queue.

11.5.3 Min-min Fashioned Offloading Technique (MOT)

The min-min bin-packing approach is a well-known approach by packing rule
and packing results [28]. The MOT offloading technique for parallel segments
to non-accelerated devices is based on the min-min bin-packing approach. This
technique is described by the following steps.

• Step 1. When there are available accelerators, allocate the highest priority
parallel segments from the allocator queue to the accelerators.

• Step 2. If the allocator queue is empty then either all the allocator segments
have been allocated to the accelerators and/or there is no ready parallel seg-
ment. If the allocator queue is not empty and there are no more accelerators
available then go to next step.

• Step 3. Select the parallel segment with the highest priority in the allocator
queue.

• Step 4. Calculate the summation of the current waiting time of the selected
segment in the allocator queue and its execution time on the accelerator
(GPU).

• Step 5. Calculate the difference between the summation (calculated in Step
4) and the execution time of the parallel segment on the CPU. If the differ-
ence is negative, allocate the segment to the CPU. Otherwise, allocate the
segment to the GPU.

• Step 6. Repeat Step 1 if the allocator is not empty.

11.5.4 Speedup Classifier Based Technique (SCT)

The offloading technique is based on the speedup classifier bin-packing algo-
rithm, which is studied in several works within the context of heterogeneous
processors [5, 4]. As illustrated in Fig. 11.3, the different versions of this tech-
nique can exist based on selection of the classifier. In this paper, we select µi
as the classifier. The SCT follows the following steps.

172 11.5. Offloading Techniques

Figure 11.3: A sorted task queue based on speedup classifier.

• Step 1. Sort the parallel segments in the allocator queue according to the
speedup classifier, which is µi in this case. This means, the segments with
smaller µi will be stored on right side (close to the accelerator) and the seg-
ments with larger µi will be at placed at the left side (close to the non-
accelerated device).

• Step 2. Allocate the parallel segments with the smallest µi to an accelerator
with the higher computing capacity when there are available accelerator(s).
Repeat this step until there is no available accelerator.

• Step 3. If there are parallel segments in the allocator queue and non-accelerated
devices (CPUs) are available, allocate the parallel segment with the highest
µi to the available CPU. Repeat this step until all CPUs are unavailable.

A disadvantage of this technique is that the parallel task segments that have
the smallest and largest values of the µi classifier are prioritized compared to
those with average values of the µi classifier. This means that a higher priority
parallel segment with the average value of the µi classifier can be blocked by a
lower priority parallel segment with a higher or lower value of the µi classifier.

11.5.5 Synchronized Servers Technique (SST)

This technique uses several servers to offload parallel segments to the non-
accelerated devices. This technique can be described by the following steps.

• Step 1. Allocate the highest priority parallel segments to the available accel-
erators.

• Step 2. Repeat Step 1 until no more available accelerators.

• Step 3. If no parallel segment is currently using any server capacity, pick the
parallel segment with the highest priority in the allocator queue. Otherwise,
jump to Step 6.

Chapter 11. Paper F 173

• Step 4. Calculate the summation of the current waiting time of the selected
segment in the allocator queue and its execution time on the accelerator
(GPU).

• Step 5. Calculate the difference between the summation (calculated in Step
4) and the execution time of the parallel segment on the CPU. If the dif-
ference is negative, allocate the segment to the CPU. Otherwise, allocate
the segment to the GPU. Select a parallel segment with the second-highest
priority in the allocator queue and repeat Step 4.

• Step 6. In step 3, if there is a parallel segment that is currently using a server
budget, then check whether the current server has a left over capacity to
serve new requests. If yes, continue to run the parallel segment on the same
server. Otherwise, switch the parallel segment to the next available server.

• Step 7. Repeat Step 6 until no more servers are available or the parallel
segment completes its execution. In the former case, the execution of the
parallel segment should be postponed until the start of the next period of the
server and then repeat Step 6.

11.5.6 Efficient Offloading Technique (EOT)

We adapt the previous techniques to propose an efficient offloading technique.
The EOT consists of the following steps.

• Steps 1-2. The first two steps are the same as that of Steps 1-2 in the SST.

• Step 3. If no parallel segment is currently using any server capacity, pick
the parallel segment of the lowest priority task in the allocator queue as the
lowest priority task tends to miss its deadline. Otherwise, jump to Step 5.

• Step 4. Allocate the selected parallel segment to a server, which runs on
next CPU to the CPU that handles the sequential segment of the same task.
Allocate the selected parallel segment to a server with the index of i+1 when
the index of the server that serves the sequential segment of the same task is i.
It is worth to note that we consider the server index of 1 instead of i+1 when
i equals to m. This avoids to block the higher-priority sequential segments
of other tasks assigned to the same server of the sequential segments of the
select parallel segment’s task.

• Step 5. In step 3, if there is a parallel segment that is currently using a server
budget, then check whether the current server has a left over capacity to

174 11.6. Experimental Evaluation

serve new requests. If yes, continue to run the parallel segment on the same
server. Otherwise, switch the parallel segment to the next available server.

• Step 6. Repeat Step 5 until no more servers are available or the parallel
segment completes its execution. In the former case, the execution of the
parallel segment should be postponed until the start of the next period of the
server and then repeat Step 5.

11.6 Experimental Evaluation

A number of synthetic experiments are performed to evaluate a wide range
of application parameters using the proposed framework and offloading tech-
niques.

11.6.1 Task Set Generation and Experimental Setup

Table 11.1 illustrates the configuration that is used to generate the task sets.
The task generation technique is based on the UUniFast algorithm [29]. The
UUniFast is used in two ways to generate a task. First, using the given system
utilization U , the UUniFast generates n random task utilizations for n tasks.
For example, Ui represents the utilization for the task τi. The simulator initial-
izes the following basic parameters of a task:

• period Ti,

• number of parallel segments

• ratio of the length of parallel and sequential segments, and

• conversion ratio of parallel segments µi.

The UUniFast generates the random length of parallel and sequential seg-
ments based on each task utilization and the total execution times of parallel
and sequential segments. The total execution times of parallel and sequential
segments are derived from the task utilization, the period and the ratio of the
length of parallel and sequential segments. In order to generate an alternative
of parallel segments (i.e., the sequential execution of parallel segments), the
conversion ratio of parallel segments µi is used. The value of µi is randomly
selected between 1.5 and 10, which is in line with the existing experimental
studies [25, 30, 31].

In each experiment, the synthetic experiment simulator is run until the
schedulability of the task set converges to the given condition. The simula-
tor is executed minimum 100 times with 3,000,000 cycles to get the variance

Chapter 11. Paper F 175

Table 11.1: Initial configuration of task set generation.

Parameters Values
Number of CPU cores (Np) 4, 8
Number of GPUs 1
Number of tasks (n) [Np, 10Np]
System utilization (U) 0.5-2
Task period and deadline (Ti = Di) [30, 500]ms
Ratio of parallel to sequential
segments length (CGPUi /CCPUi) [0.1, 3]
Number of parallel segments per task (ηi) 1-3
Conversion ratio of parallel segments (µi) [1.5-10]
Server utilization (Qsi/Ts) [20-40]%
The common period of the SDSs (Ts) [30, 500]ms

of schedulability of the task sets. Based on the variance value, the simulator
continues to execute until 200 times in fast-converging cases and 500 times in
slow-converging cases.

11.6.2 Offloading Techniques

We perform comparative evaluation of five offloading techniques (NOT, MOT,
SCT, SST and EOT), presented in Section 11.5, with respect to the DAT tech-
nique (Section 11.5). The DAT acts as the baseline technique as it does not
support offloading the parallel segments to non-accelerated processing units.
Note that the NOT, MOT, SCT are focused on executing parallel segments on
a CPU server, while the SST and EOT consider to execute parallel segments
on multiple synchronized CPU servers. The input to the offloading techniques
is a set of tasks that must fulfill the input requirements of the task model (Sec-
tion 11.3) such as segments’ deadlines. The execution on CPU is preemptible
and self-suspending, while the execution on GPU is non-preemptive. The ex-
ecution traces in the experiments are evaluated until the hyperperiod (least
common multiple of all periods) of the task set, which takes 3,000,000 cycles.

11.6.3 Evaluation Results

This subsection presents the evaluation results of the following three groups of
experiments.

176 11.6. Experimental Evaluation

Figure 11.4: Schedulable task sets w.r.t. the total number of tasks in the system
with 4 CPU cores and 1 GPU.

• Experiment A focuses on the comparative evaluation of the offloading tech-
niques.

• Experiment B performs a detailed comparative evaluation of the EOT and
the baseline technique (DAT) using different experimental setups.

• Experiment C focuses on evaluating the time to perform the offloading using
various offloading techniques.

The experiments simulate 4 or 8 CPU cores and 1 or 2 GPUs. The imple-
mentation of the experiments can be extended to more than 8 CPU cores and
more than 2 GPUs. However, such extensions are left for future work.

Experiment A

Fig. 11.4 illustrates the performance of the five offloading techniques in terms
of the percentage of schedulable task sets with respect to the total number of
tasks in the system (with utilization equals to 1). The NOT, MOT, SCT and
SST show similar trend of schedulable task sets compared to the DAT and EOT,
although there are some big differences between these two sets of techniques.

Chapter 11. Paper F 177

This confirms that these four techniques (NOT, MOT, SCT and SST) focus
on only part of properties for mitigating accelerator-intensive loads. Among
these techniques, the SCT shows better results. The reason is that the SCT
allocates a parallel segment with highest conversion ratio µi to CPU and the
lowest conversion ratio to GPU. So, the SCT reorders the priority of the tasks
and allocates them to the appropriate processing units. However, this can con-
siderably change the order of the execution.

The DAT and EOT show the best results among the lot. More specifically,
the EOT shows slightly better results than the DAT. It can be concluded that the
use of accelerators is one of the best choices with respect to the schedulability
of the task sets. However, the results of the EOT indicate that the improvement
can be achieved by better utilizing all computing resources in the heteroge-
neous processors. Since the DAT and EOT are the best performing techniques,
we focus only on them while performing a detailed comparative evaluation in
the next simulation experiment.

Experiment B

In this simulation experiment, we consider how the EOT handles the schedu-
lability of the task sets. Fig. 11.5 illustrates the percentage of schedulable task
sets with respect to the system utilization under the EOT and DAT techniques.
The results indicate that the EOT performs better than the DAT, although the
relative improvement is small. In the case of system utilization U = 1, the
EOT with both 12 and 24 tasks shows the maximum improvements of 16%
and 8% under dynamic scheduling.

Fig. 11.6 describes how the conversion ratio of parallel segment to sequen-
tial segment (i.e., µi) manipulates the schedulability of task sets. The horizon-
tal axis expresses the maximum value that µ can take. We see that the EOT
performs better than the DAT until the value of µi reaches 10. This means, our
proposed framework can perfectly handle the accelerator-intensive workloads
even if the accelerators compute 9 times faster than the host device.

Fig. 11.7 depicts how the variation in the ratio of the length of parallel and
sequential segments, CGPUi /CCPUi , influences the schedulability of the task
sets under the EOT and DAT techniques. Both techniques show a similar trend
in the results; however, the EOT performs slightly better than the DAT. This
confirms again that the use of accelerators for parallel segments is the best
choice generally. There exists a slightly small improvement window between
the essential use of accelerators and the total use of heterogeneous processors.
When the length of parallel segments is equal to 75% of the entire execution
time of the tasks, we observed up to 16% improvement in the schedulability of

178 11.6. Experimental Evaluation

Figure 11.5: Percentage of schedulable task sets with respect to the system
utilization under the EOT and DAT techniques.

the task sets with respect to the DAT.

Experiment C

In this experiment, we extract the execution traces of the simulation of schedu-
lable task sets. Table 11.2 shows the mean time to perform the offloading. The
DAT shows the best mean time to perform offloading (22.33s), while the SCT
gives the worst results (37.19s). The MOT and NOT more or less take the
same time to perform the offloading. The reason is that these techniques select
a parallel segment to allocate to the CPU, while the SCT needs to create a list,
ordered by the µi, before selecting to allocate a parallel segment to the CPU.
The SST shows the best results among the NOT, MOT, SCT and SST. In the
SST, only one task can use the servers, which explains why the SST shows the
best results among the four techniques.

Although the DAT performs the best in terms of the time to perform the of-
floading (22.33s), the EOT also performs nearly best (23.52s). This is because
the EOT leverages the advantages of the NOT, MOT, SCT, and SST techniques.

Chapter 11. Paper F 179

Figure 11.6: Percentage of schedulable task sets with respect to variations in
maximum value of µi under the EOT and DAT techniques.

Figure 11.7: Percentage of schedulable task sets with respect to the ratio of
the length of parallel and sequential segments µi under the EOT and DAT
techniques.

180 11.7. Conclusion

Table 11.2: Mean time to perform the offloading under various offloading tech-
niques.

No. Offloading Techniques Experiment mean time
1 DAT 22.33s
2 NOT 34.49s
3 MOT 33.15s
4 SCT 37.19s
5 SST 28.75s
6 EOT 23.52s

11.7 Conclusion

This paper presented a novel and efficient framework to allocate parallel seg-
ments of the accelerator-intensive workloads to non-accelerated processing
units in the CPU-GPU heterogeneous processors under dynamic scheduling.
Within the context of this framework, the paper proposed five offloading heuris-
tic techniques for mitigating the accelerator-intensive workloads. The use of
accelerators for parallel segments of the tasks is crucial and is an excellent
choice in most cases. In this regard, the paper showed that a considerable
improvement can be achieved if all processing units in the heterogeneous pro-
cessors are better utilized, i.e., by efficiently offloading some of the parallel
segments to non-accelerated compute units. The evaluation results indicate
that one of the proposed techniques, namely the efficient offloading technique,
can achieve up to 16% improvement in schedulability of the task sets under
dynamic scheduling compared to the non-offloading technique. It is worth to
note that we have not optimized the SDS in this paper. In other words, the op-
timization of the SDS can improve the proposed framework and we consider it
as future work. Another area of future work will focus on improvement of the
proposed framework and offloading techniques using the pipelining technique.
Furthermore, to expand our investigation to the use of multiple GPUs and/or
different capacity of processing units entails another line of future work.

Acknowledgements

The work presented in this paper was supported by the the Swedish Knowledge
Foundation via the DPAC and HERO projects, and the Swedish Governmental
Agency for Innovation Systems (VINNOVA) via the DESTINE, PROVIDENT
and INTERCONNECT projects.

Bibliography 181

Bibliography

[1] J. Huang, “NVIDIA CEO Keynote,” GPU Technology Conference, Oct.
2017.

[2] L. L. Bello, R. Mariani, S. Mubeen, and S. Saponara, “Recent advances
and trends in on-board embedded and networked automotive systems,”
IEEE Transactions on Industrial Informatics, vol. 15, no. 2, pp. 1038–
1051, 2018.

[3] C. Margiolas and M. F. O’Boyle, “Portable and transparent software man-
aged scheduling on accelerators for fair resource sharing,” in Proceedings
of the 2016 International Symposium on Code Generation and Optimiza-
tion, 2016, pp. 82–93.

[4] N. Tsog, M. Becker, F. Bruhn, M. Behnam, and M. Sjödin, “Static alloca-
tion of parallel tasks to improve schedulability in cpu-gpu heterogeneous
real-time systems,” in IECON 2019-45th Annual Conference of the IEEE
Industrial Electronics Society, vol. 1. IEEE, 2019, pp. 4516–4522.

[5] Y. Wen, Z. Wang, and M. F. O’boyle, “Smart multi-task scheduling for
opencl programs on cpu/gpu heterogeneous platforms,” in 2014 21st In-
ternational conference on high performance computing (HiPC). IEEE,
2014, pp. 1–10.

[6] L. Abeni and G. Buttazzo, “Integrating multimedia applications in hard
real-time systems,” in Proceedings 19th IEEE Real-Time Systems Sym-
posium (Cat. No. 98CB36279). IEEE, 1998, pp. 4–13.

[7] M. Spuri and G. C. Buttazzo, “Efficient Aperiodic Service Under Earliest
Deadline Scheduling,” in RTSS, 1994, pp. 2–11.

[8] H. Zhu, S. Goddard, and M. B. Dwyer, “Response time analysis of hier-
archical scheduling: The synchronized deferrable servers approach,” in
32nd Real-Time Systems Symposium. IEEE, 2011, pp. 239–248.

[9] R. F. Freund and D. S. Conwell, “Superconcurrency: A form of dis-
tributed heterogeneous supercomputing,” NAVAL OCEAN SYSTEMS
CENTER SAN DIEGO CA, Tech. Rep., 1991.

[10] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous comput-
ing,” in 2009 IEEE international symposium on workload characteriza-
tion (IISWC). Ieee, 2009, pp. 44–54.

182 Bibliography

[11] P. Czarnul and P. Rościszewski, “Optimization of execution time under
power consumption constraints in a heterogeneous parallel system with
gpus and cpus,” in International Conference on Distributed Computing
and Networking. Springer, 2014, pp. 66–80.

[12] S. Kato, K. Lakshmanan, R. Rajkumar, and Y. Ishikawa, “Timegraph:
Gpu scheduling for real-time multi-tasking environments,” in 2011
USENIX Annual Technical Conference (USENIX ATC 11), 2011, pp. 17–
30.

[13] S. Kato, M. McThrow, C. Maltzahn, and S. Brandt, “Gdev: First-class
gpu resource management in the operating system,” in 2012 USENIX
Annual Technical Conference (USENIX ATC 12), 2012, pp. 401–412.

[14] N. Otterness, M. Yang, S. Rust, E. Park, J. H. Anderson, F. D. Smith,
A. Berg, and S. Wang, “An evaluation of the NVIDIA TX1 for support-
ing real-time computer-vision workloads,” in Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2017, pp. 353–364.

[15] C. Basaran and K.-D. Kang, “Supporting preemptive task executions and
memory copies in GPGPUs,” in 2012 24th Euromicro Conference on
Real-Time Systems. IEEE, 2012, pp. 287–296.

[16] S. Kato, K. Lakshmanan, A. Kumar, M. Kelkar, Y. Ishikawa, and R. Ra-
jkumar, “Rgem: A responsive gpgpu execution model for runtime en-
gines,” in 2011 IEEE 32nd Real-Time Systems Symposium. IEEE, 2011,
pp. 57–66.

[17] E. Rossi, M. Damschen, L. Bauer, G. Buttazzo, and J. Henkel, “Preemp-
tion of the partial reconfiguration process to enable real-time computing
with FPGAs,” ACM Transactions on Reconfigurable Technology and Sys-
tems (TRETS), vol. 11, no. 2, pp. 1–24, 2018.

[18] G. A. Elliott, B. C. Ward, and J. H. Anderson, “Gpusync: A framework
for real-time gpu management,” in 2013 IEEE 34th Real-Time Systems
Symposium. IEEE, 2013, pp. 33–44.

[19] H. Kim, P. Patel, S. Wang, and R. R. Rajkumar, “A server-based ap-
proach for predictable gpu access control,” in 2017 IEEE 23rd Interna-
tional Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA). IEEE, 2017, pp. 1–10.

[20] A. Biondi, A. Balsini, M. Pagani, E. Rossi, M. Marinoni, and G. But-
tazzo, “A framework for supporting real-time applications on dynamic

Bibliography 183

reconfigurable FPGAs,” in 2016 IEEE Real-Time Systems Symposium
(RTSS). IEEE, 2016, pp. 1–12.

[21] S. Kato, K. Lakshmanan, Y. Ishikawa, and R. Rajkumar, “Resource shar-
ing in GPU-accelerated windowing systems,” in 2011 17th IEEE Real-
Time and Embedded Technology and Applications Symposium. IEEE,
2011, pp. 191–200.

[22] Y.-S. Chen, H. C. Liao, and T.-H. Tsai, “Online real-time task schedul-
ing in heterogeneous multicore system-on-a-chip,” IEEE Transactions on
Parallel and Distributed Systems, vol. 24, no. 1, pp. 118–130, 2012.

[23] S. Baruah, “Resource-efficient execution of conditional parallel real-time
tasks,” in European Conference on Parallel Processing. Springer, 2018,
pp. 218–231.

[24] C. Maia, M. Bertogna, L. Nogueira, and L. M. Pinho, “Response-time
analysis of synchronous parallel tasks in multiprocessor systems,” in Pro-
ceedings of the 22Nd International Conference on Real-Time Networks
and Systems, 2014, pp. 3–12.

[25] F. C. Bruhn, N. Tsog, F. Kunkel, O. Flordal, and I. Troxel, “Enabling
Radiation Tolerant Heterogeneous GPU-based Onboard Data Processing
in Space,” CEAS Space Journal, vol. 12, no. 4, pp. 551–564, 2020.

[26] N. Tsog and M. Larsson, “Time Predictability of GPU Kernel on an HSA
Compliant Platform,” 2016.

[27] S. K. Baruah, “Task Partitioning Upon Heterogeneous Multiprocessor
Platforms,” in IEEE real-time and embedded technology and applications
symposium. Citeseer, 2004, pp. 536–543.

[28] T. D. Braun, H. J. Siegel, N. Beck, L. L. Bölöni, M. Maheswaran, A. I.
Reuther, J. P. Robertson, M. D. Theys, B. Yao, D. Hensgen et al., “A
comparison of eleven static heuristics for mapping a class of indepen-
dent tasks onto heterogeneous distributed computing systems,” Journal
of Parallel and Distributed computing, vol. 61, no. 6, pp. 810–837, 2001.

[29] E. Bini and G. C. Buttazzo, “Measuring the performance of schedulabil-
ity tests,” Real-Time Systems, vol. 30, no. 1-2, pp. 129–154, 2005.

[30] N. Tsog, M. Behnam, M. Sjödin, and F. Bruhn, “Intelligent data process-
ing using in-orbit advanced algorithms on heterogeneous system archi-
tecture,” in 2018 IEEE Aerospace Conference. IEEE, 2018, pp. 1–8.

184 Bibliography

[31] N. Tsog, M. Sjödin, and F. Bruhn, “Advancing on-board big data pro-
cessing using heterogeneous system architecture,” in ESA/CNES 4S Sym-
posium 4S 2018, 28 May 2018, Sorrento, Italy, 2018.

