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Abstract

Indexed data structures, such as arrays and matrices, can be found in many
programming languages. The data field model is a semantical framework which
seeks to capture the essence of indexed data structures and make them more gen-
eralised. The first implementation of the data field model, Data Field Haskell,
was done in Haskell 1.3 as an extension to an existing Haskell compiler. This
compiler, dfhc, was ported to a newer compiler version, dfhc98, and updated to
be Haskell98 compatible. Data Fields enables a collection-oriented programming
style on Haskell.

In this thesis we present a new implementation of the data field model in
Haskell. This implementation is not built as a extension to an existing com-
piler. The presented solution is comprised of a library and preprocessor that
offers functionality equivalent to that of the old dfhc98 compiler. The proposed
implementation is small, portable and modular, leading to a solution that is
easier to maintain and extend as need arises.





Referat

Indexerade datastrukturer, som arrayer och matriser, existerar i m̊anga pro-
grammeringsspr̊ak. Datafältsmodellen är ett semantiskt ramverk som försöker
generalisera indexerade datastrukturer. Första implementationen av datafälts-
modellen, Data Field Haskell, gjordes i Haskell 1.3 som en utökning av en
befintlig Haskell kompilator. Denna kompilator, dfhc, blev senare porterad till
en nyare version, dfhc98, och uppdaterad till att vara Haskell98 kompatibel.
Datafält medgör s.k. ”collection-oriented programming“ i Haskell.

I detta examensarbete presenterar vi en ny implementering av datafältsmod-
ellen i Haskell. Denna implementering bygger inte p̊a en utökad kompilator utan
best̊ar av ett bibliotek och en preprocessor vars funktioner är ekvivalenta med
de funktioner dfhc98 erbjuder. Den föreslagna nya implementationen är kom-
pakt, portabel och modulär, vilket ger en lösning som borde vara enklare att
underh̊alla och utöka vid behov.
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Chapter 1

Introduction

The ability to handle a set of items in an uniform manner enhances the read-
ability of code and can often make that same code more compact. When one
can abstract away traversal details, manipulating a group of items becomes a
very easy task. Languages such as APL [8], Fortran 90 [17], Sisal [9], NESL
[7] are able to operate directly on collections. This style of programming is
often called collection-oriented programming [19]. Higher-order functional lan-
guages also have collection-oriented functions, but these are often restricted to
operations on lists.

To exemplify the difference between a collection-oriented approach and that
of an imperative one, we present a very small example in pseudocode. The
purpose of this example is to give a more concrete demonstration of the benefits
of collection-oriented programming. Assume that we want to apply a function
f on each element in a list l. An imperative solution would need to traverse the
list element by element, using some kind of loop-construct, and then applying
f on the current element. An in-place update(destructive) solution would then
look something like:

index:=0
while (index < length of list)

do
l[index] := f(l[index])
index := index + 1

od
return l

The problem is easy to code but the majority of the code is actually related
to traversal details. The collection-oriented solution is much more compact and
as such much easier to comprehend:

map f l

This line of code achieves the same effect as the imperative one, i.e it is
semantically identical to the imperative solution. Here f is applied to all ele-
ments in l and due to the collection-oriented nature traversal details are handled
transparently. In essence, the code looks exactly like we would expect from the
problem definition, which was a function f applied to all elements in a list l.

1



2 CHAPTER 1. INTRODUCTION

Other benefits of the collection-oriented paradigm is that it offers a conve-
nient model for parallel programming. Given the explosion of multicore proces-
sors, even in the consumer markets, demand of better utilisation of equipment
and quality of code, it is vital that models and tools exists to meet the challenge
potential programmers will ultimately face.

The collection we have been using in our example, the list, is an indexed data
structure. Indexed data structures are found in many programming languages
and are important in the field of high performance computing. The purpose of
the data field model [16] is to provide a semantical framework for very general
indexing structures. The implementation of the data field model in the higher-
order, purely functional language Haskell, Data Field Haskell [1], was done as
an extension of an existing Haskell-compiler, NHC [5].

In this thesis we present a new and reworked implementation of Data Field
Haskell. The implementation is platform-independent, written in Haskell98 [11]
(current standard) with extensions and transformed from a compiler to a library
with preprocessor. The goal has been to create a compact and highly portable
Data Field Haskell version that will be easier to maintain and update in the
future.

1.1 Background

The first implementation of the data field model was done by Jonas Holmerin
[12]. It was based on the NHC13 compiler, which supported Haskell 1.3. A
port to the current standard, Haskell98, was done in 2001 by Andreas Sjögren
[20]. The source for the port was the old dfhc compiler and the target was
the newer NHC98, which resulted in the dfhc98-1.0beta compiler. After the
completion of dfhc98-1.0beta, the project was dormant for several years. In 2006
an investigation was made by the author [18] to see if dfhc98-1.0beta could be
updated to run on comtemporary systems and also to investigate possibilities to
make a more portable solution. The findings of this investigation were that too
much had changed (Haskell-compilers, libraries and related tools) for a smooth
updating of the dfhc98-1.0beta compiler. The second part of the investigation,
however, led to a possible solution for a more portable implementation.

The purpose of this thesis is to implement the suggested solution in [18] and
thus get a new and working Data Field Haskell implementation with equivalent
features to the former dfhc98-1.0beta compiler.

1.2 Delimitations

The implementation of the Data Field Haskell library went quite well without
any major problems. There were some issues that hindered the construction of
a full and working preprocessor. The first problem that occurred was during
the syntax translation part of the preprocessor. One syntax conversion required
a transformation from one type to another type. Unfortunately some “exotic”
patterns, that needed to be translated into another format, either required much
effort for it to work or it simply could not be done(no translation possible). The
second and most important delimitation was the timelimit. Producing code to
correctly calculate data field bounds from the large abstract syntax tree proved
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to take much longer than expected.

1.3 Expected & Actual results

The expected result from this thesis was to have a compact and portable Data
Field Haskell library and preprocessor, that would have features equivalent to
that of the Data Field Haskell compiler dfhc98. The features the new imple-
mentation needed was:

1. Library to implement all data field related functions found in dfhc98

2. Preprocessor to handle and translate Data Field Haskell specific syntax
constructs.

3. Automatically deriving the bounds from Data Field Haskell specific syntax
constructs.

Due to the problems discussed in Delimitations, the bounds derivation part is
not yet functional and the preprocessor might be more stricter about input than
necessary. Due to the recursive nature of the solution of the bounds derivation
part, all rules need to be implemented for the derivation to work accurately.
The implementation of bounds derivation is not complete yet so, in essence,
deriving bounds does not work yet on any constructs. To summarize the actual
result, point 1 and 2 are completed but point 3 requires more work.

The contribution of this thesis is a new implementation of Data Field Haskell,
comprising of a library and a preprocessor. The implementation is compact,
portable, documented and should hopefully be easy to maintain and extend,
should such a need arise.
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Chapter 2

Haskell

To be able to understand Data Field Haskell, we need to turn our attention
towards the programming language that we both extend and use to implement
our Data Fields.

Haskell is a lazy and purely functional general purpose programming lan-
guage with a lot of interesting features. Haskell is also called a declarative
language, since programming is mainly done by specifying desired actions but
not the order of the actions. It is quite different from other programming lan-
guages, this is due to the nature of the design and to the fact that much research
is performed on the Haskell language. The first version of the language was de-
fined in 1990. The current standard is known as Haskell98, but there is ongoing
efforts to produce a new standard. This new proposed standard is informally
known as Haskell’ or “Haskell Prime”.

Haskell brings benefits such as shorter, clearer and more maintainable code.
The theoretical foundation of Haskell makes it easier to reason about programs.
As an example, there are no side-effects in Haskell therefore one does not need to
worry about some hidden state affecting computations. Functions in Haskell are
equivalent to mathematical functions, that is if a function is called with a value
a the result will always be b. It doesn’t matter how many times the function
is called, that result will always be the same. To demonstrate the difference,
consider a function getchar() that reads input from a user. Here each call to
getchar() might differ depending on what the user inputs.

Haskell is a very flexible language, where many constructs can be user de-
fined. This property has led to Haskell being a suitable language for interpreters
and compilers. In fact one of the biggest Haskell compiler is written in Haskell
itself. It also has automatic memory management, which relieves the program-
mer of the burden to handle memory allocation and deallocation.

Drawbacks do exist like in Haskell like in any other programming language.
Laziness makes it harder to reason about the performance of written code.
Haskell is not so common outside the academic sphere. Finally some find Haskell
to complex to understand.

The following sections will present features found in Haskell, although it
should not be seen as a substitute for a good book. A good start to learn
Haskell is found in [13].

Naturally we can not give a comprehensive coverage of all things in Haskell,
therefore our presentation will contain only a select set of features found in

5



6 CHAPTER 2. HASKELL

Haskell. We first explain some general concepts found in Haskell and then we
introduce executable Haskell snippets with explanations. This will provide an
insight in how Haskell is used, it is assumed though that the reader is familiar
with some programming concepts.

2.1 Pure

Destructive updating of values are not allowed in a pure language. In other
words there are no side-effects. Absence of side-effects also make it easier to
reason about and prove properties of a program. The reason for this is that all
function values only depend or their input and have no hidden state.

2.2 Lazy evaluation

Evaluation of expressions only happens when the result is needed. Lazy eval-
uation enables infinite data structures, which can not be expressed easily in
languages that uses an eager evaluation strategy. Infinite data structures can
sometimes provide very compact solutions for problems that can be modelled
as streams.

2.3 Strongly typed

In Haskell all types are checked at compile-time. Conversions between different
types are in general not allowed. In those cases conversions are allowed, it must
be done by explicitly calling the proper conversion function.

2.4 Polymorphism

This property allows defined functions to work on several different types. Poly-
morphic data structures, such as a list of any numeric type, are also possible.

2.5 Type inference

With type inference the type of an expression can be automatically inferred
by the compiler. The type inferred will be the most general type an expres-
sion can have. This can alleviate the programmer from having to make type
declarations, although this is often done as a means to describe and document
functions. Documentation generators also make use of type declarations when
automatically generating documentation from source code.

2.6 Type classes

One of Haskell’s unique features is that of type classes. The purpose of type
classes is to be able to restrict polymorphic types. Type classes consists of two
parts:
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1. Class declaration with operations: This defines the class and operations
that is part of the class. The operations consists of type signatures. Some-
times these type signatures are followed by implementations which are
called default methods.

2. Instance declaration with methods: In order for a type to be a member
of a class, an instance declaration has to be made where the operations of
the class are implemented, called methods, for that particular type.

Using type classes it is possible to partition the polymorphic types into sets,
types that are members of a class and types that are not part of the class. Type
classes also presents a convenient way of handling many different types using
one single function name, so called ad-hoc polymorphism. Depending of the type
of the parameter the resulting call of the function will be that which is specified
by the instance declaration.

We now present a concrete example of the two parts that form a type class:

class Check a where -- (1)
(===) :: (Eq a) => a -> a -> Bool

The class declaration with operation(s) in (1) and

instance Check String where -- (2)
str1 === str2 = str1 == str2

the instance declaration with method definition (2). The class declarations
specifies which operations a data type needs to implement to be part of the
class. The instance declaration makes a data type part of the given class. In
our example we simply have a class which compares items. The class restriction
(Eq a) => specifies that the type a must be a member in class Eq, in essence
meaning that the operator == must be defined on that data type. In the instance
declaration, we can see that we are using exactly == to check for equivalence,
thus the reason for the constraint. Also by making another instance declaration
for some other type we get the overloading effects, since comparison can be done
on different types with the same functions ===.

2.7 Currying

This technique refers to the situation where, instead of taking multiple argu-
ments, a function is converted to a function that takes one argument but returns
a new function as a result. This new function can then be applied to another
argument giving another function until all arguments have been used and the
final result calculated.

2.8 Algebraic data types

These data types wrap data from other data types in its constructors. Unlike
ordinary data types the algebraic data type can not be executed only unwrapped.
Pattern matching is used to traverse or deconstruct these structures. Since
Haskell is polymorphic, it also applies to the algebraic data types. A very useful
construct, algebraic data types can look like example (3):



8 CHAPTER 2. HASKELL

data Enum = One |Two |Three -- (3)

in the case with nullary constructors. Algebraic data types with constructors
that can take several polymorphic arguments might look like example (4):

data Container a b = OneA a
| OneB b -- (4)
| BothAB a b

One could also choose to have an algebraic data type where the types are fully
specified as in (5):

data Thing = ThingConstructor Int -- (5)

To use these data types the constructor is used together with possible arguments:

c = BothAB 5 "five" -- (6)

the expression type of example (6) is c :: Container Integer [Char].

2.9 Anonymous functions

Using λ-abstraction one can define anonymous functions. These are used in
instances where small “onetime” functions are needed, such as arguments to
higher-order functions. They are constructed in Haskell using the form of
\pat_0 ... pat_n -> expr, as in:

\x y -> sqrt (x^2 + y^2) -- (7)

(7) is an anonymous function that gives the length of the hypotenuse in a right
triangle. Binding this equation to a name results in a “normal” function.

2.10 Binding

There are a couple of ways of binding expressions to a name. The equal sign,
=, can be used. There are also the let and where bindings, as showed in (8).
There is one difference between let and where, it is that where can only be
used at the top level of a function definition. We construct the function in the
previous example (7), this time using local bindings.

g x y = let xsq = x^2
ysq = y^2
sqsum = xsq + ysq

in sqrt sqsum
-- (8)

h x y = sqrt sqsum
where sqsum = xsq + ysq
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xsq = x^2
ysq = y^2

Note that although we have reused the name xsq,ysq and sqsum there is no
nameclash due to the effect of the bindings.

2.11 Comments

There are two ways to comment code in Haskell. The first type is a lineoriented
comment which starts with --. This states that the comment stretches from
the mark until the end of the line. The second format is the pair formed by {-
and -}. Here everything between these markers are considered comments.

--This is a linecomment
{-
These are more comments with -- (9)
{- some nesting -} demonstrated

-}

Comments can, as shown in (9), be nested.

2.12 Monads

To accommodate side-effects and have the ability to order calculations, monads
were introduced. Input and output is done in the IO-monad. Calculations that
keep track of state also need to use monads. There is a special notation coupled
with monads, it’s called the do-notation. This notation is just syntactic sugar1

for the operations in the monad class.

2.13 Do expression

Do expressions provide a nicer syntax for monadic programming. An informal
description of monadic programming is that monads are used to structure com-
putations that need to happen in a certain order or when side-effects are wanted.
As an example, input and output operations in Haskell is done in the IO-monad.
The term monad comes from a branch of mathematics called category theory,
however there is nothing different between monads or monadic programming
and Haskell. They are, simply put, constructs with rules that determine the
function of a monad. Do expressions provide an alternative way of program-
ming with monads. Statements in a do-block are executed in sequential order.
This is also the only place where one can find statements in Haskell. Example
(10) shows the difference between the monadic style and do:

monadprint = print "Input:" >> getLine >>=
\str -> print str

-- (10)

1Easier syntax that doesn’t provide anything extra.
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doprint = do
print "Input:"
str <- getLine
print str

Both functions do the same thing. After printing“Input:” on the screen, it waits
for some input which it then echoes back to the screen.

2.14 Exceptions

There are two ways to raise an exception. The first one is to explicitly call the
function error, with an informative string. The other is to use the constant
undefined which also raises an exception. With descriptive error strings, the
time finding flaws in the code can be reduced. One thing to note is that general
exceptions are hard to integrate into pure and lazy languages.

error "Something is wrong!" -- (11)
errorlist = [1, undefined]

Evaluating errorlist in example (11) results in an exception being raised.

2.15 Functions

The foundation of functional programming languages, functions can be found
almost everywhere in Haskell code. Functions can be of specific types or be made
polymorphic. In Haskell, function definitions are expressed as an equation or a
set of equations.

addint :: Int -> Int -> Int
addint x y = x + y

addnum :: (Num a) => a -> a -> a -- (12)
addnum x y = x + y

ident :: forall a. a -> a
ident x = x

The line just above every function definition in (12) is called a type signature,
these are discussed in 2.30. The first function in example (12) demonstrates
a function with two integer2 arguments that returns an integer. The second
function is a polymorphic function with a class constraint, class constraints
are explained in point 2.6, that can add types that are members of the Num
class and return a value of the same type as the arguments. It is easy to see
that addnum is a generalisation if addint. The identity function ident is fully

2Haskell have two integer values, Int and Integer. The difference is that the size of the
former is limited to the word size on the given machine, whereas the size of the latter is
unrestricted.
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polymorphic as it has no class constraints. The ident function can take, as
argument, any type and return it. If no type signature is given, the compiler
will infer the most general type of a function. This means that removing the
addint :: Int -> Int -> Int line above addint will result in addint becom-
ing equal to addnum. They will have the same function type signature. Impor-
tant to note is that, due to Haskell’s strong typing, the types of the arguments
must match that of the signature. Calling addint with a type other than Int
will fail. Removing the type signature, as mentioned earlier, will allow addint
to work with any numeric type. But in this case there is a class constraint that
must be fulfilled.

2.16 Guards

Guards are used together with patterns. They are used to specify further con-
ditions that have to be met in order for the right-hand side of the equation to
be evaluated.

signstring 0 = "Zero"
signstring n | n > 0 = "Pos" -- (13)

| otherwise = "Neg"

In example (13), the signstring function takes a number and returns a string,
which gives the sign of the number. The guard consists of | predicate(s) or
| otherwise. If the predicates succeeds, the right-hand side of the equation is
evaluated. If it fails the next predicate is tested. otherwise always succeeds
and can be seen as a default case.

2.17 Higher-order functions

These functions work with other functions as arguments or results. Higher-order
functions are useful, as they allow one to capture common patterns in one single
function. Consider the map function. It takes a function and a list as arguments.
The result is a new list, where each element is formed by the application of the
function to the same element in the old list. In other words, the function is
applied to every element in the old list and this new list is the result.

map (\x -> 1 + x) [1,2,3,4] -- (14)

Example (14) also shows the use of anonymous functions as arguments. The
result of this expression is the new list [2,3,4,5]. We also give one example of
a higher-order function that returns a function as a result.

newfunc x = \y -> y^x -- (15)

The result of the function in (15) is a new function with one argument, whose
result is argument y raised to the power of x. newfunc 2, for instance, gives a
function that computes the squares of its arguments.
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2.18 Infinite data structures

Due to lazy evaluation, where evaluation of an expression only happens when
it is needed, these kinds of structures are possible. They offer, as mentioned
earlier, a convenient way to solve certain problems.

inflist = [1..] -- (16)
squaredlist = map (\x -> x^2) inflist

In (16), inflist is an infinite list of positive numbers. squaredlist is gen-
erated by using the higher-order function map with the squaring function on
inflist to get an infinite list of squared natural numbers. A more useful ex-
ample is that of the infinite list of primes. This will be demonstrated in point
List comprehension.

2.19 Layout

Haskell has two styles to delimit code blocks, layout sensitive and layout in-
sensitive style. Layout insensitive style adds the use of semicolons and braces.
Layout sensitive style is the style that is used normally when programming.
Having two styles means that Haskell code can be both easily generated by
other programs and programmed. We will only informally describe the details
of the layout sensitive style. The first character of each equation must line up.
If an equation spans several lines, the following lines must be to the right of the
first character. The first character following some keywords such as let, where
and others are what determines the starting column of the layout.

let a = ...
b = ...

in ...
-- (17)

let a = ...
b = ...

in ...

The first let-expression in example (17) has a legal layout, whereas the second
has not.

2.20 Lists

List are very useful data structures. All elements have to have the same type,
but as many other data structures in Haskell, the list can be polymorphic. Lists
can be finite or infinite. There are also many functions, such as map, foldl,
head and filter, that work on lists.

listone = 1:2:3:4:[]
listtwo = [1,2,3,4] -- (18)
listthree = [1..4]
aritmlist = [2,4..]
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The first three lists in example (18) all represent the list [1,2,3,4]. The last
two lists uses a special syntax to form a arithmetic sequence. Again one can see
that aritmlist is an infinite list of even numbers.

2.21 List comprehensions

Another very useful construct to handle lists is list comprehensions. They mimic
set comprehensions, that have the form of {f(x1, ..., xn)| p1(x1) ∧ ... ∧ pn(xn)},
and offer a compact way of building lists using a style very similar to that of set
comprehensions. These construct lists where elements are taken from other lists,
often together with one or more predicates. List comprehensions are explained
with some list examples.

orglist = [1..10]
l1 = [x^2 | x <- orglist] -- (19)
l2 = [(y,y)| y <- l1, (y ‘mod‘ 2) == 0]

In example (19), orglist is as we have seen earlier a finite list containing all
numbers from 1 to 10. l1 constructs a new list where each element comes from
orglist but is squared. l2 constructs a list of pairs from the even squares
found in l1. The backquotes ‘...‘ are used to make a function work like an
infix operator. We finally present an infinite list of primes using the recursive
function sieve and a list comprehension in (20).

primes = sieve [2..] where
sieve (h:t) = h : -- (20)
sieve [y | y <- t, (y ‘mod‘ h) /= 0]

2.22 List reductions

Haskell offers several functions that reduce a list given a binary operator. The
reason for several functions is that a list can be reduced either from left to
right or from right to left. If the function used is commutative then the result
will be the same regardless of choice. Non commutative functions require more
care when selecting the proper function. The reduction functions in Haskell
are foldl, foldr, foldl1 and foldr1. The l and r stands for left and right
respectively and the 1 signifies that no initial value needs to be supplied. The
functions ending with 1 must therefore be applied only to non-empty lists. All
folds require finite lists in order for them to work. There are also several scan
functions. They work in the same way as folds but with the difference that
the final result is a list of intermediary results from the reduction. The scan
functions are scanl, scanr, scanl1 and scanr1. The following two folds both
yields the same result.

foldr (+) 0 [1,2,3] -- => 6
foldl (+) 0 [1,2,3] -- => 6

In this case the result differs since (-) is not commutative.
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foldr (-) 0 [1,2,3] -- => 2
foldl (-) 0 [1,2,3] -- => -6

This time we use the same setup but with scans instead.

scanr (+) 0 [1,2,3] -- => [6,5,3,0]
scanl (+) 0 [1,2,3] -- => [0,1,3,6]
scanr (-) 0 [1,2,3] -- => [2,-1,3,0]
scanl (-) 0 [1,2,3] -- => [0,-1,-3,-6]

Note that in the r-variants the result of the folds matches the first element in
the scans and in the l-variants the result of the folds matches the last element
in the scans.

2.23 Modules

Haskell code is packaged in modules. Modules introduce a namespace and can
be used to create an abstract data type. They have the form found in example
(21):

module "Name" where
DATATYPES -- (21)
DECLARATIONS
ETC...

The first letter in a module name must be capitalized.

2.24 Operators

Operators have infix syntax. Operators can be user defined, the only require-
ment is that the operators do not contain any numbers, alphabetical characters
or the symbol ’.

(<^>) a b = sqrt (a^2 + b^2) -- (22)

The operator in (22) calculates the hypotenuse of a right triangle. An example
of the usage of the operator is side1 <^> side2 => hypotenuse. By using
(...) around an operator it can be used as a normal function. Compare this
with the use of backquotes, which converts a function into an operator.

2.25 Pattern matching

Using pattern matching it is easy to deconstruct data structures. Function
definitions can also be made very succinct with pattern matching. Some of the
earlier examples have already shown use of pattern matching. Pattern matching
can work on data constructors with both user defined and predefined types.
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match ’a’ = 1
match ’b’ = 2 -- (23)
match _ = 3

The match argument in (23) is matched first with the character ’a’. If there is
a match the result is the number ’1’, otherwise the pattern matching continues
with the second equation and so on. The underscore is known as a wildcard,
it matches everything. The pattern h:t matches a list with a head and tail.
Matching on a data constructor C Int String in a function func can look like
func (C num str). In this case, a successful match will bind the values in the
data constructor to num and str.

2.26 Recursion

Often used in functional programming, but also found in other languages, it
is formed by base case and recursion step. Recursion can be used to solve a
problem by dividing it into smaller parts or as a way to iterate.

quicksort [] = [] -- (24)
quicksort (h:t) = quicksort

[lower| lower <- t, lower < h]
++ [h] ++
quicksort
[higher| higher <- t, higher >= h]

Example (24) demonstrates the quicksort function, where both recursion and
list comprehensions are used.

2.27 Standard Haskell types & classes

Haskell provides a number of predefined type classes and types. Basic types are
booleans, characters, strings, lists and tuples. Some of the classes are Eq, Show
and Num. For a full list of types and classes, please refer to [11].

2.28 Standard Prelude

The standard prelude forms the basic library with functions and classes. Differ-
ent compilers often might include extra libraries, but the prelude should always
be the same in all implementations.

2.29 Tuples

Contrary to lists, tuples are non growable data structures supporting hetero-
geneous types. They are often used to pack together values of different types.
They are static in the sense that a 2-tuple can not be expanded to a 3-tuple.
Tuples of different dimensions have different types, that is n-tuples are distinct
from m-tuples if n 6= m.
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(1, "string") -- (25)
(’a’, 5, ’r’)

Example (25) demonstrates 2- and 3-tuples.

2.30 Type signature

The purpose of type signatures is to provide a way to specify which types a
function can take and return. Using type signatures one can restrict a function
to work with only specific types. Excluding the type signatures results in a
function with the most general type, class constraints are of course taken in
consideration. It also serves as a documentation of the function, as the types of
the arguments and results is clearly visible.

func1 :: String -> String
func2 :: (Eq a, Show b) => a -> a -> b -> String -- (26)
func3 :: (a -> b) -> a -> b

The first type signature in (26) is for a function whose argument is of type
string and whose result is also of type string. The second signature shows some
class constraints. This function has three arguments, of which the first two must
have the same type and be part of class Eq and the third must be part of class
Show. The result is of type string. The final signature specifies that the first
argument is a function from type a to typeb. The second argument is of type
a and the result of the functions is of type b. func3 is a higher-order function
and in this case the purpose of it is to apply its first argument to its second
argument.
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Extensions

The library utilises two extensions to Haskell98, currently only found in the
Glasgow Haskell Compiler [10]. The use of these extensions are necessary in
order to implement product bounds1 and general functions that can handle
them. The two extensions used are Generalised Algebraic Data Types(GADT)
[15] and Functional Dependencies [14].

GADT:s are a generalisation of ordinary algebraic data types. The difference
between the two data types is that, in GADT, type signatures of constructors
can be given explicitly. Normally the result type of a data type has to be the
same as the data type. Often this has the form of a type constructor T applied
to all type parameters used. This simply means that if we have a type variable
a we want to use in the data type, then it must also present in the data type
declaration such as data T a = .... If we would like to use two different types
in our data type then both types need to be declared as in data T a b = ....
The problem we face with this approach is that we either have to expose the
internals of the data type or not being able to form our product bounds in the
first place. The desired solution for the representation of product bounds is a
data type which has a single type variable that is “flexible”. With this we mean
a data type where type variables need not be declared even though they might
be used. An example of what we want is to express T a -> T b -> T (a,b).
With standard data type constructors this would not be valid since T a is not
compatible with T (a,b). Furthermore the type variable b in T (a,b) does not
even exist in T a. Fortunately this problem is solved with the use of GADT. In
a GADT, the result type can differ from the data type, that is the result can be
an application of a type constructor T to arbitrary argument types. This means
that code using GADT can express T a -> T b -> T (a,b), something that
would be impossible with standard data types as the resulting type T (a, b)
would have to be T a to be legal. To make it more concrete we show a real
GADT declaration in Haskell:

data T a where
T1 :: a -> T a
T2 :: T a -> T b -> T (a,b)

1Product bounds are multidimensional bounds, found in Data Field Haskell, that are
formed from simpler bounds. The concept will be further explained in 7.
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Notice how the keyword where is used together with the keyword data to specify
a GADT. Also note that data constructors are given something that looks very
similar to type signatures.

Functional dependencies allows a programmer to specify relationships be-
tween parameters in a multiparameter class. This provides more flexibility when
defining functions that must be able to handle parameters of different types, as
one is given more control on how those type parameters should be handled.
Without these annotations, the compiler can not always deduce the intention of
the programmer even if the programmer knows what should be achieved. With
functional dependencies, relationships between parameters can be expressed and
enforced. To specify a functional dependency, such as type a determines type
b, one uses a | a -> b construct in a class declaration. To present a more
concrete view we give a contrived example of two identical classes, where the
first one uses functional dependencies and the second one is an ordinary Haskell
class. The class C has one single operation f, which takes values of type a and
returns values of type b. The actual types of a and b are given by the instance
declarations.

class C a b| a -> b where -- (1)
f :: a -> b

instance C Int Bool where -- (2)
f n = if n == 0 then True else False

instance C Char Bool where -- (3)
f c = if c == ’a’ then True else False

-- instance C Char Int where -- (4)
-- f c = if c == ’a’ then 1 else 0

The reason (4) is commented is that the instance is illegal when using func-
tional dependencies. This is because our declared functional dependency is spec-
ified as a uniquely determines b. In (3) we specified a as Char and b as Bool,
this means that we can not specify another instance where a is Char and b is
something other than Bool. Doing so would violate the functional dependency.

class C a b where -- (5)
f :: a -> b

instance C Int Bool where -- (6)
f n = if n == 0 then True else False

instance C Char Bool where -- (7)
f c = if c == ’a’ then True else False

instance C Char Int where -- (8)
f c = if c == ’a’ then 1 else 0

In this case (8) works since we have no functional dependency specified.
The problem here is that we need to supply a type annotation to the compiler
when using function f with type a as Char, this is so the compiler knows which



19

of (7) or (8) was intended. This is one benefit with functional dependencies
in classes, if one knows what effect is desired one can specify it as an functional
dependency instead of having to supply type annotations. In this trivial case it
might be a bit hard to grasp the usefulness of functional dependencies, but when
dealing with more complex code they can be quite powerful and sometimes even
necessary.
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Chapter 4

Template Haskell

Template Haskell(TH) [6] provides a type-safe compile-time meta-programming
framework for Haskell. The purpose of TH is to give a programmer the ability
to manipulate Haskell code in Haskell at compile time. Functions to create,
handle and translate between concrete- and abstract syntax are provided. TH
also provides a less verbose abstract syntax tree that is easier to calculate on
compared with the parser for Haskell98 found in the GHC library.

Besides the functions provided there are two syntactical extensions that make
it easy to program with TH. These are splice- and quasi-quote notation. $(..),
called a splice, evaluates the enclosed code at compile-time and replaces the
$(..) with what was just evaluated. [|..|], the quasi-quote notation, converts the
enclosed Haskell code into an abstract representation. This makes transforma-
tions reasonably transparent and efficient. When using this extension, invoking
the ghc-specific flag -fth is required.

TH is useful for macro-like expansions, where one can make certain transfor-
mations on given code snippets. These transformations would then be inserted
back into the code. Since the transformations and calculations are done at
compile-time, this work does not need to be done during runtime. The use of
these features is the main idea behind bounds deriving module found in the
library.
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Chapter 5

Tools

This section briefly describes the tools used for the implementation.

5.1 Haddock

Haddock [2] is a tool for automatically generating documentation from anno-
tated source code. The resulting documentation is a fully hyperlinked document.
This tool was used on the library to get a nice looking HTML documentation.

5.2 Happy

Happy [3] is a parser generator for Haskell. It is similar to “yacc”, that produces
code for the generated parser in C. Happy takes a file containing an annotated
BNF specification of a grammar. It then creates a Haskell module containing
the parser for the given input grammar.

Happy is a bottom-up parser in contrast to the monadic parser combina-
tors used in dfhc98. Parser combinators take another approach when parsing
code, instead of specifying a grammar one builds the whole parser by combining
smaller parsers. For example on can have a parser pc that only recognizes char-
acters and another parser pn that can recognize numbers, then create a parser
that can recognize valid identifiers by combining pc and pn.

5.3 Glasgow Haskell Compiler

The Glasgow Haskell Compiler(GHC) [10] is an optimising compiler for Haskell
done in Haskell. It comes with an interactive environment, ghci, and extensive
libraries. GHC fully implements Haskell 98 and it also features a number of
extensions. It works on several platforms and is considered, together with Hugs1

[4], de facto standard for the language. GHC features a liberal license and source
code for the compiler is available.

1An interactive Haskell interpreter.
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Chapter 6

The Data Field Model

The model presents a simple and elegant view of indexed data structures. The
idea is to model indexed data structures as a partial function with explicit
information of the domain. In the data field model, the explicit information of
the domain is called bounds. The data field thus consists of a pair (f, b), the
function f and the bounds b. Since we are dealing with partial functions, they
do not necessarily have to be total. So in order for these functions to have a
conventional function type, a specific error value ∗ is introduced. The algebraic
properties of ∗ is similar to ⊥ and is “returned” when a data field is called
with an argument outside its domain. This model enables a collection-oriented
programming style because most types of collection-oriented operations can be
defined as higher order functions operating on partial functions.

Bounds are important in the data field model. They provide an abstract set
that defines where the data field is valid, that is where the data field does not
result in ∗. The basic defined and required operations for bounds are:

1. Each bound has an interpretation as a predicate or set.

2. A predicate classifying each bound as either finite or infinite. This depends
on whether its set is surely finite or possibly infinite.

3. For every bound b defining a finite set, a function size(b) that yields the
size of the set and enum(b) that is a function enumerating its elements.

4. Binary operations u(“intersection”) and t(“union”) on bounds.

5. The bounds all and nothing representing the universal and empty set,
respectively.

These operations support calculations on partial functions without revealing
the inner structure of bounds. Beside these operations there are several more
defined for both data fields and bounds. They will be discussed in the next
section that details Data Field Haskell, since these are more related to the
implementation of Data Field Haskell.

The model also defines ϕ-abstraction. It is a syntax for convenient definition
of data fields similar to λ-abstraction for functions. As an example, ϕx.t is a data
field (λx.t, b) where b provides an upper approximation to the domain of λx.t. ϕ-
abstraction provides a formal semantics for collection-oriented operations where
the bound of the result is implicitly given by the bounds of the operands.
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The next section will describe the implementation of the model, the rules
related to ϕ-abstraction and automatic derivation of bounds.

For a more detailed view of the data field model, please refer to [16].



Chapter 7

Data Field Haskell

This section will detail and explain functions, rules and building blocks found
in the implementation. The list is not meant to be complete, as implementation
specific technicalities will not be addressed. Functions found in the library will
be briefly described with their function types.

Before we proceed with the details we first present an overview of Data
Field Haskell. The purpose of Data Field Haskell is to concretize the Data
Field model. This means that the concepts, rules and operations found in the
Data Field model form the core of Data Field Haskell. This core has then
been enhanced with further functions and constructs that enable users to work
efficiently with data fields. There is a direct correspondence between the data
fields found in Data Field Haskell and those in the Data Field model. This is also
true for bounds, where the core functions that work on bounds are equivalent
to the operations defined on bounds in the model. Another example is the ϕ-
abstraction, that in Data Field Haskell is called foreach. The reason for the
difference in name is related to the fact that it would be quite difficult to type
ϕ on a normal keyboard when coding.

The bounds are quite central in the library so we will give a short presenta-
tion of them. Bounds can be simple bounds or product bounds. Product bounds
are formed from several simple bounds. For instance, creating a product bound
from two simple bounds yield a two dimensional product bound. The benefit of
this becomes apparent when one realizes that the two simple bounds that form
the product bound can be different. The bound in the first dimension could
be finite, whereas the bound in the second dimension could be infinite. This
makes product bounds extremely flexible entities. In this sense infinite bounds
are quite similar to 2.18 where we presented infinite data structures and finite
bounds would then be similar to a list with finite elements. It is important to
note that this description is done merely to help understanding bounds as they
are fundamentally different from lists.

Simple bounds are divided into the five categories: dense, sparse, predicate,
universe and empty. Dense bounds are contiguous, in other words given two
points the bound is defined on those two points and everyting between them.
For now it will suffice to say that the points are indexes, the details of these
indexes will be given shortly. Sparse bounds are formed from a set of points.
In contrast to dense bounds, sparse bounds can be both contiguous and non
contiguous. From a performance view it is better to use dense bounds if one
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knows that the points will be contiguous. Predicate bounds are infinite bounds
formed from a predicate function, they only tell if a point is within the given
bound or not. The bounds universe and empty are special as they signify that
a bound is defined everywhere or nowhere.

We now turn to the points we mentioned when we described the bounds.
As said earlier these points are indexes, so from now on we will only talk about
indexes. These indexes are used when indexing a data field. This is similar
to indexing any indexed data structure such as an array. Data fields can be
indexed with any type given following constraints on the type:

• Type must be a member of class Ix. This ensures that normal indexing
operations are defined for the used type.

• Type must be a member of class Show. Bounds are members of Show to
make them easier to program with (visual inspection of bounds), so types
used for indexing must also support this.

• Type must be a member of class Pord. Defines efficient operations for
partial orders.

• Type must be a member of class Bounds. This constraint is found primarily
on functions that handle data fields. The purpose of this contraint is to
make sure that the index used on the data field is compatible with the
bounds in the data field.

We also present the class DeepSeq that can appear as a class constraint. This
class provides operations for deep evaluation. It is used to force an evaluation
of arguments that would be unevaluated otherwise, due to the lazy nature of
Haskell. In other words, we can turn a lazy function into a strict function using
DeepSeq. The arguments of this new function would then be fully evaluated
before being used by the function itself.

Finally we have the datafield function which is the Data Field Haskell
equivalent of data fields found in the model. It takes a function and one of the
earlier mentioned bounds to form the data field.

A note regarding the code examples in the following sections, all output that
starts with <Bounds>: is presented for pedagogical reasons. For instance, when
extracting a bound from a data field the related bound is returned. However if
we just specify that a bound is returned without presenting more details, it will
be hard to understand how primitives are affected by different operations.

7.1 Datafields

This section presents the main operations on data fields. Together with the
operations that deal with bounds, these form the bulk of Data Field Haskell.
Note that the data type Dfval a is used to express the fact that the result of
a data field can be out of bounds. Further information of Dfval a is found in
7.3.

datafield Creates the data field from a function and bounds. The function used
must be a Dfval-value function. Functions to convert normal functions to
Dfval-value functions are provided. The type is
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datafield :: (Ix a, Show a, Pord a, Bounds c a) =>
(a -> Dfval b) -> c -> Datafield a b c

A oneline example constructing a data field:

df = datafield (dfvalfun (\x-> x)) (0 <:> 10)

assoctoDf Creates a data field from an associative list and has type

assoctoDf :: Bounds (Bound a) a =>
[(a, b)] -> Datafield a b (Bound a)

Constructing a data field from list:

tdf = assoctoDf [(1,10),(2,20),(3,30),(4,40),(5,50),(6,60)]

dftoAssoc Is the opposite of the above function. Creates an associative list
from a data field. It has type

dftoAssoc :: forall b a c. (Bounds c a, DeepSeq a,
DeepSeq b) =>

Datafield a b c ->
[(a, Dfval b)]

Another oneline example:

assoclist = dftoAssoc tdf

This results in assoclist getting bound to the list

[(1,Dfval 10),(2,Dfval 20),(3,Dfval 30),
(4,Dfval 40),(5,Dfval 50),(6,Dfval 60)]

(!) Is the data field application operator. It applies a data field to an index.
The type is

(!) :: forall a b c d . (Bounds c a, DeepSeq a) =>
Datafield a b c -> a -> Dfval b

Applying the data field df to two values, one in bounds and the other one
outside the defined bounds:
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df!2 -- => Dfval 2
df!50 -- => OutOfBounds

Note that the operator is equivalent to the (!) in Haskell for indexing
arrays.

(<\>) The restriction operator restricts a given data field with a specified
bound. The type is

(<\>) :: (Ix a, Show a, Pord a, Bounds c a) =>
Datafield a b c -> c -> Datafield a b c

Restricting df with a predicate bound, in this case the bound that is
created by evenbound = predicate even.

bounds (df <\> evenbound)
-- => <Bounds>: Sparse [0,2,4,6,8,10]

bounds Extracts the bounds part of a given data field. Has type

bounds :: (Ix a, Show a, Pord a, Bounds c a) =>
Datafield a b c -> c

Extracting the bounds from df:

bounds df -- => <Bounds>: Dense 0 to 10

translate Translates a given data field with respect to a given value. The type
of translate is

translate :: forall c b a . (TransBound c a, Bounds c a) =>
a -> Datafield a b c -> Datafield a b c

Translating the data field df:

bounds (translate 5 df) -- => <Bounds>: Dense 5 to 15

domain This function yields the domain of the data field. The type is

domain :: (Ix a, Show a, Pord a, Bounds c a, DeepSeq a) =>
Datafield a b c -> [a]

Using it on df we get:
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domain df -- => [0,1,2,3,4,5,6,7,8,9,10]

tab One of several tabulator functions. This one tabulates in a lazy fashion
and has type

tab :: (DeepSeq a, Bounds c a) =>
Datafield a b c -> Datafield a b c

stricttab Tabulates a data field and evaluates the cell to weak head normal
form. The type is

stricttab :: (DeepSeq a, Bounds c a) =>
Datafield a b c -> Datafield a b c

hstricttab Tabulates a data field in a hyperstrict fashion, this evaluates to the
inner most constructor. Has type

hstricttab :: (DeepSeq a, DeepSeq b, Bounds c a) =>
Datafield a b c -> Datafield a b c

Beside these functions there are also several folds and scans for data fields
provided. They are similar to the ones presented in 2.22, but works on data
fields instead. We only present one of each family:

foldlDf A left fold for data fields. Works similar to the Haskell foldl. The
type is

foldlDf :: (Bounds c a, DeepSeq a) =>
(r -> a2 -> r) -> Dfval r ->
Datafield a a2 c -> Dfval r

Using this fold on df we get:

foldlDf (+) (dfval 0) df -- => Dfval 55

scanlDf A left scan for data fields. Works similar to the Haskell scanl. The
type is

scanlDf :: (Bounds c a, DeepSeq a) =>
(r -> a2 -> r) -> Dfval r ->
Datafield a a2 c -> [Dfval r]

The scanl for data fields applied to df yields:
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scanlDf (+) (dfval 0) df
-- => [Dfval 0, Dfval 0, Dfval 1, Dfval 3, Dfval 6,
-- Dfval 10, Dfval 15, Dfval 21, Dfval 28, Dfval 36,
-- Dfval 45, Dfval 55]

foldrDf A right fold for data fields. Works similar to the Haskell foldr. The
type is

foldrDf :: (Bounds c a, DeepSeq a) =>
(a1 -> r -> r) -> Dfval r ->
Datafield a a1 c -> Dfval r

scanrDf A right scan for data fields. Works similar to the Haskell scanr. The
type is

scanrDf :: (Bounds c a, DeepSeq a) =>
(a1 -> r -> r) -> Dfval r ->
Datafield a a1 c -> [Dfval r]

7.2 Bounds

Functions and classes related to bounds are given in this section. Most of the
important operations in bounds are done in classes to hide complexity and enable
user defined bounds.

Bound This is the abstract data type that handles bounds. The type is
Bound a.

(<:>) Operator to construct dense bounds. Member of class DenseBound.

class (Ix a, Show a, Pord a) =>
DenseBound b a | a -> b where

(<:>) :: a -> a -> b

This time using characters as indexes we create two dense bounds:

cb1 = ’a’ <:> ’d’ -- => <Bounds>: Dense ’a’ to ’d’
cb2 = ’e’ <:> ’h’ -- => <Bounds>: Dense ’e’ to ’h’

(<*>) Operator to construct product bounds. Member of class ProdBound.

class ProdBound a b c | a b -> c where
(<*>) :: a -> b -> c

Using the two earlier constructed dense bounds we form a product bound:
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cb1 <*> cb2
-- => <Product Bounds>: [<Bounds>: Dense ’a’ to ’d’,
-- <Bounds>: Dense ’e’ to ’h’]

sparse Creates a sparse bound from a list of index values.

sparse :: (Ix a, Show a, Pord a) => [a] -> Bound a

Creating a sparse bound from three values:

sparse [1, 100, 1000] -- => <Bounds>: Sparse [1,100,1000]

predicate Creates a predicate bound from a predicate function.

predicate :: (Ix a, Show a, Pord a) =>
(a -> Bool) -> Bound a

A predicate bound that checks if the given index is character z:

predicate (\x -> x==’z’) -- => <Bounds>: Predicate

prod n These functions creates product bounds. n should be substituted with
numbers between 2 and 5 inclusive.

prod_n :: Bound a -> Bound b -> ... ->
PnBounds (Bound a, Bound b, ...)

transBound Translates a given bound an amount given by an index. This is
used for translation of data fields.

class Num c => TransBound b c | b -> c where
transBound :: c -> b -> b

Simple projections These functions projects the specified dimension from a
multidimensional bound. n can vary between 1 to 5. If n is 1, then it
means that we want to project the first dimension. If a dimension does
not exist, such as a fifth dimension in a two dimensional product bound,
Nothing is returned.

class ProjSimple_m_n b c | b -> c where
projSm_n :: b -> Maybe c
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Restriction projections These are a variation on the simple projections. The
operations are provided for calculating a new bound (which may be an
approximation) from non-product multidimensional bounds or product
bounds. Useful in cases where an index variable need to be fixed, such
as if we have index (x, y) with some two dimensional bound, b2. Assume
that we want to set x = 1, we would then get (1, y). The new dimensional
bound is then calculated from b2 by checking if 1 is within the first dimen-
sion of the bound. If this is the case then the projection function returns
the second dimension, that for y in this example.

class RestrictProj_m_1 b c d | b -> c d where
bprojpm_1 :: b -> c -> d

class RestrictProj_m_2 b c d | b -> c d where
bprojpm_2 :: b -> c -> d

compactPBounds Convenient function to flatten a product bound into a
sparse bound. Works only on finite bounds.

compactPBounds :: forall a b . Bounds b a => b -> Bound a

The following functions are all members of the bounds class which form the
core of the module. This class is declared as

class (Ix a, Show a, Pord a) =>
Bounds b a | b -> a where

universe Represents the universal bound(all) with type universe :: b.

empty Represents the empty bound(nothing) with type empty :: b.

finite Checks if a given bound is finite or not. Type is finite :: b -> Bool.

enum Returns an ordered list of indexes from the set defined by the finite
bound.

enum :: b -> [a]

size Returns the size of a finite bound. Has type size :: b -> Int.

lowerBound Returns an index representing the lower bound of a finite bound.

lowerBound :: b -> a

upperBound Returns an index representing the upper bound of a finite bound.

upperBound :: b -> a
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join Calculates the “union” of two bounds. The type is join :: b -> b -> b.

meet Calculates the “intersection” of two bounds. The type is

meet :: b -> b -> b

inBounds Binary function that checks if a given index is within bounds. Type
is inBounds :: a -> b -> Bool.

7.3 Other Functions & Operations

This section presents functions and data types that aid programming with data
fields.

Dfval The purpose of Dfval is to be able to express if the result from a datafield
application is within the given bounds. The data type is declared as
data Dfval a = Dfval a | OutOfBounds. The value OutOfBounds is
the implementation equivalent of ∗ in the data field model. The data
field returns a Dfval if the given index was in bounds and OutOfBounds
otherwise. It is semantically identical to the Maybe data type and also
member of the Monad-class. The only difference is that the constructors
of Dfval are private and thus not directly accessible. The visible type is
data Dfval a.

dfvalfun dfvalfun provides a convenient converter function that transforms any
function into one that return a Dfval-value. The type of the function is
dfvalfun :: (a -> b) -> a -> Dfval b.

dfval Is a simple wrapper function to wrap values in a Dfval. However, since
the constructors of Dfval a are private, this is one of few ways to insert
values in a Dfval-value. The type of dfval is dfval :: a -> Dfval a.

isoutOfBounds A predicate to check if a value is OutOfBounds. Type is
isoutOfBounds :: Dfval a -> Bool.

outOfBounds A function that returns the value OutOfBounds, it has type
outOfBounds :: Dfval a.

7.4 Syntactical Constructs & Translations

Together with the functions provided by the library, two syntactical constructs
are introduced to simplify programming with Data Field Haskell and make it
more expressive. Rules for automatically deriving the bounds for these syntac-
tical constructs also exist. These three parts makes handling of data fields more
convenient than just using library functions and explicitly specifying bounds.

The two constructs that Data Field Haskell introduces are:

• foreach is the Data Field Haskell implementation of the ϕ-abstraction in
the model. The syntax for foreach is:

foreach apat1...apatn → exp

The bounds is then automatically derived from exp.
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• for is a syntax for defining data fields by cases. The cases consists of a
pair formed by a bounds expression(bi) and a Haskell expression(ei). This
is very similar to the Haskell case-expression. The syntax is:

for pat in { b1 → e1 ; . . . ; bn → en }

Since these syntactical constructs need to be translated to standard Haskell
before they can be compiled, translation rules are given for each of the con-
structs.

FOREACH1

foreach x1 . . . xn → exp = foreach x1 → . . . → foreach xn → exp

This describes that a foreach with multiple arguments are translated into
nested foreach-abstractions, each with a single argument.

FOREACH2

foreach x → exp = datafield (λx → exp) β(exp, (x), ∅)

where β, explained in the next section, is the function for deriving bounds.
foreach-abstractions with single arguments are translated into an appli-
cation of the datafield function to a λ-abstraction and bound derived
from the expression as explained earlier.

FOR The construct:

for pat in { b1 → e1 ; . . . ; bn → en }

translates into:

(foreach pat -> if inBounds pat (b1) then e1 else if . . .
else if inBounds pat (bn) then en

else outOfBounds)
<\> (b1) ‘join‘ . . . ‘join‘ (bn)

After this conversion is done, the remaining translation is handled by the
FOREACH2 rule.

In our case translations are purely syntactical, so types are not checked dur-
ing the translations. This must be handled by the compiler after all translations
are done.

We present some examples of actual code in a Haskell module before trans-
lation:

module Test where

df1 = foreach x -> Dfval (2*x)

df2 = foreach x y -> Dfval (x + y)
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df3 = for x in (sparse [1,3,5,7,9]) -> Dfval True

df4 = for y in (0 <:> 5) -> Dfval True
(sparse [50,80,100]) -> Dfval True
(55 <:> 75) -> Dfval False

and after translation:

module Test where
df1
= datafield (\ x -> Dfval (2 * x))

($(calcBound [| (Dfval (2 * x)) |] ["x"]))
df2
= datafield

(\ x ->
datafield (\ y -> Dfval (x + y))
($(calcBound [| (Dfval (x + y)) |] ["x", "y"])))

($(calcBound [| (Dfval (x + y)) |] ["x", "y"]))
df3
= (datafield

(\ x ->
if inBounds x (sparse [1, 3, 5, 7, 9])
then Dfval True else
outOfBounds)

($(calcBound [| (Dfval True) |] ["x"])))
<\> ((sparse [1, 3, 5, 7, 9]))

df4
= (datafield

(\ y ->
if inBounds y (0 <:> 5) then Dfval True else
if inBounds y (sparse [50, 80, 100])
then Dfval True else
if inBounds y (55 <:> 75) then Dfval False
else outOfBounds)

(join
(join ($(calcBound [| (Dfval True) |] ["y"]))

($(calcBound [| (Dfval True) |] ["y"])))
($(calcBound [| (Dfval False) |] ["y"]))))

<\>
(join (join ((0 <:> 5)) ((sparse [50, 80, 100])))

((55 <:> 75)))

Note that some of the translated code has had to be modified by hand in order
for the lines to fit the report.

7.5 Deriving Bounds

Bounds are derived automatically from expressions. We first give an informal
presentation of how bounds are derived and then we present the formal rules.
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The bounds for foreach x -> e are derived from e. If e consists of a!x, such
that we have foreach x -> a!x, then the derived bounds would be bounds a.
In the case of foreach x -> a!x + b!x, the bounds derived from this expres-
sions would be (bounds a) ‘meet‘ (bounds b). This is because the derived
bounds depends on both a and b. Furthermore the +-operator is strict in both
its arguments, thus the new derived bound is valid only where both a and b are
valid. If the expression consists of a conditional, the bounds from the branches
should be joined as any branch could be taken. Since the conditional is strict
in the condition the expressions would look like:

foreach x -> if a!x then b!x else c!x

with derived bound:

(bounds a) ‘meet‘ ((bounds b) ‘join‘ (bounds c))

The rules for deriving bounds are given by the β-scheme. We have taken
the rules and their explanations from Holmerin [12], where they first appeared.
They have been edited slightly to fit into our context. As these rules were meant
for the Data Field Haskell compiler, some of them might not be applicable to the
current implementation of Data Field Haskell. This is especially true, since the
module that handles the calculation of bounds was not fully completed. This
means that there might be possible conflicts between rules and implementation
in the bounds calculating module that has not yet been discovered. However, we
present the β-scheme for completeness of the model. We first present definitions
and help functions used:

Below, and in the rules following, x and v stand for variables,
while e and t stand for Haskell core-expressions.

Some notes on the translation: The parameters in β(e, ~x, Y )
are an Haskell core expression e, a tuple ~x, alternatively written
(x1, ..., xn) (where n might be 1), and a set Y . e is the expression
being analyzed. ~x is the argument which we analyze e as a data
field over. At the beginning, this is the argument of the foreach-
abstraction, and is thus a single variable, but since case-expressions
may bind new variables to the components of a tuple, we also need
to find the applications of data fields to those variables. This is done
by analyzing the sub expression where the binding has effect with
respect to the tuple which contains the new variables. The set Y is
used to keep track of variables which are bound after the variable
being abstracted over. These are needed since we can consider vari-
ables which are bound earlier as constants (i.e they can occur in the
derived bound).

By abuse of notation, we will write Y ∪ ~x for Y ∪ x1, ..., xn.
To keep the description more readable the function meet is de-

noted by u, join by t, and prod_ne1...en is written either as e1 ×
. . .× en, as ×n

i=1ei, or, if all factors are identical, as en . We assume
that all bound variables are distinct.

We also define a family of projection functions on bounds, prm
k

. Let ρ be a (set-theoretic) partial function from [1, m] to Haskell
expressions, and b be a m-dimensional bound (i.e a bound which rep-
resents a set of m-tuples). The projection prm

k (ρ, b) is the projection
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of the bound b in the k:th dimension, with additional constraints in
the dimensions for which the partial function ρ is defined. We first
define prm

k for product bounds. Let πm
k be a family of functions with

the property πm
k (b1 × . . .× bk × . . .× bm) = bk, and

prm
k (ρ, b) = if cond then πm

k (b) else empty

where

cond = vi1 ‘inBounds‘ πm
i1(b)&& . . .&&vil ‘inBounds‘ πm

il (b)

ρ = (i1, vi1), . . . , (il, vil)

This definition works for dense bounds as well, if we define

πm
k = ((l1, ..., lk, ..., lm) <:> (u1, ..., uk, ..., um)) = lk<:>uk

For sparse bounds we can define πm
k as

πm
k (sparse l) = sparse (map (\(x1, ..., xk, ..., xm) → xk) l)

and prm
k (ρ, b) as

prm
k (ρ, b) = πm

k (b u (predicate p))

where

p = (\(x1, ..., xm) → xi1 == vi1&&...&&xil == vil))

For predicate bounds, we have

prm
k (ρ, predicate p) = xk → p(ρ(1), ..., xk, ..., ρ(m))

if ρ(i) is defined for i ∈ 1, ...,m k, and

prm
k (ρ, predicate p) = universe

otherwise. For universe and empty we have

prm
k (ρ, universe) = universe

and
prm

k (ρ, empty) = empty

We continue with presenting the rules for deriving the bounds:

(LAM)
β(\v1...vn− > e, ~x, Y )

= β(e, ~x, Y ∪ v1, ..., vn)

(CASE1)

β(case xi of (v1, ..., vn)− > e;− > e′, ~x, Y )

= ((universei−1×β(e,~v, Y ∪~x)×universem−i)uβ(e, ~x, Y ∪v))
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(CASE2)

β(case x of Kv1...vn− > e;− > e′, ~x, Y )

= β(e, ~x, Y ∪ v1, ..., vn) t β(e′, ~x, Y )

(APP1)
β((!) e (t1, ..., tm), ~x, Y )

= T (bounds e, (t1, ..., tm), ~x, Y ), ifFV (e) ∩ (Y ∪ x) = ∅

(APP2)
β(e1 e2, ~x, Y )

= β(e1, ~x, Y ) u β(e2, ~x, Y )

(LET)
β(let v1 = e1; ...; vn = en in e, ~x, Y )

= β(e1, ~x, Y ∪ v1, . . . , vn) u . . . u β(en, ~x, Y ∪ v1, . . . , vn)

uβ(e, ~x, Y ∪ v1, . . . , vn)

(PFAIL)
β(caseNoMatch, ~x, Y ) = empty

(AFAIL)
β(outofBounds, ~x, Y ) = empty

(DEFAULT)
β(e, ~x, Y ) = universe,

if none of the other rules apply

(TUPLE)
T (b, (t1, ..., tm), (x1, ..., xn), Y )

= ×n
i=1 um

k=1 C(b, k, (t1, ..., tm), xi, Y ∪ ~x)

(COMP)

C(b, k, (t1, ..., tm), xi, Y )
= transBound(prm

k (ρ, b), a) if tk ≡ xi + a where FV(a) ∩Y = ∅
= prm

k (ρ, b) if tk ≡ xi

= T (prm
k (ρ, b), (t′1, ..., t

′
l), xi, Y xi)

if tk ≡ (t′1, ..., t
′
l), and xi ∈ FV (tk)

= universe otherwise
where ρ = (j, tj)|FV (tj) ∩ Y = ∅

Finally we present the explanations of the above stated rules:

• The (LAM)-rule simply keeps track of variables bound by
λ-abstractions.
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• The (CASE1)-rule handles the fact that case-expressions can be
used to bind variables to the components of a tuple which is a
component of the tuple ~x. That is, we get a new representation
~v = (v1, ..., vm) of the component xi in ~x. This means that
we need to consider data field being applied to the variables
v1, ..., vn as well as the original variables. This is handled by
analyzing both over ~v and over ~x and applying u to the results.
Since ~v is a representation of a single component xi of ~x, the
expression derived by β(e,~v, Y ∪ ~x) only restricts the bound in
the dimension i. This is the reason for the universe bounds in
the other dimensions. Since matching of tuples never fail, we do
not need to bother with the other branch of the case-expression.

• The (CASE2)-rule handles case-expressions where the pattern
is not a tuple. This means that (in general) any branch could
be taken, which means that the bound derived for the case-
expression should be t applied to the bounds of the branches.

• The (APP1)-rule handles applications of data fields, on tuples
or non-tuples (a non-tuple is simply considered a tuple of arity
1). One should note that this rule matches syntactically on the
!-operator. Thus the rule does not hold if we replace ! with
f, even if f is defined as f = (!). The details of data field
application is given in the (TUPLE)-rule.

• The (APP2)-rule handles applications of other functions than
!. Application is strict in the function being applied, so the
bounds of the application will depend on the bounds of data
fields occurring in the expression which we apply. The bounds
of the application may or may not depend on data fields in the
argument (for the corresponding rule for partial functions it
depends on whether or not the function applied is strict), but
for the purpose of the propagation of bounds we assume that
all functions are strict, which means bounds from the argument
should be propagated.

• The (LET)-rule handles let expressions. The (LET)-rule can
be seen as a theorem following from the transformations of let
to λ- and case-expressions given in the Haskell definition and
the other rules given here. But since this is not obvious, we
give the rule for (LET) here.

• The (PFAIL)-rule handles pattern-matching failure. We need
to distinguish pattern-matching failure from other errors since
we otherwise would get the bound universe for all case expres-
sions.

• The (AFAIL)-rule should be self-explanatory (an expression
which is out of bounds is defined nowhere).

• (DEFAULT) takes care of all cases which do not match any
other rule.

• (TUPLE) defines the T -scheme which is used to define data
field application on tuples. The bound T (b,~t, ~x) calculated
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from the bound b is a product where the i:th component is
restricted by the occurrences of xi in ~t. Basically, if xi occurs
in tk , then the k:th dimension of b might restrict the i:th
dimension of the resulting bound. Exactly how depends in what
context xi occurs. The details are given by the (COMP)-rule.

• (COMP) defines C, which is used to by the T -scheme to analyze
the occurrences of a variable in a component of a tuple.



Chapter 8

Data Field Haskell Library

The intent of this chapter is to introduce the concepts, design and implemen-
tation of the Data Field Haskell library. The implementation is comprised of
a library and a preprocessor. We first describe the two parts, the Data Field
Haskell library and the Data Field Haskell preprocessor, in turn and then we
describe the differences between the new implementation and the old imple-
mentation, dfhc98. For specific details regarding the library, please refer to the
appropriate section in the appendix.

8.1 Data Field Haskell Library(DFHL)

The purpose of the library is to provide the necessary data field functions found
in dfhc98. The functions in the library are equivalent to those found in dfhc98
but is not necessarily identical. The library also contains features that in dfhc98
was done in the runtime part of the compiler. Due to the use of some exten-
sions to the Haskell language, the library currently requires the Glasgow Haskell
Compiler(GHC) [10] in order to be used.

8.1.1 Design & Goals

The design of the library was determined by a number of goals set for this
project. As mentioned earlier, in [18], there was an attempt to port dfhc98 to
a newer version of the base compiler. This was only partly successful as dfhc98
was able to compile standard Haskell modules but not any of the indended data
field specific extensions. Compiling a Data Field Haskell module to a binary
resulted in segmentation fault when these binaries were executed. The goals
were derived from the experience gained from porting dfhc98. The following
qualities were both desired and required from the new implementation:

• Maintainability

• Portability

• Simplicity

These requirements led to an implementation that needed to be small, mod-
ular and relying on as few language extensions as possible. It also needed to be

43



44 CHAPTER 8. DATA FIELD HASKELL LIBRARY

implemented in one language and be coded in such a way that it could be easily
maintained.

The choice of language for the implementation was simple as Haskell is a
very potent language and was the language of choice for the previous imple-
mentation. A decision was made to have as few modules as possible while still
retaining modularity, to make the whole implementation compact. Some ex-
tensions in Haskell are used in the library as they form a fundamental part of
the functionality. To enhance maintainability, portability and readability of the
code, it has been written as simple as possible.

The main drawback with this approach could be that efficiency has been
sacrificed compared to earlier implementations. This has not been measured
and further studies might be required in order to determine if there is an actual
difference in performance. Regardless, performance was deemed less important
than the other desired goals.

8.1.2 Implementation

To make the implementation compatible with the previous version great care
was taken to ensure that function names and their intended functionality would
correspond. This was done by studying the reports done on dfhc and by looking
through the source code for clues. As the design of the Data Field Haskell
library fundamentally differs from that of dfhc98, the source code was mostly
used to check function names, types and to give more information about areas
that was less detailed in the reports.

The implementation consist of a total of five files. The files and their contents
are described below:

Bounds.hs All data types and functions related to bounds are found in this
module. The implementation of bounds is a class based solution which
means that users are able to add own bounds data types if desired.

Datafield.hs This is the main module which exports all functionality of the
Data Field Haskell library. Datafield.hs should provide a nearly identi-
cal interface to that of dfhc98:s Datafield.hs.

Dfcommon.hs Functions and data types used in the whole library is found
in this module. One of the more important data types, Dfval a, in the
library is found here. This is the return type of all data fields and it is an in-
stance of the Monad-class. This enforces that the handling of OutOfBounds
values are correct.

DeepSeq.hs This module performs a deep evaluation of its argument. This
file, in its entirety, was found in a mailing list in November, 2006. See the
module for details.

Pord.hs This module was compiled from various Pord class related files in the
old dfhc98 compiler. It provides least upper bound, lub, and greatest lower
bounds, glb, according to a partial order lt.

The recommended way to understand the library is to take a look at the
Haddock generated documentation. Going through the code while reading the
comments is another nice way of getting a deeper understanding of how the
library works.
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8.1.3 Future Improvements

Some important improvements to make in the library is to enhance performance,
add new features and add a supporting framework for the preprocessor. Profiling
the library and replacing slow parts with rewritten code could be a good start
to improve performance. New desired features might crop up that need to be
added, these can not be suggested now as the library has yet to see actual use.
Since the bounds calculation part of the preprocessor was not completed during
this thesis, there might still be some functions that could be added to assist the
preprocessor stage. Another improvement that needs to be done is to modify
the code that is using deepSeq.lhs to use a possible coming module provided
by the next Haskell standard.

8.2 Data Field Haskell Preprocessor(DFHP)

The preprocessor handles the syntactical constructs found in Data Field Haskell.
It translates these constructs into standard Haskell98 with Template Haskell
extensions. The Template Haskell part of the translation is meant to provide
the automatic derivation of bounds. This step, both syntax translation and
bounds derivation, was handled in the frontend of dfhc98. As with the library,
the modules responsible for the derivation of bounds needs to be compiled with
GHC due to the use of Template Haskell. The preprocessor itself uses no such
extensions and should be Haskell98 compliant.

8.2.1 Design & Goals

The goals of DFHP are very similar to that of DFHL. We will not repeat the
goals here and instead continue with a discussion of the design. dfhc98 translated
the syntactical construct in the front-end of the compiler. The parser used in
dfhc98 is a parser combinator using a non standard monad. We could have
decided to reuse the front-end from dfhc98 to create the preprocessor, however
another approach was taken. We chose to use modules found in the GHC
distribution that provide a lexer and a parser for Haskell98. The difference
with this parser is that it is generated from a parser generator. It takes a
specification similar to Yacc and generates a parser that can parse the language
specified. The parser generator used is Happy, which is also written in Haskell.
The reason for this choice is that it seemed easier and more extensible to have
a generated parser than to have a monadic parser combinator.

The bounds deriving part was also separated from the syntax translating
phase, since the resulting abstract syntax tree was to verbose and heavy to
work with. Thus the preprocessor only handles translation of syntax and a
separate module using Template Haskell is employed to handle the derivation
of bounds for the syntactical constructs.

8.2.2 Implementation

The two parts that form DFHP is a preprocessor which does the syntax trans-
lation of the syntactical constructs according to specified translation rules and
a module that uses Template Haskell to calculate the derived bounds for the
constructs.
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Data field specific keywords and nodes has been added to the lexer and the
parser generator description. Sources with data field extensions are fed to the
preprocessor which performs the translations and then creates a new source file
that consists of Haskell-only expressions with Template Haskell parts. When
compiled these Template Haskell parts are then transformed using the module
for bounds calculation into Haskell expressions which represents the final bound.

Since the data field related extensions were modest, not much code was
needed for the preprocessor. The foreach was handled by making it similar
to how λ-abstractions were handled in the parser. for was modelled after the
case-expression.

Currently a restriction of the patterns used to the for construct is needed.
According the rules of translating the for construct into Haskell, the patterns
found as arguments to the for construct must be able to be translated into
expressions. There is a problem with this as patterns and expressions are distinct
and not necessarily compatible. The type of patterns in the abstract syntax tree
given from the preprocessor is HsPat, whereas the type of expressions are HsExp.
If p is the set of patterns and e is the set of expressions, then the preprocessor
can only handle elements from the set p ∩ e if we assume that elements in this
set are the ones that have a representation in both pattern and expression sets.
Patterns not allowed to appear as parameters to the for construct is:

HsPIrrPat This is a irrefutable pattern, written in code as ~.

HsPWildCard Wildcard patterns(_).

HsPAsPat This is the node for a @-patterns.

HsPRec These are labelled patterns.

HsPApp This represents data constructor and argument patterns.

HsPInfixApp This is a pattern with infix data constructor.

HsPNeg A negated pattern.

If any of these are encountered by the preprocessor it will abort with an
error message stating which of the restricted patterns stopped the process.

CalcBound.hs is the module responsible for deriving bounds. It works as
a recursive function that traverses the abstract syntax tree from a Template
Haskell quotation. It calculates the proper bound and which is then spliced in
the code at compile time. The quotation and splicing code is put in to place via
the preprocessor, so all the calcBound function does is to extract the abstract
syntax tree from the Q monad, do the calculations and then return the result
back in the Q monad.

8.2.3 Future Improvements

One obvious improvement is that the module responsible for deriving bounds
should be completed. Currently only a basic framework that lack almost all
functionality is done. The implementation should follow the rules for deriving
bounds as specified. A potential problem when solving this, is the complexity
of the abstract syntax tree received. There seem to exist no real shortcut to this
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problem. Most likely a brute force approach must be taken, that is one must
handle a node at a time taking care to always be consistant with the rules.

Another improvement that could be performed on the preprocessor itself is
to see if the current restrictions on allowed patterns can be softened. This would
allow a greater number of valid programs to pass through the preprocessor. How
much the restrictions can be softened depends on if valid transformations exist
between specified patterns and expressions.

When compiling the preprocessed sources, possible error messages that might
arise are very difficult to track in the unprocessed source. Since the preprocessor
introduces additional code in the preprocessed sources an error on a line a in
the original file might be reported as lying on line a + n where n can be any
integer. A solution to this problem would be very beneficial as it would make
tracking down bugs in the code much easier than it is currently.

The transformation can lead to redundant calculations of bounds from ex-
pressions. It is desirable, from a performance aspect, if these redundancies could
be minimized or eliminated completely.

Finally it is important to remember that, since the preprocessor utilises a
separate module to calculate bounds, any change in the interface of the bounds
calculating function requires a matching change in the preprocessor. If this
change is forgotten then the preprocessor will insert code that tries to call an
obsolete version of the bounds deriving function.

8.3 Differences with dfhc98

The most notable difference is that the presented solution consists of a library
with data field related functions and a preprocessor. The old implementation,
dfhc98, was based on a full Haskell compiler and therefore able to use the un-
derlying structure for more efficiency. We present two lists to give an overview
of the differences in each solution. In the first we compare the library part with
the matching parts in dfhc98:

Bounds dfhc98 had problems with a proper implementation of product bounds.
The reason was that, during the time of the implementation of dfhc, there
were no extensions to Haskell98 that could be used to express the types
needed for product bounds. This problem is inherent to Haskell98 and
could only be bypassed now due to new extensions to the language. As-
sume two bounds, Bounds a and Bounds b, the resulting product bound
should then have type Bounds (a, b). But any constructor in data type
Bounds a would have a type t -> Bounds a, where free variables in t
must be a. The solution to this problem was handled by using a lowlevel
approach [12] with coercions to achieve the desired effect. In DFHL, this
problem is solved by using a combination of Generalised Algebraic Data
Types(GADT) and Functional Dependencies(fundeps). The GADT:s al-
lows construction of datatypes, where the return types of constructors
not necessarily needs to coinside with the type of the datatype. In other
words, a constructor for Bounds a can have type t -> Bounds (a,b).
With fundeps greater control is given to the programmer, as one can spe-
cialize classes and their instances. DFHL thus offer a bounds implemen-
tation that consists of Haskell98 code together with two extensions to the
language.
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Module Changes dfhc98 provides an extension to the standard prelude in the
form of roughly a dozen modules to handle the data field specific functions.
DFHL provides equivalent features in five separate files. Datafield.hs
and Bounds.hs contains the implementation of data field- and bounds
functions respectively. Dfcommon.hs contains common and useful func-
tions used in the entire library. Pord.hs has been compiled from various
pord related files in dfhc98. HEval.hs, which was a module found in
dfhc98, is replaced with DeepSeq.lhs. Their functionality is equivalent
but this change was done to have a more future proof solution as a ver-
sion of a deepseq module seem likely to appear in the coming revision
to Haskell98. A modification of the library to use the standard deepseq
module would then be less problematic.

Derivation of Pord & HEval Instances dfhc98 offers automatic derivation
of Pord and HEval instances. The Pord class have operations for partial
order and HEval is used for hyperstrict evaluation. As DFHL is not a
compiler and only a add-on library this functionality is not offered by
DFHL.

Hyperstrict Evaluation & (OutOfBounds) Efficiency This is handled in
dfhc98 by two separate mechanisms. The first mechanism is the HEval
module which provide the Haskell interface and the second is a modifica-
tion to the compiler runtime. The runtime is extended with an exception
handler. If during a hyperstrict evaluation ∗ is encountered, the exception
handler will ensure that no unnecessary calculations will be executed. This
makes ∗ handling very efficient. DFHL, on the other hand, has no such
features. The underlying runtime is, by design, not accessible by DFHL.
In order for DFHL to mimic the behaviour of dfhc98 regarding ∗, the ∗
handling is done in a monad. In this respect, dfhc98 would probably be
more efficient than DFHL.

Portability Since dfhc98 was based on a Haskell compiler, in particular the
NHC compiler, the implementation will be dependent on which platforms
the base compiler can run on. Another issue that one must take into
account is that dfhc98, being a full compiler, requires a lot of tools to
build it. It also needs to be compatible with those tools. In [18] this was
investigated but the conclusions drawn in the report was that, due to the
long period of time without maintenance, there were serious compatibility
problems with essential tools. Even the work to port the data field related
extension between different versions of the same base compiler can be
extensive. This is especially true if maintenance of the implementation is
not regular. Since dfhc98 consist of both Haskell code and code written
in C, the compiler is affected not only by changes to Haskell but also to
changes in the C standard and compilers. DFHL is written completely in
Haskell, although it uses some extensions not found in other compilers.
It is therefore currently tied to the GHC compiler. There is reason to
believe that these extensions will find their way into the next Haskell
standard. In such a case, porting DFHL to other compilers would be
trivial. Maintenance and portability of DFHL is simplified by the fact
that the library is in Haskell only and that the whole library only consists
of five files.
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Prelude Modifications dfhc98 modifies and extends the Show class to handle
out of bounds values by printing <OUB>. Likewise the putChar and putStr
in the Prelude is modified to print <OUB> when OutOfBounds is encoun-
tered. DFHL takes another approach as the OutOfBounds in DFHL is a
actual data type that can be printed by deriving the Show class.

Size The compressed source of dfhc98 is about 1.1 megabyte whereas the source
for DFHL is about 0.1 megabytes. Not all of the files in the compressed
dfhc98 package is part of the actual dfhc98 implementation but the com-
parison should give a hint at differences in size.

The second list gives the differences between the preprocessor and corre-
sponding parts in dfhc98:

Abstract Syntax Tree(AST) The AST received from dfhc98 and DFHP dif-
fers substantially. The tree from the older version and smaller compiler
dfhc98 is much more compact and easier to handle than the one received
from the GHC based parser generator. This makes calculations in the AST
much more complex as one needs to deal with bigger and more verbose
nodes in the tree.

Derivation of Bounds dfhc98 automatically derives a bound from the syn-
tactical constructs. Currently the module in DFHL responsible for this
part is not working, so this feature is still lacking compared to dfhc98.

Forall One of the syntactical constructs in dfhc98 was the forall-construct.
However this word is already used in some Haskell compilers [10] and
even a keyword in other implementations [4], so in DFHL the forall has
been renamed to foreach. Besides the superficial change of name, the
foreach-construct is identical to the forall-construct

Lexer The lexer used in dfhc98 is a handwritten lexer that has been modified
to include the data field extensions. The DFHP lexer was based on the
Language.Haskell.Lexer source module provided by GHC.

Parser The parser used in dfhc98 is based on a monadic parser combinator.
On the contrary DFHL uses a parser generator to generate its parser,
from a modified parser description file also provided by GHC. Adding
new constructs to the parser is very easily done as only one file needs
to be modified for the parser to recognize new syntax. Of course the
corresponding abstract syntax tree needs to be modified as well if more
advanced calculations are needed.

Portability The portability of dfhc98 was already discussed earlier and so will
be skipped here. The portability of DFHP depends on availability of a
Haskell compiler, a parser generator (Happy) and Template Haskell for
the boundsderiving module. If only the syntax translating frontend is
wanted, the Template Haskell requirement can be dropped.

Syntax Translation Both dfhc98 and DFHP are unable to handle other ex-
tensions to Haskell98 other than the data field extensions. In DFHP,
there should be no restrictions when handling foreach-constructs. When
dealing with the for-construct, there are some restrictions imposed by
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DFHP. Not all patterns can be translated by the preprocessor and use
of non-supported patterns leads to an error when trying to translate the
mentioned pattern.

Type Checking dfhc98 offers type checking of the data field syntactical con-
structs. DFHP is written purely as a syntax translator and as such has
no information about types. Type errors are handled by the Haskell com-
piler after DFHP has been run on the source code. This ensures that type
errors are caught but also leads to error messages that can be hard to
track down. This is because the line number in the error message from
the preprocessed source will most likely not correspond to the line number
of the actual Data Field Haskell source.

Finally we conclude this part by noting a couple of things. In contrast to
dfhc98, that comes as a full package, DFHL is fully modular. Each part of
DFHL, the library, preprocessor and bounds calculation can be used indepen-
dently of each other. Even the library implementation is fully modular with
relevant and related parts confined in separate modules. dfhc98 most likely
have a more efficient solution when dealing with ∗ values. Because dfhc98 is a
full stand alone compiler with access to all parts, the datafield concept is more
pervading in dfhc98 than it can be with a standard compiler added with DFHL.
In the area of maintainability and portability, DFHL should stand as the most
suitable candidate due to is small size and Haskell-only implementation.



Chapter 9

Conclusions and future
work

In this thesis we have provided the background for this thesis and the reasons
a new implementation was needed. We have given an overview of the data field
model and its corresponding implementation in Haskell, Data Field Haskell. We
also presented the design, goal, implementation and future improvements of the
two constituent parts of the new implementation. Finally we gave a presentation
of the differences between the old Data Field Haskell compiler, dfhc98, and the
new Data Field Haskell implementation.

Once the initial obstacles had been solved, such as handling bounds in an
uniform way or figuring out the proper type for functions, extending these con-
cepts to larger dimensions was fairly easy as long as the dimensions did not get
too large. Currently the limit of product dimensions are set to five. This is not a
hard limit as more dimensions could be added, just as the library was extended
from working with two or three dimensions to five dimensions. Five dimensions
were chosen as this was the biggest tuple that the interactive environment in
GHC would print as standard. Another reason was that adding dimensions also
adds more type variables that need to be handled and thus complexity grows.

We have already given examples on some improvements that could be done,
but we will give a short recount of some of the suggested improvements. Perfor-
mance of the library could be improved as the current implementation focused
on clarity and maintainability. Profiling the code should reveal opportunities to
extract more performance. If modules duplicates functions that can be provided
by standard Haskell libraries, then the rest of the library could be rewritten to
use these functions instead and the redundant module could then be eliminated.
The module that handles deep evaluation is one such module that could be re-
placed once alternatives arises. Since the bounds deriving module was not fully
completed during this thesis, an emphasis should lie on completing it. The func-
tionality of the module is one important part of the preprocessor, so a working
module is highly desired. Finally improving the correlation of line numbers in
Data Field Haskell source versus preprocessed source in error reporting from the
compiler is needed. This will make tracking down bugs in code much easier.

The desired goals were reached with the library implementation. The whole
library is compact and modular. Code is written with clarity in mind to help
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future maintainers. The library functions and preprocessor have been tested as
far as possible. However, due to the bounds calculating part of the preprocessor
not being completed, a full test coverage of Data Field Haskell have not been
possible.

The work with the implementation of Data Field Haskell has been a reward-
ing experience. Although the library still needs to mature, it can be used at its
current state.
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Appendix A

Data Field Haskell Modules

These are the modules that form the library part of the Data Field Haskell
implementation. The module DeepSeq.lhs is not included here as it’s not the
work of the author and because it should be replaced by a Haskell standard
module providing equivalent features when such a module exists.

A.1 Bounds.hs

1 {−# OPTIONS GHC −f g lasgow−e x t s #−}
2
3 −− Package : Da t a f i e l d Haske l l L ibrary
4 −− Module : Bounds
5 −− Author : Jesper Simos
6 −− Copyright ( c ) 2007 , Jesper Simos
7 −− License : GPLv2 ( see base f o l d e r )
8 −− E−Mail : j s s03001@student .mdh . se
9 −− Date : 2006−12−01

10 −− Last Change : 2007−02−27
11 −−
12
13 −− | ”Bounds ” prov ide the means to cons t ruc t and handle

bounds and product bounds in an uniform manner .
14 −− There i s a l im i t on the s i z e o f product bounds , t h i s

l im i t i s c u r r en t l y s e t a t 5 .
15 module Bounds (Bound , s i n g l e , uns ing le , DenseBound((<:>) )

, ProdBound((<∗>) ) ,
16 Bounds ( universe , empty , f i n i t e , enum , s i z e

, lowerBound , upperBound , join , meet ,
inBounds ) ,

17 sparse , pred i ca te , TransBound ( transBound ) ,
ProjSimple m 1 ( projSm 1 ) ,

18 ProjSimple m 2 ( projSm 2 ) , ProjSimple m 3 (
projSm 3 ) , ProjSimple m 4 ( projSm 4 ) ,

19 ProjSimple m 5 ( projSm 5 ) , Res t r i c tPro j m 1
( bprojpm 1 ) , Res t r i c tPro j m 2 ( bprojpm 2

55
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) ,
20 compactPBounds , prod 2 , prod 3 , prod 4 ,

prod 5 )
21 where
22
23 −− Imports −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
24
25 import Ix
26 import Pord
27 import Dfcommon
28 import List
29
30 −− Constants −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
31
32 −− | ’modulename ’ g i v e s the name o f the module as a

s t r i n g . Use fu l t o g e t h e r wi th ’DFcommon. f a i lwhe re ’ ’ .
33 modulename = ”Bounds . hs ”
34 −− | ’ b p r e f i x ’ denotes ordenary bounds . Used wi th ”Show”−

i n s t ance .
35 bp r e f i x = ”<Bounds>: ”
36 −− | ’ p bp re f i x ’ denotes product bounds . Used wi th ”Show”−

i n s t ance .
37 pbpre f i x = ”<Product Bounds>: ”
38
39 −− Precedence Dec la ra t i ons −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
40
41 i n f i x l 3 <∗>
42 in f ix 2 <:>
43
44
45 −− | ’Dummy’ i s a dummy data type to handle t u p l e t ype s in

s i n g l e dimension bounds when us ing fundeps .
46 data Dummy a = Dummy a deriving (Eq, Ord , Ix , Show)
47
48 −− | Needed f o r t e c hn i c a l reasons to r e s o l v e the Pord

c l a s s c on s t r a i n t when us ing ’Dummy’ .
49 instance (Pord a ) => Pord (Dummy a ) where
50 g lb (Dummy a ) (Dummy b) = Dummy ( glb a b)
51 lub (Dummy a ) (Dummy b) = Dummy ( lub a b)
52 l t (Dummy a ) (Dummy b) = l t a b
53
54 −− | ’ s i n g l e ’ wraps a va lue in a ’Dummy’ type .
55 s i n g l e : : f o r a l l a . a −> Dummy a
56 s i n g l e va l = Dummy va l
57
58 −− | ’ uns ing l e ’ unwraps the ’Dummy’ and y i e l d s the va lue .
59 uns ing l e : : f o r a l l a . (Dummy a ) −> a
60 uns ing l e (Dummy va l ) = va l
61
62 −− End Dummy
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63
64
65 −− Data Dec la ra t i ons −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
66
67 −− | The Bound da ta type i s the ba s i c b u i l d i n g b l o c k .
68 −− I t can be dense , sparse ( s e t s o f po in t s ) or a p r ed i c a t e

( i n f i n i t e ) .
69 −− The s p e c i a l bounds Universe ( i n f i n i t e ) and Empty( f i n i t e

) forms the un i ve r sa l− and empty s e t .
70 data ( Ix a , Show a , Pord a ) => Bound a = Dense a a |

Sparse [ a ] | Pred ( a −> Bool ) | Universe | Empty
71
72 −− This d i r e c t i v e i s needed to pass Haddock
73 −− #i f n d e f HADDOCK
74
75 −− | P(n)Bounds are composite bounds formed from products

o f b a s i c bounds .
76 data P2Bounds a where
77 P2Base : : a −> P2Bounds a
78 P2Comp : : P2Bounds a −> P2Bounds b −> P2Bounds (a

, b )
79
80 data P3Bounds a where
81 P3Base : : a −> P3Bounds a
82 P3Comp : : P3Bounds a −> P3Bounds b −> P3Bounds c

−> P3Bounds (a , b , c )
83
84 data P4Bounds a where
85 P4Base : : a −> P4Bounds a
86 P4Comp : : P4Bounds a −> P4Bounds b −> P4Bounds c

−> P4Bounds d −> P4Bounds (a , b , c , d )
87
88 data P5Bounds a where
89 P5Base : : a −> P5Bounds a
90 P5Comp : : P5Bounds a −> P5Bounds b −> P5Bounds c

−>
91 P5Bounds d −> P5Bounds e −> P5Bounds (a

, b , c , d , e )
92
93 −− #end i f
94 −− Class Dec la ra t i ons −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
95
96
97 class Extract b a | b −> a where
98 −− | ’ e x t rac t ’ conver t s compound bounds to t u p l e s

o f b a s i c bound type .
99 ex t r a c t : : b −> a

100
101 class ( Ix a , Show a , Pord a ) => DenseBound b a | a −> b

where
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102 −− | ’\<:\> ’ uses g iven va l u e s to cons t ruc t
bounds ranging from 1 to 5 dimensions .

103 (<:>) : : a −> a −> b
104
105 class ProdBound a b c | a b −> c where
106 −− | ’<∗>’ composes product bounds from ba s i c

bounds .
107 (<∗>) : : a −> b −> c
108
109 −− | The methods in t h i s c l a s s works on a l l bounds , both

ba s i c and product bounds .
110 class ( Ix a , Show a , Pord a ) => Bounds b a | b −> a where
111 −− | ’ universe ’ r e p r e s en t s the un i v e r s a l bound .
112 un ive r s e : : b
113 −− | ’ empty ’ r ep r e s en t s the empty bound .
114 empty : : b
115
116 −− Operat ions
117 −− | ’ f i n i t e ’ checks i f a bound i s f i n i t e .
118 f i n i t e : : b −> Bool
119 −− | ’enum ’ enumerates a f i n i t e bound .
120 enum : : b −> [ a ]
121 −− | ’ s i z e ’ r e turns the s i z e o f a bound .
122 s i z e : : b −> Int
123 −− | ’ lowerBound ’ re turns the l owe s t va lue in the

bound .
124 lowerBound : : b −> a
125 −− | ’ upperBound ’ re turns the h i g h e s t va lue in

the bound .
126 upperBound : : b −> a
127 −− | ’ jo in ’ combines two bounds . S imi lar to union

opera t ion o f s e t s .
128 join : : b −> b −> b
129 −− | ’meet ’ combines two bounds . S imi lar to

i n t e r s e c t opera t ion o f s e t s .
130 meet : : b −> b −> b
131 −− | ’ inBounds ’ checks i f a va lue i s conta ined in

the g iven bound .
132 inBounds : : a −> b −> Bool
133
134 class (Num c ) => TransBound b c | b −> c where
135 −− | ’ transBound ’ t r a n s l a t e s a g iven bound or

product bound an amount o f n where n can be a
t u p l e .

136 transBound : : c −> b −> b
137
138 −− | The c l a s s e s ProjSimple m k ( cu r r en t l y k can take on

va l ue s from 1 to the upper l im i t
139 −− o f product bounds ) are a fami l y o f s imp le p r o j e c t i on

f unc t i on s .
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140 class ProjSimple m 1 b c | b −> c where
141 −− | ’ projSm 1 ’ re turns the f i r s t dimension in a

g iven product bound .
142 −− Function works on a l l s i z e s o f product bounds ,

i t r e tu rns Nothing i f dimension does not
e x i s t .

143 projSm 1 : : b −> Maybe c
144
145 class ProjSimple m 2 b c | b −> c where
146 −− | ’ projSm 2 ’ re turns the second dimension in a

g iven product bound .
147 −− Function works on a l l s i z e s o f product bounds ,

i t r e tu rns Nothing i f dimension does not
e x i s t .

148 projSm 2 : : b −> Maybe c
149
150 class ProjSimple m 3 b c | b −> c where
151 −− | ’ projSm 3 ’ re turns the t h i r d dimension in a

g iven product bound .
152 −− Function works on a l l s i z e s o f product bounds ,

i t r e tu rns Nothing i f dimension does not
e x i s t .

153 projSm 3 : : b −> Maybe c
154
155 class ProjSimple m 4 b c | b −> c where
156 −− | ’ projSm 4 ’ re turns the f ou r t h dimension in a

g iven product bound .
157 −− Function works on a l l s i z e s o f product bounds ,

i t r e tu rns Nothing i f dimension does not
e x i s t .

158 projSm 4 : : b −> Maybe c
159
160 class ProjSimple m 5 b c | b −> c where
161 −− | ’ projSm 5 ’ re turns the f i f t h dimension in a

g iven product bound .
162 −− Function works on a l l s i z e s o f product bounds ,

i t r e tu rns Nothing i f dimension does not
e x i s t .

163 projSm 5 : : b −> Maybe c
164
165 −− | The Res t r i c tPro j m k c l a s s e s prov ide opera t i ons f o r

c a l c u l a t i n g a new bound
166 −− ( which may be an approximation ) from non−product

mu l t id imens iona l bounds or product bounds
167 −− which i s a r e s t r i c t i o n o f the o r i g i n a l bound .

Current ly on ly implemented f o r 2−dimensions .
168
169 class Restr i c tPro j m 1 b c d | b −> c d where
170 −− | ’ bprojpm 1 ’ r e s t r i c t s the o ther dimensions

and re turns a bound approximat ing the f i r s t
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171 −− dimension , g i ven t ha t the i n d i c e s used to
r e s t r i c t the o ther dimensions are w i th in the

172 −− bounds they are going to r e s t r i c t . Example (
pseudocode but wi th co r r e c t t ype s ) :

173 −− @
174 −− bprojpm 1 (Dense (\ ’ a \ ’ , \ ’ c \ ’ ) (\ ’ d \ ’ , \ ’ f

\ ’ ) ) ( Jus t \ ’ e \ ’ ) => (Dense \ ’ a\ ’ \ ’ d \ ’ )
175 −− @
176 −−
177 −− Since the charac t e r \ ’ e \ ’ i s w i th in the range

o f cha rac t e r s \ ’ c \ ’ − \ ’ f \ ’ , the f i r s t dim . i s
re turned .

178 −− Another example , t h i s time we simply r e s t r i c t
the f i r s t dim . and the func t i on re turns the
second dim . :

179 −− @
180 −− bprojpm 2 (Dense ( ’ a ’ , ’ c ’ ) ( ’ d ’ , ’ f ’ ) )

Nothing => (Dense ’ c ’ ’ f ’ )
181 −− @
182 −−
183 bprojpm 1 : : b −> c −> d
184 bprojpm 1 = fa i lwhe r e ”Needs a in s t anc e

d e c l a r a t i on f o r t h i s type ! ”
185
186 class Restr i c tPro j m 2 b c d | b −> c d where
187 −− | ’ bprojpm 2 ’ r e s t r i c t s the o ther dimensions

and re turns a bound approximat ing the second
188 −− dimension , g i ven t ha t the i n d i c e s used to

r e s t r i c t the o ther dimensions are w i th in the
189 −− bounds they are going to r e s t r i c t .
190 bprojpm 2 : : b −> c −> d
191 bprojpm 2 = fa i lwhe r e ”Needs a in s t anc e

d e c l a r a t i on f o r t h i s type ! ”
192
193 −− Ins tance Dec la ra t i ons −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
194
195 −− This i s needed f o r a genera l transBound
196 instance (Num a , Num b) => Num ( a , b) where
197 (+) ( a1 , b1 ) ( a2 , b2 ) = ( a1+a2 , b1+b2 )
198 (∗ ) ( a1 , b1 ) ( a2 , b2 ) = ( a1∗a2 , b1∗b2 )
199 negate ( a , b) = (negate a , negate b)
200 abs ( a , b) = (abs a , abs b)
201 signum ( a , b)= (signum a , signum b)
202 fromInteger a = ( fromInteger a , 0)
203
204 instance (Num a , Num b , Num c ) => Num ( a , b , c ) where
205 (+) ( a1 , b1 , c1 ) ( a2 , b2 , c2 ) = ( a1+a2 , b1+b2 , c1+c2 )
206 (∗ ) ( a1 , b1 , c1 ) ( a2 , b2 , c2 ) = ( a1∗a2 , b1∗b2 , c1∗ c2 )
207 negate ( a , b , c ) = (negate a , negate b , negate c )
208 abs ( a , b , c ) = (abs a , abs b , abs c )
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209 signum ( a , b , c )= (signum a , signum b , signum c )
210 fromInteger a = ( fromInteger a , 0 , 0)
211
212 instance (Num a , Num b , Num c , Num d) => Num ( a , b , c , d )

where
213 (+) ( a1 , b1 , c1 , d1 ) ( a2 , b2 , c2 , d2 ) = ( a1+a2 , b1+b2 ,

c1+c2 , d1+d2 )
214 (∗ ) ( a1 , b1 , c1 , d1 ) ( a2 , b2 , c2 , d2 ) = ( a1∗a2 , b1∗b2 ,

c1∗c2 , d1∗d2 )
215 negate ( a , b , c , d ) = (negate a , negate b , negate

c , negate d)
216 abs ( a , b , c , d ) = (abs a , abs b , abs c , abs d)
217 signum ( a , b , c , d )= (signum a , signum b , signum

c , signum d)
218 fromInteger a = ( fromInteger a , 0 , 0 , 0)
219
220 instance (Num a , Num b , Num c , Num d , Num e ) => Num ( a , b

, c , d , e ) where
221 (+) ( a1 , b1 , c1 , d1 , e1 ) ( a2 , b2 , c2 , d2 , e2 ) = ( a1+a2 ,

b1+b2 , c1+c2 , d1+d2 , e1+e2 )
222 (∗ ) ( a1 , b1 , c1 , d1 , e1 ) ( a2 , b2 , c2 , d2 , e2 ) = ( a1∗a2 ,

b1∗b2 , c1∗c2 , d1∗d2 , e1∗ e2 )
223 negate ( a , b , c , d , e ) = (negate a , negate b ,

negate c , negate d , negate e )
224 abs ( a , b , c , d , e ) = (abs a , abs b , abs c , abs d

, abs e )
225 signum ( a , b , c , d , e )= (signum a , signum b ,

signum c , signum d , signum e )
226 fromInteger a = ( fromInteger a , 0 , 0 , 0 , 0)
227
228
229 instance ( Ix a , Show a , Pord a ) => Show (Bound a ) where
230 show ( Dense a b ) = bpr e f i x ++ ”Dense ” ++ show a

++ ” to ” ++ show b
231 show ( Sparse l ) = bpr e f i x ++ ”Sparse ” ++ show l
232 show ( Pred ) = bpr e f i x ++ ”Pred ica te ”
233 show ( Universe ) = bpr e f i x ++ ”Universe ”
234 show (Empty) = bpr e f i x ++ ”Empty”
235
236 instance ( Ix a , Show a , Pord a , Ix b , Show b , Pord b) =>

Show (P2Bounds (Bound a , Bound b) ) where
237 show p2b = l et ( a , b) = ex t r a c t p2b in pbpre f i x ++

” [ ” ++ show a ++ ” , ” ++ show b ++ ” ] ”
238
239 instance ( Ix a , Show a , Pord a , Ix b , Show b , Pord b , Ix

c , Show c , Pord c ) => Show (P3Bounds (Bound a , Bound b
, Bound c ) ) where

240 show p3b = l et ( a , b , c ) = ex t r a c t p3b in pbpre f i x
++ ” [ ” ++ show a ++ ” , ” ++ show b ++ ” , ” ++
show c ++ ” ] ”
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241
242 instance ( Ix a , Show a , Pord a , Ix b , Show b , Pord b , Ix

c , Show c , Pord c , Ix d , Show d , Pord d) =>
243 Show (P4Bounds (Bound a , Bound b , Bound c , Bound d

) ) where
244 show p4b = l et ( a , b , c , d ) = ex t r a c t p4b
245 in pbpre f i x ++ ” [ ” ++ show a ++ ” , ” ++

show b ++ ” , ” ++ show c ++ ” , ” ++
show d ++ ” ] ”

246
247 instance ( Ix a , Show a , Pord a , Ix b , Show b , Pord b , Ix

c , Show c , Pord c , Ix d , Show d , Pord d , Ix e , Show e ,
Pord e ) =>

248 Show (P5Bounds (Bound a , Bound b , Bound c , Bound d
, Bound e ) ) where

249 show p5b = l et ( a , b , c , d , e ) = ex t r a c t p5b
250 in pbpre f i x ++
251 ” [ ” ++ show a ++ ” , ” ++ show b ++ ”

, ” ++ show c ++ ” , ” ++ show d ++
” , ” ++ show e ++ ” ] ”

252
253
254 instance Extract (P2Bounds a ) a where
255 ex t r a c t (P2Base a ) = a
256 ex t r a c t (P2Comp a b) = ( ex t r a c t a , ex t r a c t b)
257
258 instance Extract (P3Bounds a ) a where
259 ex t r a c t (P3Base a ) = a
260 ex t r a c t (P3Comp a b c ) = ( ex t r a c t a , ex t r a c t b ,
261 ex t r a c t c )
262
263 instance Extract (P4Bounds a ) a where
264 ex t r a c t (P4Base a ) = a
265 ex t r a c t (P4Comp a b c d) = ( ex t r a c t a , ex t r a c t b ,
266 ex t r a c t c , e x t r a c t d)
267
268 instance Extract (P5Bounds a ) a where
269 ex t r a c t (P5Base a ) = a
270 ex t r a c t (P5Comp a b c d e ) = ( ex t r a c t a , ex t r a c t

b ,
271 ex t r a c t c , e x t r a c t

d ,
272 ex t r a c t e )
273
274
275 instance DenseBound (Bound Bool ) Bool where
276 (<:>) a b = Dense a b
277
278 instance DenseBound (Bound Char) Char where
279 (<:>) a b = Dense a b
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280
281 instance DenseBound (Bound Int ) Int where
282 (<:>) a b = Dense a b
283
284 instance DenseBound (Bound Integer ) Integer where
285 (<:>) a b = Dense a b
286
287 instance ( Ix a , Show a , Pord a ) => DenseBound (Bound a ) (

Dummy a ) where
288 (<:>) (Dummy a ) (Dummy b) = Dense a b
289
290 instance ( Ix a , Show a , Pord a , Ix b , Show b , Pord b) =>
291 DenseBound (P2Bounds (Bound a , Bound b) ) ( a , b) where
292 (<:>) ( a1 , b1 ) ( a2 , b2 ) =
293 P2Comp (P2Base ( Dense a1 a2 ) ) (P2Base ( Dense

b1 b2 ) )
294
295 instance ( Ix a , Show a , Pord a , Ix b , Show b , Pord b ,
296 Ix c , Show c , Pord c ) =>
297 DenseBound (P3Bounds (Bound a , Bound b , Bound c ) )
298 (a , b , c ) where
299 (<:>) ( a1 , b1 , c1 ) ( a2 , b2 , c2 ) =
300 P3Comp (P3Base ( Dense a1 a2 ) ) (P3Base ( Dense

b1 b2 ) )
301 (P3Base ( Dense c1 c2 ) )
302
303 instance ( Ix a , Show a , Pord a , Ix b , Show b , Pord b ,
304 Ix c , Show c , Pord c , Ix d , Show d , Pord d) =>
305 DenseBound (P4Bounds (Bound a , Bound b , Bound c , Bound d) )
306 (a , b , c , d ) where
307 (<:>) ( a1 , b1 , c1 , d1 ) ( a2 , b2 , c2 , d2 ) =
308 P4Comp (P4Base ( Dense a1 a2 ) ) (P4Base ( Dense

b1 b2 ) )
309 (P4Base ( Dense c1 c2 ) ) (P4Base ( Dense

d1 d2 ) )
310
311 instance ( Ix a , Show a , Pord a , Ix b , Show b , Pord b ,
312 Ix c , Show c , Pord c , Ix d , Show d , Pord d ,
313 Ix e , Show e , Pord e ) =>
314 DenseBound (P5Bounds (Bound a , Bound b , Bound c , Bound d ,

Bound e ) )
315 (a , b , c , d , e ) where
316 (<:>) ( a1 , b1 , c1 , d1 , e1 ) ( a2 , b2 , c2 , d2 , e2 ) =
317 P5Comp (P5Base ( Dense a1 a2 ) ) (P5Base ( Dense

b1 b2 ) )
318 (P5Base ( Dense c1 c2 ) ) (P5Base ( Dense

d1 d2 ) )
319 (P5Base ( Dense e1 e2 ) )
320
321
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322 instance ProdBound (Bound a ) (Bound b) (P2Bounds (Bound a
, Bound b) ) where

323 (<∗>) b1 b2 = P2Comp (P2Base b1 ) (P2Base b2 )
324
325 instance ProdBound (P2Bounds (Bound a , Bound b) ) (Bound c

) (P3Bounds (Bound a , Bound b , Bound c ) ) where
326 (<∗>) b1 b2 = l et (x , y ) = ex t r a c t b1
327 in P3Comp (P3Base x ) (P3Base y ) (

P3Base b2 )
328
329 instance ProdBound (P3Bounds (Bound a , Bound b , Bound c ) )

(Bound d) (P4Bounds (Bound a , Bound b , Bound c , Bound
d) )

330 where
331 (<∗>) b1 b2 = l et (x , y , z ) = ex t r a c t b1
332 in P4Comp (P4Base x ) (P4Base y ) (

P4Base z ) (P4Base b2 )
333
334 instance ProdBound (P4Bounds (Bound a , Bound b , Bound c ,

Bound d) ) (Bound e )
335 (P5Bounds (Bound a , Bound b , Bound c ,

Bound d , Bound e ) ) where
336 (<∗>) b1 b2 = l et (x , y , z ,w) = ex t r a c t b1
337 in P5Comp (P5Base x ) (P5Base y ) (

P5Base z ) (P5Base w) (P5Base b2
)

338
339
340 instance ( Ix a , Show a , Pord a ) => Bounds (Bound a ) a

where
341 un ive r s e = Universe
342 empty = Empty
343
344 −− Operat ions
345 f i n i t e ( Dense ) = True
346 f i n i t e ( Sparse ) = True
347 f i n i t e ( Pred ) = False
348 f i n i t e ( Universe ) = False
349 f i n i t e (Empty) = True
350
351 enum ( Dense a b ) = range (a , b)
352 enum ( Sparse l ) = nub ( sort l )
353 enum ( Pred ) = f a i lwh e r e ”Enumeration Inva l i d ! ”
354 enum ( Universe ) = f a i lwh e r e ”Enumeration Inva l i d !

”
355 enum (Empty) = [ ]
356
357 s i z e b = length (enum b)
358
359 lowerBound ( Dense a b ) = a
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360 lowerBound ( Sparse l ) = foldr1 g lb l
361 lowerBound ( Pred ) = f a i lwh e r e ”lowerBound

Inva l i d ! ”
362 lowerBound ( Universe ) = f a i lwh e r e ”lowerBound

Inva l i d ! ”
363 lowerBound (Empty) = f a i lwh e r e ”lowerBound

Inva l i d ! ”
364
365 upperBound ( Dense a b ) = b
366 upperBound ( Sparse l ) = foldr1 lub l
367 upperBound ( Pred ) = f a i lwh e r e ”upperBound

Inva l i d ! ”
368 upperBound ( Universe ) = f a i lwh e r e ”upperBound

Inva l i d ! ”
369 upperBound (Empty) = f a i lwh e r e ”upperBound

Inva l i d ! ”
370
371 join ( Dense a1 b1 ) ( Dense a2 b2 ) = Dense ( g lb

a1 a2 ) ( lub b1 b2 )
372 join ( Dense a b ) ( Sparse l ) = Sparse ( range (a , b

) ‘union ‘ l )
373 join ( Sparse l ) ( Dense a b ) = Sparse ( range (a , b

) ‘union ‘ l )
374 join ( Dense a b ) ( Pred p) = Pred (\x −> p x | |

inRange ( a , b) x )
375 join ( Pred p) ( Dense a b ) = Pred (\x −> p x | |

inRange ( a , b) x )
376 join ( Sparse l 1 ) ( Sparse l 2 ) = Sparse ( l 1 ‘union ‘

l 2 )
377 join ( Sparse l ) ( Pred p) = Pred (\x −> p x | | x ‘

elem ‘ l )
378 join ( Pred p) ( Sparse l ) = Pred (\x −> p x | | x ‘

elem ‘ l )
379 join ( Pred p1 ) ( Pred p2 ) = Pred (\x −> p1 x | | p2

x )
380
381 join Universe b2 = Universe
382 join b1 Universe = Universe
383 join Empty b2 = b2
384 join b1 Empty = b1
385
386 meet ( Dense a1 b1 ) ( Dense a2 b2 ) = Dense ( lub

a1 a2 ) ( g lb b1 b2 )
387 meet ( Dense a b ) ( Sparse l ) = Sparse ( range (a , b

) ‘ intersect ‘ l )
388 meet ( Sparse l ) ( Dense a b ) = Sparse ( l ‘

intersect ‘ range (a , b ) )
389 meet ( Dense a b ) ( Pred p) = Sparse [ x | x <−

range (a , b) , p x ]
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390 meet ( Pred p) ( Dense a b ) = Sparse [ x | x <−
range (a , b) , p x ]

391 meet ( Sparse l 1 ) ( Sparse l 2 ) = Sparse ( l 1 ‘
intersect ‘ l 2 )

392 meet ( Sparse l ) ( Pred p) = Sparse [ x | x <− l , p
x ]

393 meet ( Pred p) ( Sparse l ) = Sparse [ x | x <− l , p
x ]

394 meet ( Pred p1 ) ( Pred p2 ) = Pred (\x −> p1 x && p2
x )

395
396 meet Universe b2 = b2
397 meet b1 Universe = b1
398 meet Empty b2 = Empty
399 meet b1 Empty = Empty
400
401 inBounds x ( Dense a b ) = inRange ( a , b) x
402 inBounds x ( Sparse l ) = x ‘elem ‘ l
403 inBounds x ( Pred p ) = p x
404 inBounds x ( Universe ) = True
405 inBounds x (Empty) = False
406
407 instance ( Ix a , Show a , Pord a , Ix b , Show b , Pord b) =>
408 Bounds (P2Bounds (Bound a , Bound b) ) ( a , b) where
409
410 un ive r s e = P2Comp (P2Base Universe ) (P2Base

Universe )
411 empty = P2Comp (P2Base Empty) (P2Base Empty)
412
413 −− Operat ions
414 f i n i t e p2b = l et ( a , b) = ex t r a c t p2b
415 in f i n i t e a && f i n i t e b
416
417 enum p2b = l et ( a , b) = ex t r a c t p2b
418 in [ ( x , y ) | x <− enum a , y <− enum b ]
419
420 s i z e p2b = length (enum p2b )
421
422 lowerBound p2b = l et ( a , b) = ex t r a c t p2b
423 in ( lowerBound a , lowerBound b)
424
425 upperBound p2b = l et ( a , b) = ex t r a c t p2b
426 in ( upperBound a , upperBound b)
427
428 join p2b1 p2b2 =
429 l et ( a1 , b1 ) = ex t r a c t p2b1
430 ( a2 , b2 ) = ex t r a c t p2b2
431 in P2Comp (P2Base ( join a1 a2 ) ) (P2Base ( join

b1 b2 ) )
432
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433 meet p2b1 p2b2 =
434 l et ( a1 , b1 ) = ex t r a c t p2b1
435 ( a2 , b2 ) = ex t r a c t p2b2
436 in P2Comp (P2Base (meet a1 a2 ) ) (P2Base (meet

b1 b2 ) )
437
438 inBounds ( a1 , b1 ) p2b =
439 l et ( a2 , b2 ) = ex t r a c t p2b
440 in inBounds a1 a2 && inBounds b1 b2
441
442 instance ( Ix a , Show a , Pord a , Ix b , Show b , Pord b ,
443 Ix c , Show c , Pord c ) =>
444 Bounds (P3Bounds (Bound a , Bound b , Bound c ) ) ( a , b , c )

where
445
446 un ive r s e = P3Comp (P3Base Universe ) (P3Base

Universe ) (P3Base Universe )
447 empty = P3Comp (P3Base Empty) (P3Base Empty) (

P3Base Empty)
448
449 −− Operat ions
450 f i n i t e p3b = l et ( a , b , c ) = ex t r a c t p3b
451 in f i n i t e a && f i n i t e b && f i n i t e c
452
453 enum p3b = l et ( a , b , c ) = ex t r a c t p3b
454 in [ ( x , y , z ) | x <− enum a , y <− enum b ,

z <− enum c ]
455
456 s i z e p3b = length (enum p3b )
457
458 lowerBound p3b =
459 l et ( a , b , c ) = ex t r a c t p3b
460 in ( lowerBound a , lowerBound b , lowerBound c )
461
462 upperBound p3b =
463 l et ( a , b , c ) = ex t r a c t p3b
464 in ( upperBound a , upperBound b , upperBound c )
465
466 join p3b1 p3b2 =
467 l et ( a1 , b1 , c1 ) = ex t r a c t p3b1
468 ( a2 , b2 , c2 ) = ex t r a c t p3b2
469 in P3Comp (P3Base ( join a1 a2 ) ) (P3Base ( join

b1 b2 ) )
470 (P3Base ( join c1 c2 ) )
471
472 meet p3b1 p3b2 =
473 l et ( a1 , b1 , c1 ) = ex t r a c t p3b1
474 ( a2 , b2 , c2 ) = ex t r a c t p3b2
475 in P3Comp (P3Base (meet a1 a2 ) ) (P3Base (meet

b1 b2 ) )
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476 (P3Base (meet c1 c2 ) )
477
478 inBounds ( a1 , b1 , c1 ) p3b =
479 l et ( a2 , b2 , c2 ) = ex t r a c t p3b
480 in inBounds a1 a2 && inBounds b1 b2 && inBounds

c1 c2
481
482 instance ( Ix a , Show a , Pord a , Ix b , Show b , Pord b ,
483 Ix c , Show c , Pord c , Ix d , Show d , Pord d) =>
484 Bounds (P4Bounds (Bound a , Bound b , Bound c , Bound d

) )
485 (a , b , c , d ) where
486
487 un ive r s e = P4Comp (P4Base Universe ) (P4Base

Universe )
488 (P4Base Universe ) (P4Base

Universe )
489 empty = P4Comp (P4Base Empty) (P4Base Empty)
490 (P4Base Empty) (P4Base Empty)
491
492 −− Operat ions
493 f i n i t e p4b = l et ( a , b , c , d ) = ex t r a c t p4b
494 in f i n i t e a && f i n i t e b &&
495 f i n i t e c && f i n i t e d
496
497 enum p4b = l et ( a , b , c , d ) = ex t r a c t p4b
498 in [ ( x , y , z , u ) | x <− enum a , y <− enum b

,
499 z <− enum c , u <− enum d

]
500
501 s i z e p4b = length (enum p4b )
502
503 lowerBound p4b =
504 l et ( a , b , c , d ) = ex t r a c t p4b
505 in ( lowerBound a , lowerBound b ,
506 lowerBound c , lowerBound d)
507
508 upperBound p4b =
509 l et ( a , b , c , d ) = ex t r a c t p4b
510 in ( upperBound a , upperBound b ,
511 upperBound c , upperBound d)
512
513 join p4b1 p4b2 =
514 l et ( a1 , b1 , c1 , d1 ) = ex t r a c t p4b1
515 ( a2 , b2 , c2 , d2 ) = ex t r a c t p4b2
516 in P4Comp (P4Base ( join a1 a2 ) ) (P4Base ( join

b1 b2 ) )
517 (P4Base ( join c1 c2 ) ) (P4Base ( join

d1 d2 ) )
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518
519 meet p4b1 p4b2 =
520 l et ( a1 , b1 , c1 , d1 ) = ex t r a c t p4b1
521 ( a2 , b2 , c2 , d2 ) = ex t r a c t p4b2
522 in P4Comp (P4Base (meet a1 a2 ) ) (P4Base (meet

b1 b2 ) )
523 (P4Base (meet c1 c2 ) ) (P4Base (meet

d1 d2 ) )
524
525 inBounds ( a1 , b1 , c1 , d1 ) p4b =
526 l et ( a2 , b2 , c2 , d2 ) = ex t r a c t p4b
527 in inBounds a1 a2 && inBounds b1 b2 &&
528 inBounds c1 c2 &&inBounds d1 d2
529
530 instance ( Ix a , Show a , Pord a , Ix b , Show b , Pord b ,
531 Ix c , Show c , Pord c , Ix d , Show d , Pord d ,
532 Ix e , Show e , Pord e ) =>
533 Bounds (P5Bounds (Bound a , Bound b , Bound c , Bound d

, Bound e ) )
534 (a , b , c , d , e ) where
535
536 un ive r s e = P5Comp (P5Base Universe ) (P5Base

Universe ) (P5Base Universe )
537 (P5Base Universe ) (P5Base

Universe )
538 empty = P5Comp (P5Base Empty) (P5Base Empty) (

P5Base Empty)
539 (P5Base Empty) (P5Base Empty)
540
541 −− Operat ions
542 f i n i t e p5b =
543 l et ( a , b , c , d , e ) = ex t r a c t p5b
544 in f i n i t e a && f i n i t e b && f i n i t e c &&
545 f i n i t e d && f i n i t e e
546
547 enum p5b =
548 l et ( a , b , c , d , e ) = ex t r a c t p5b
549 in [ ( x , y , z , u , v ) | x <− enum a , y <− enum b ,
550 z <− enum c , u <− enum d ,
551 v <− enum e ]
552
553 s i z e p5b = length (enum p5b )
554
555 lowerBound p5b =
556 l et ( a , b , c , d , e ) = ex t r a c t p5b
557 in ( lowerBound a , lowerBound b , lowerBound c ,
558 lowerBound d , lowerBound e )
559
560 upperBound p5b =
561 l et ( a , b , c , d , e ) = ex t r a c t p5b
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562 in ( upperBound a , upperBound b , upperBound c ,
563 upperBound d , upperBound e )
564
565 join p5b1 p5b2 =
566 l et ( a1 , b1 , c1 , d1 , e1 ) = ex t r a c t p5b1
567 ( a2 , b2 , c2 , d2 , e2 ) = ex t r a c t p5b2
568 in P5Comp (P5Base ( join a1 a2 ) ) (P5Base ( join

b1 b2 ) )
569 (P5Base ( join c1 c2 ) ) (P5Base ( join

d1 d2 ) )
570 (P5Base ( join e1 e2 ) )
571
572 meet p5b1 p5b2 =
573 l et ( a1 , b1 , c1 , d1 , e1 ) = ex t r a c t p5b1
574 ( a2 , b2 , c2 , d2 , e2 ) = ex t r a c t p5b2
575 in P5Comp (P5Base (meet a1 a2 ) ) (P5Base (meet

b1 b2 ) )
576 (P5Base (meet c1 c2 ) ) (P5Base (meet

d1 d2 ) )
577 (P5Base (meet e1 e2 ) )
578
579 inBounds ( a1 , b1 , c1 , d1 , e1 ) p5b =
580 l et ( a2 , b2 , c2 , d2 , e2 ) = ex t r a c t p5b
581 in inBounds a1 a2 && inBounds b1 b2 &&

inBounds c1 c2 &&
582 inBounds d1 d2 && inBounds e1 e2
583
584
585 instance ( Ix a , Show a , Pord a , Num a ) => TransBound (

Bound a ) a where
586 transBound n ( Dense a b ) = Dense ( a−n) (b−n)
587 transBound n ( Sparse l ) = spar s e (map ( subtract

n) l )
588 transBound n ( Pred p ) = pred i c a t e (p . \x −> x+n

)
589 transBound n ( Universe ) = un ive r s e
590 transBound n (Empty) = empty
591
592 instance ( Ix a , Show a , Pord a , Num a , Ix b , Show b ,
593 Pord b , Num b) => TransBound (P2Bounds (Bound a

, Bound b) ) ( a , b ) where
594 transBound (n1 , n2 ) p2b =
595 l et ( a , b) = ex t r a c t p2b
596 in P2Comp (P2Base ( transBound n1 a ) )
597 (P2Base ( transBound n2 b) )
598
599 instance ( Ix a , Show a , Pord a , Num a , Ix b , Show b ,
600 Pord b , Num b , Ix c , Show c , Pord c , Num c ) =>
601 TransBound (P3Bounds (Bound a , Bound b , Bound c ) )
602 (a , b , c ) where
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603 transBound (n1 , n2 , n3 ) p3b =
604 l et ( a , b , c ) = ex t r a c t p3b
605 in P3Comp (P3Base ( transBound n1 a ) )
606 (P3Base ( transBound n2 b) )
607 (P3Base ( transBound n3 c ) )
608
609 instance ( Ix a , Show a , Pord a , Num a , Ix b , Show b ,
610 Pord b , Num b , Ix c , Show c , Pord c , Num c ,
611 Ix d , Show d , Pord d , Num d) =>
612 TransBound (P4Bounds (Bound a , Bound b , Bound c , Bound

d) )
613 (a , b , c , d ) where
614 transBound (n1 , n2 , n3 , n4 ) p4b =
615 l et ( a , b , c , d ) = ex t r a c t p4b
616 in P4Comp (P4Base ( transBound n1 a ) )
617 (P4Base ( transBound n2 b) )
618 (P4Base ( transBound n3 c ) )
619 (P4Base ( transBound n4 d) )
620
621 instance ( Ix a , Show a , Pord a , Num a , Ix b , Show b ,
622 Pord b , Num b , Ix c , Show c , Pord c , Num c ,
623 Ix d , Show d , Pord d , Num d , Ix e , Show e ,
624 Pord e , Num e ) =>
625 TransBound (P5Bounds (Bound a , Bound b , Bound c , Bound

d , Bound e ) )
626 (a , b , c , d , e ) where
627 transBound (n1 , n2 , n3 , n4 , n5 ) p5b =
628 l et ( a , b , c , d , e ) = ex t r a c t p5b
629 in P5Comp (P5Base ( transBound n1 a ) )
630 (P5Base ( transBound n2 b) )
631 (P5Base ( transBound n3 c ) )
632 (P5Base ( transBound n4 d) )
633 (P5Base ( transBound n5 e ) )
634
635
636 instance ProjSimple m 1 (P2Bounds (Bound a , Bound b) ) (

Bound a ) where
637 projSm 1 b = l et (b1 , b2 ) = ex t r a c t b in Just b1
638
639 instance ProjSimple m 1 (P3Bounds (Bound a , Bound b ,

Bound c ) ) (Bound a ) where
640 projSm 1 b = l et (b1 , b2 , b3 ) = ex t r a c t b in Just

b1
641
642 instance ProjSimple m 1 (P4Bounds (Bound a , Bound b ,

Bound c , Bound d) ) (Bound a ) where
643 projSm 1 b = l et (b1 , b2 , b3 , b4 ) = ex t r a c t b in

Just b1
644
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645 instance ProjSimple m 1 (P5Bounds (Bound a , Bound b ,
Bound c , Bound d , Bound e ) ) (Bound a ) where

646 projSm 1 b = l et (b1 , b2 , b3 , b4 , b5 ) = ex t r a c t b
in Just b1

647
648
649 instance ProjSimple m 2 (P2Bounds (Bound a , Bound b) ) (

Bound b) where
650 projSm 2 b = l et (b1 , b2 ) = ex t r a c t b in Just b2
651
652 instance ProjSimple m 2 (P3Bounds (Bound a , Bound b ,

Bound c ) ) (Bound b) where
653 projSm 2 b = l et (b1 , b2 , b3 ) = ex t r a c t b in Just

b2
654
655 instance ProjSimple m 2 (P4Bounds (Bound a , Bound b ,

Bound c , Bound d) ) (Bound b) where
656 projSm 2 b = l et (b1 , b2 , b3 , b4 ) = ex t r a c t b in

Just b2
657
658 instance ProjSimple m 2 (P5Bounds (Bound a , Bound b ,

Bound c , Bound d , Bound e ) ) (Bound b) where
659 projSm 2 b = l et (b1 , b2 , b3 , b4 , b5 ) = ex t r a c t b

in Just b2
660
661
662 instance ProjSimple m 3 (P2Bounds (Bound a , Bound b) ) (

Bound b) where
663 projSm 3 b = Nothing
664
665 instance ProjSimple m 3 (P3Bounds (Bound a , Bound b ,

Bound c ) ) (Bound c ) where
666 projSm 3 b = l et (b1 , b2 , b3 ) = ex t r a c t b in Just

b3
667
668 instance ProjSimple m 3 (P4Bounds (Bound a , Bound b ,

Bound c , Bound d) ) (Bound c ) where
669 projSm 3 b = l et (b1 , b2 , b3 , b4 ) = ex t r a c t b in

Just b3
670
671 instance ProjSimple m 3 (P5Bounds (Bound a , Bound b ,

Bound c , Bound d , Bound e ) ) (Bound c ) where
672 projSm 3 b = l et (b1 , b2 , b3 , b4 , b5 ) = ex t r a c t b

in Just b3
673
674
675 instance ProjSimple m 4 (P2Bounds (Bound a , Bound b) ) (

Bound b) where
676 projSm 4 b = Nothing
677
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678 instance ProjSimple m 4 (P3Bounds (Bound a , Bound b ,
Bound c ) ) (Bound c ) where

679 projSm 4 b = Nothing
680
681 instance ProjSimple m 4 (P4Bounds (Bound a , Bound b ,

Bound c , Bound d) ) (Bound d) where
682 projSm 4 b = l et (b1 , b2 , b3 , b4 ) = ex t r a c t b in

Just b4
683
684 instance ProjSimple m 4 (P5Bounds (Bound a , Bound b ,

Bound c , Bound d , Bound e ) ) (Bound d) where
685 projSm 4 b = l et (b1 , b2 , b3 , b4 , b5 ) = ex t r a c t b

in Just b4
686
687
688 instance ProjSimple m 5 (P2Bounds (Bound a , Bound b) ) (

Bound b) where
689 projSm 5 b = Nothing
690
691 instance ProjSimple m 5 (P3Bounds (Bound a , Bound b ,

Bound c ) ) (Bound c ) where
692 projSm 5 b = Nothing
693
694 instance ProjSimple m 5 (P4Bounds (Bound a , Bound b ,

Bound c , Bound d) ) (Bound d) where
695 projSm 5 b = Nothing
696
697 instance ProjSimple m 5 (P5Bounds (Bound a , Bound b ,

Bound c , Bound d , Bound e ) ) (Bound e ) where
698 projSm 5 b = l et (b1 , b2 , b3 , b4 , b5 ) = ex t r a c t b

in Just b5
699
700
701 −− Ins tance f o r r e s t r i c t i o n o f non−product bounds .
702 instance ( Ix a , Show a , Pord a , Ix b , Show b , Pord b) =>

Restr i c tPro j m 1 (Bound (a , b) ) (Maybe b) (Bound a )
where

703 bprojpm 1 ( Dense ( a1 , a2 ) (b1 , b2 ) ) (Just i 2 ) =
i f inRange ( a2 , b2 ) i 2 then Dense a1 b1 else
Empty

704 bprojpm 1 ( Dense ( a1 , a2 ) (b1 , b2 ) ) Nothing =
Dense a1 b1

705 bprojpm 1 ( Sparse l ) (Just i 2 ) = Sparse (map fst
( f i l t e r (\ ( , b )−> i 2==b) l ) )

706 bprojpm 1 ( Sparse l ) Nothing = Sparse (map fst l
)

707 bprojpm 1 ( Pred p) (Just i 2 ) = Pred (\x −> p (x ,
i 2 ) )

708 bprojpm 1 ( Pred p) Nothing = Universe
709 bprojpm 1 Universe = Universe
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710 bprojpm 1 Empty = Empty
711
712 −− Ins tance f o r r e s t r i c t i o n o f product bounds .
713 instance ( Ix a , Show a , Pord a , Ix b , Show b , Pord b) =>
714 Rest r i c tPro j m 1 (P2Bounds (Bound a , Bound b) ) (Maybe

b) (Bound a ) where
715 bprojpm 1 p2b (Just i 2 ) = l et (b1 , b2 ) = ex t r a c t

p2b
716 in i f inBounds i 2 b2
717 then b1 else Empty
718 bprojpm 1 p2b Nothing = case ( projSm 1 p2b ) of
719 Just b −> b
720 Nothing −> f a i lwh e r e

”F i r s t dimension
non ex i s t an t !

Something i s
d i s t u r b i n g l y
wrong ! ”

721
722 −− I f one wants to extend bprojpm k to handle more

dimensions , j u s t cont inue wi th the f o l l ow i n g
723 −− i n s t ance d e c l . Rules shou ld be s im i l i a r to the code

j u s t above both one more dimension must be
724 −− handled . L ikewise f o r a t h i r d dimension ( bprojpm 3 )

j u s t mimic the in s tance code and c l a s s f o r
725 −− Restr ic tPro j m k , but take care to make sure t ha t the

code now shou ld re turn the t h i r d dim . in s t ead
726 −− o f dim . k .
727 instance ( Ix a , Show a , Pord a , Ix b , Show b , Pord b , Ix

c , Show c , Pord c ) =>
728 Rest r i c tPro j m 1 (Bound (a , b , c ) ) (Maybe b , Maybe c ) (

Bound a )
729
730
731 −− Ins tance f o r r e s t r i c t i o n o f non−product bounds .
732 instance ( Ix a , Show a , Pord a , Ix b , Show b , Pord b) =>

Restr i c tPro j m 2 (Bound (a , b) ) (Maybe a ) (Bound b)
where

733 bprojpm 2 ( Dense ( a1 , a2 ) (b1 , b2 ) ) (Just i 1 ) =
i f inRange ( a1 , b1 ) i 1 then Dense a2 b2 else
Empty

734 bprojpm 2 ( Dense ( a1 , a2 ) (b1 , b2 ) ) Nothing =
Dense a2 b2

735 bprojpm 2 ( Sparse l ) (Just i 1 ) = Sparse (map snd
( f i l t e r (\ ( a , )−> i 1==a ) l ) )

736 bprojpm 2 ( Sparse l ) Nothing = Sparse (map snd l
)

737 bprojpm 2 ( Pred p) (Just i 1 ) = Pred (\y −> p ( i1
, y ) )

738 bprojpm 2 ( Pred p) Nothing = Universe
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739 bprojpm 2 Universe = Universe
740 bprojpm 2 Empty = Empty
741
742 −− Ins tance f o r r e s t r i c t i o n o f product bounds .
743 instance ( Ix a , Show a , Pord a , Ix b , Show b , Pord b) =>
744 Rest r i c tPro j m 2 (P2Bounds (Bound a , Bound b) ) (Maybe

a ) (Bound b) where
745 bprojpm 2 p2b (Just i 1 ) = l et (b1 , b2 ) = ex t r a c t

p2b
746 in i f inBounds i 1 b1
747 then b2 else Empty
748 bprojpm 2 p2b Nothing = case ( projSm 2 p2b ) of
749 Just b −> b
750 Nothing −> f a i lwh e r e

”Second
dimension non
ex i s t an t !
Something i s
d i s t u r b i n g l y
wrong ! ”

751
752 −− Again t h i s i s an in s tance f o r 3−dim . t ha t needs to be

completed i f one wants to extend the
753 −− r e s t r i c t i o n p r o j e c t i o n s .
754 instance ( Ix a , Show a , Pord a , Ix b , Show b , Pord b , Ix

c , Show c , Pord c ) =>
755 Rest r i c tPro j m 2 (Bound (a , b , c ) ) (Maybe a , Maybe c ) (

Bound b)
756
757 −− Functions −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
758
759 −− | ’ prod 2 ’ c on s t ru c t s 2−dimensiona l d a t a f i e l d s .
760 prod 2 : : Bound a −> Bound b −> P2Bounds (Bound a , Bound

b)
761 prod 2 a b = a <∗> b
762
763 −− | ’ prod 3 ’ c on s t ru c t s 3−dimensiona l d a t a f i e l d s .
764 prod 3 : : Bound a −> Bound b −> Bound c −> P3Bounds (

Bound a , Bound b , Bound c )
765 prod 3 a b c = a <∗> b <∗> c
766
767 −− | ’ prod 4 ’ c on s t ru c t s 4−dimensiona l d a t a f i e l d s .
768 prod 4 : : Bound a −> Bound b −> Bound c −> Bound d −>
769 P4Bounds (Bound a , Bound b , Bound c , Bound d)
770 prod 4 a b c d = a <∗> b <∗> c <∗> d
771
772 −− | ’ prod 5 ’ c on s t ru c t s 5−dimensiona l d a t a f i e l d s .
773 prod 5 : : Bound a −> Bound b −> Bound c −> Bound d −>

Bound e −>
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774 P5Bounds (Bound a , Bound b , Bound c , Bound d ,
Bound e )

775 prod 5 a b c d e = a <∗> b <∗> c <∗> d <∗> e
776
777 −− | ’ sparse ’ , g i ven a l i s t o f po ints , y i e l d s a sparse

bound .
778 spar s e : : ( Ix a , Show a , Pord a ) => [ a ] −> Bound a
779 spar s e s e t = Sparse s e t
780
781 −− | ’ p red i ca t e ’ r e turns a p r ed i c a t e bound
782 p r ed i c a t e : : ( Ix a , Show a , Pord a ) => ( a −> Bool ) −>

Bound a
783 p r ed i c a t e p = Pred p
784
785 −− | ’ compactPBounds ’ f l a t t e n s a f i n i t e product bound to

a sparse t u p l e bound .
786 −− The s i z e o f t u p l e s i z e i s t h a t o f the dimension o f the

product bound .
787 compactPBounds : : f o r a l l a b . (Bounds b a ) => b −> Bound

a
788 compactPBounds pb = l et l i s t = enum pb in spa r s e l i s t
789
790 −− | ’ f a i lwhe re ’ g i v e s an error wi th l o c a t i o n in format ion
791 f a i lwh e r e : : String −> a
792 f a i lwh e r e = fa i lwhe r e ’ modulename
793
794
795 −− t e s t s
796
797
798 −− End o f Module Bounds

A.2 Datafield.hs

1 {−# OPTIONS GHC −f g lasgow−e x t s #−}
2
3 −− Package : Da t a f i e l d Haske l l L ibrary
4 −− Module : Da t a f i e l d
5 −− Author : Jesper Simos
6 −− Copyright ( c ) 2007 , Jesper Simos
7 −− License : GPLv2 ( see base f o l d e r )
8 −− E−Mail : j s s03001@student .mdh . se
9 −− Date : 2006−12−01

10 −− Last Change : 2007−02−12
11 −−
12
13 −− | ”Da t a f i e l d ” conta ins a l l f unc t i on s t ha t are needed

to handle and c a l c u l a t e wi th d a t a f i e l d s .
14 −− This module expor t s a l l needed f unc t i on s from ”Bounds ”

and ”Dfcommon ”.
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15 −− A monadic s t y l e o f programming i s recommended when
us ing d a t a f i e l d s .

16 module Data f i e l d ( da t a f i e l d , assoctoDf , dftoAssoc , ( ! ) ,
(<\>) , bounds , t r an s l a t e , domain , tab , s t r i c t t a b ,
h s t r i c t t ab , f o ld lD f , f o ld l 1Df , scanlDf , scanl1Df ,
fo ldrDf , fo ldr1Df , scanrDf , scanr1Df , Dfval , d fva l fun ,
df lookup , dfva l , isoutOfBounds , outOfBounds , module

Bounds ) where
17
18 −− Imports −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
19 import Ix
20 import Bounds
21 import Pord
22 import Dfcommon
23 import quali f ied Monad as M
24
25 −− Constants −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
26
27 −− | ’modulename ’ g i v e s the name o f the module as a

s t r i n g . Use fu l t o g e t h e r wi th ’ f a i lwhe re ’ ’ in ”Dfcommon
”.

28 modulename = ”Data f i e l d . hs ”
29
30 −− Precedence Dec la ra t i ons −−−−−−−−−−−−−−−−−−−−−−−−−
31
32 i n f i x l 9 !
33 in f ixr 1 <\>
34
35 −− Data Dec la ra t i ons −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
36
37 −− | The corners tone o f d a t a f i e l d s . ’ Da ta f i e l d ’ a b c i s

a d a t a f i e l d o f va l u e s from a to b wi th bounds o f type
c .

38 data ( Ix a , Show a , Pord a , Bounds c a ) => Data f i e l d a b
c = Data f i e l d ( a −> Dfval b) c | Tabf i e ld [ ( a , Dfval b
) ] c

39
40 −− Class Dec la ra t i ons −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
41
42 −− Ins tance Dec la ra t i ons −−−−−−−−−−−−−−−−−−−−−−−−−−−
43
44 −− Functions −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
45
46 −− | ’ d a t a f i e l d ’ c on s t r u c t s a d a t a f i e l d from a g iven

func t i on and bound .
47 −− Note t ha t the va lue g iven must be a d a t a f i e l d va lue

func t i on . Use ’ d f va l f un ’ from ”Dfcommon” to conver t a
normal f unc t i on .

48 d a t a f i e l d : : ( Ix a , Show a , Pord a , Bounds c a ) => ( a −>
Dfval b) −> c −> Data f i e l d a b c
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49 d a t a f i e l d f b = Data f i e l d f b
50
51 −− | ’ assoctoDf ’ t a k e s an assoc l i s t o f index and va l u e s

and conver t s i t to a d a t a f i e l d .
52 assoctoDf : : (Bounds (Bound a ) a ) => [ ( a , b ) ] −>

Data f i e l d a b (Bound a )
53 assoctoDf l = Tabf i e ld [ ( x , d f va l y ) | (x , y ) <− l ] ( spa r s e

[ a | ( a , ) <− l ] )
54
55 −− | ’ d f toAssoc ’ conver t s a d a t a f i e l d to an assoc l i s t .
56 dftoAssoc : : f o r a l l b a c . (Bounds c a , DeepSeq a ,

DeepSeq b) => Data f i e l d a b c −> [ ( a , Dfval b) ]
57 dftoAssoc df@( Data f i e l d f b) = dftoAssoc ( h s t r i c t t a b df )
58 dftoAssoc ( Tab f i e ld l b) = l
59
60 −− | ’ ! ’ a p p l i e s a d a t a f i e l d to an index .
61 ( ! ) : : f o r a l l a b c d . (Bounds c a , DeepSeq a ) =>

Data f i e l d a b c −> a −> Dfval b
62 ( ! ) ( Da ta f i e l d f b) a = i f inBounds a b then ( f ( deepS a )

) else outOfBounds
63 ( ! ) ( Tab f i e ld l b) a = i f inBounds a b
64 then ( df lookup a l )
65 else outOfBounds
66
67 −− | ’<\>’ r e s t r i c t s a g iven d a t a f i e l d wi th the bound

g iven as second argument .
68 (<\>) : : ( Ix a , Show a , Pord a , Bounds c a ) => Data f i e l d

a b c −> c −> Data f i e l d a b c
69 (<\>) ( Da ta f i e l d f b1 ) b2 = Data f i e l d f ( b1 ‘meet ‘ b2 )
70 (<\>) ( Tab f i e ld l b1 ) b2 = Tabf i e ld l ( b1 ‘meet ‘ b2 )
71
72 −− | ’ bounds ’ r e turns the bounds o f a d a t a f i e l d .
73 bounds : : ( Ix a , Show a , Pord a , Bounds c a ) => Data f i e l d

a b c −> c
74 bounds ( Data f i e l d b) = b
75 bounds ( Tab f i e ld b) = b
76
77 −− | ’ t r an s l a t e ’ t r a n s l a t e s the g iven d a t a f i e l d an amount

o f n ( where n can be a t u p l e ) .
78 t r a n s l a t e : : f o r a l l c b a . (TransBound c a , Bounds c a )

=> a −> Data f i e l d a b c −> Data f i e l d a b c
79 t r a n s l a t e n ( Data f i e l d f b) = Data f i e l d (\x −> f (x−n) ) (

transBound (−n) b)
80 t r a n s l a t e n ( Tab f i e ld l b) = Tabf i e ld [ ( x+n , y ) | (x , y ) <−

l ] ( transBound (−n) b)
81
82 −− | ’ domain ’ g i v e s the domain o f a g iven d a t a f i e l d .
83 domain : : ( Ix a , Show a , Pord a , Bounds c a , DeepSeq a )

=> Data f i e l d a b c −> [ a ]
84 domain ( Data f i e l d f b) = deepS (enum b)
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85 domain ( Tab f i e ld l b) = deepS (enum b)
86
87
88 −− | ’ tab ’ t a b u l a t e s the d a t a f i e l d but does no eva l ua t i on

o f e lements .
89 tab : : (DeepSeq a , Bounds c a ) => Data f i e l d a b c −>

Data f i e l d a b c
90 tab ( Data f i e l d f b) = Tabf i e ld [ ( x , f x ) | x <− enum b ] b
91 tab t@ ( Tabf i e ld l b) = t
92
93 −− | ’ s t r i c t t a b ’ t a b u l a t e s and e va l u a t e s each element to

whnf
94 s t r i c t t a b : : (DeepSeq a , Bounds c a ) => Data f i e l d a b c

−> Data f i e l d a b c
95 s t r i c t t a b ( Data f i e l d f b) = Tabf i e ld [ ( s eqva l x , s eqva l

( f ( s eqva l x ) ) ) | x <− enum b ] b
96 s t r i c t t a b t@ ( Tabf i e ld l b) = ( Tabf i e ld (map s eqva l l ) b)
97
98 −− | ’ h s t r i c t t a b ’ t a b u l a t e s and does a deep e va l ua t i on

each element .
99 h s t r i c t t a b : : (DeepSeq a , DeepSeq b , Bounds c a ) =>

Data f i e l d a b c −> Data f i e l d a b c
100 h s t r i c t t a b ( Data f i e l d f b) = Tabf i e ld [ ( deepS x , deepS ( f

( deepS x ) ) ) | x <− enum b ] b
101 h s t r i c t t a b ( Tab f i e ld l b) = ( Tabf i e ld ( deepS l ) b)
102
103
104 −− | ’ f o l d lD f ’ i s a f o l d l v a r i an t f o r d a t a f i e l d s .
105 f o l d lD f : : (Bounds c a , DeepSeq a ) => ( r −> a2 −> r ) −>

Dfval r −> Data f i e l d a a2 c −> Dfval r
106 f o l d lD f f a df = l et f ’ z x = i f isoutOfBounds (M. liftM2

f z ( df ! x ) ) then z else (M. liftM2 f z ( df ! x ) ) in fo ld l
f ’ ( a ) ( domain df )

107
108 −− | ’ f o l d l 1D f ’ i s a f o l d l 1 va r i an t f o r d a t a f i e l d s .
109 f o l d l 1D f : : f o r a l l a2 c a . (Bounds c a , DeepSeq a ) => ( a2

−> a2 −> a2 ) −> Data f i e l d a a2 c −> Dfval a2
110 f o l d l 1D f f df = l et f ’ z x = i f isoutOfBounds (M. liftM2 f

z ( df ! x ) )
111 then z else (M. liftM2 f z (

df ! x ) )
112 in fo ld l f ’ ( df ! ( head ( domain df ) ) ) ( t a i l

( domain df ) )
113
114 −− | ’ scanlDf ’ i s a s can l va r i an t f o r d a t a f i e l d s .
115 scan lDf : : (Bounds c a , DeepSeq a ) => ( r −> a2 −> r ) −>

Dfval r −> Data f i e l d a a2 c −> [ Dfval r ]
116 scan lDf f a df = l et f ’ z x = i f isoutOfBounds (M. liftM2

f z ( df ! x ) ) then z else (M. liftM2 f z ( df ! x ) ) in scanl
f ’ ( a ) ( domain df )
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117
118 −− | ’ scanl1Df ’ i s a scan l1 va r i an t f o r d a t a f i e l d s .
119 scanl1Df : : f o r a l l a2 c a . (Bounds c a , DeepSeq a ) => ( a2

−> a2 −> a2 ) −> Data f i e l d a a2 c −> [ Dfval a2 ]
120 scanl1Df f df = l et f ’ z x = i f isoutOfBounds (M. liftM2 f

z ( df ! x ) )
121 then z else (M. liftM2 f z (

df ! x ) )
122 in scanl f ’ ( df ! ( head ( domain df ) ) ) ( t a i l

( domain df ) )
123
124 −− | ’ f o ldrDf ’ i s a f o l d r va r i an t f o r d a t a f i e l d s .
125 f o ld rD f : : (Bounds c a , DeepSeq a ) => ( a1 −> r −> r ) −>

Dfval r −> Data f i e l d a a1 c −> Dfval r
126 f o ld rD f f a df = l et f ’ x z = i f isoutOfBounds (M. liftM2

f ( df ! x ) z ) then z else (M. liftM2 f ( df ! x ) z ) in foldr
f ’ ( a ) ( domain df )

127
128 −− | ’ fo ldr1Df ’ i s a f o l d r 1 va r i an t f o r d a t a f i e l d s .
129 fo ld r1Df : : f o r a l l a1 c a . (Bounds c a , DeepSeq a ) => ( a1

−> a1 −> a1 ) −> Data f i e l d a a1 c −> Dfval a1
130 fo ld r1Df f df = l et f ’ x z = i f isoutOfBounds (M. liftM2 f

( df ! x ) z ) then z else (M. liftM2 f ( df ! x ) z )
131 in foldr f ’ ( df ! ( last ( domain df ) ) ) ( in i t

( domain df ) )
132
133 −− | ’ scanrDf ’ i s a scanr va r i an t f o r d a t a f i e l d s .
134 scanrDf : : (Bounds c a , DeepSeq a ) => ( a1 −> r −> r ) −>

Dfval r −> Data f i e l d a a1 c −> [ Dfval r ]
135 scanrDf f a df = l et f ’ x z = i f isoutOfBounds (M. liftM2

f ( df ! x ) z ) then z else (M. liftM2 f ( df ! x ) z ) in scanr
f ’ ( a ) ( domain df )

136
137 −− | ’ scanr1Df ’ i s a scanr1 var i an t f o r d a t a f i e l d s .
138 scanr1Df : : f o r a l l a1 c a . (Bounds c a , DeepSeq a ) => ( a1

−> a1 −> a1 ) −> Data f i e l d a a1 c −> [ Dfval a1 ]
139 scanr1Df f df = l et f ’ x z = i f isoutOfBounds (M. liftM2 f

( df ! x ) z ) then z else (M. liftM2 f ( df ! x ) z )
140 in scanr f ’ ( df ! ( last ( domain df ) ) ) ( in i t

( domain df ) )
141
142
143 −− | ’ f a i lwhe re ’ g i v e s an error wi th l o c a t i o n in format ion

.
144 f a i lwh e r e : : String −> a
145 f a i lwh e r e = fa i lwhe r e ’ modulename
146
147
148 −− Tests
149
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150
151 −− End o f Module Da t a f i e l d

A.3 Dfcommon.hs

1 −− Package : Da t a f i e l d Haske l l L ibrary
2 −− Module : Dfcommon
3 −− Author : Jesper Simos
4 −− Copyright ( c ) 2007 , Jesper Simos
5 −− License : GPLv2 ( see base f o l d e r )
6 −− E−Mail : j s s03001@student .mdh . se
7 −− Date : 2006−12−01
8 −− Last Change : 2007−02−12
9 −−

10
11
12 −− | ”Dfcommon” prov ide s a s e t o f u s e f u l f unc t i on s

r e l a t e d to d a t a f i e l d s .
13 module Dfcommon ( Dfval , f a i lwhe r e ’ , deepS , seqval ,

d fva l fun , df lookup , d fva l , isoutOfBounds , outOfBounds ,
module DeepSeq ) where

14
15 −− Imports −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
16 import DeepSeq
17 import Monad
18 import List
19
20 −− Constants −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
21
22 −− | ’modulename ’ g i v e s the name o f the module as a

s t r i n g . Use fu l t o g e t h e r wi th ’DFcommon. f a i lwhe re ’ ’ .
23 modulename = ”Dfcommon . hs ”
24
25 −− Data Dec la ra t i ons −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
26
27 −− | ’ Dfval ’ i s the va lue re turned from d a t a f i e l d s .
28 −− The ’ Dfval ’ da ta type i s a member o f the Monad ins tance

. I t works e x a c t l y as the Maybe da ta type
29 −− where the corresponding con s t ru c t o r s are ( Jus t a −

Dfva l a , Nothing − OutOfBounds ) .
30 −− ’ Dfval ’ d i f f e r s from Maybe in some o f i t s p r o p e r t i e s .

Construc tors are p r i v a t e and va l u e s remain in
31 −− the monad . Current ly t h e r e i s no way to e x t r a c t the

va lue from the monad , s im i l a r to va l u e s in the
32 −− IO monad .
33 −−
34 −− When us ing a monadic s t y l e o f programming , one can

a c t u a l l y i gnore re turn va l u e s in some in s t ance s .
35 −− Ex : We assume tha t d f i s a d a t a f i e l d va lue t ha t can be

”a” or ”OutOfBounds ”.
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36 −− Regard le s s o f the va lue o f df , the f o l l ow i n g l i n e s
o f code w i l l i gnore the va lue o f d f .

37 −−
38 −− @
39 −− do d f
40 −− x <− somevar iab l e
41 −− re turn x
42 −− @
43 data Dfval a = Dfval a | OutOfBounds deriving (Eq, Ord ,

Show)
44
45 −− Class Dec la ra t i ons −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
46
47
48 −− Ins tance Dec la ra t i ons −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
49
50 instance (DeepSeq a ) => DeepSeq ( Dfval a ) where
51 deepSeq (OutOfBounds ) y = y
52 deepSeq ( Dfval x ) y = deepSeq x y
53
54 instance Monad Dfval where
55 (OutOfBounds ) >>= f = OutOfBounds
56 ( Dfval x ) >>= f = f x
57 return = Dfval
58 f a i l = OutOfBounds
59
60 instance Functor Dfval where
61 fmap f (OutOfBounds ) = OutOfBounds
62 fmap f ( Dfval x ) = Dfval ( f x )
63
64 −− Functions −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
65
66 −− | ’ d f va l f un ’ conver t s a func t i on in to a Da t a f i e l d

va lue func t i on .
67 d fva l fun : : ( a −> b) −> ( a −> Dfval b)
68 d fva l f un f = \x −> d fva l ( f x )
69
70 −− | ’ d f lookup ’ works l i k e lookup in Prelude but wi th

Dfva l i n s t ead .
71 df lookup : : Eq a => a −> [ ( a , Dfval b) ] −> Dfval b
72 df lookup k [ ] = OutOfBounds
73 df lookup k ( ( x , y ) : l )
74 | k==x = y
75 | otherwise = dflookup k l
76
77 −− | ’ s eqva l ’ f o r c e s e va l ua t i on o f i t s argument .
78 seqva l : : a −> a
79 seqva l va l = va l ‘ seq ‘ va l
80
81 −− | ’ deepS ’ f o r c e s deep eva l ua t i on o f i t s argument .
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82 deepS : : (DeepSeq a ) => a −> a
83 deepS va l = va l ‘ deepSeq ‘ va l
84
85 −− | ’ d f va l ’ i s a convenient wrapper f o r ’ Dfval ’ .
86 d fva l : : a −> Dfval a
87 d fva l va l = Dfval va l
88
89 −− | ’ isoutOfBounds ’ checks i f a va lue i s out o f bounds .
90 isoutOfBounds : : Dfval a −> Bool
91 isoutOfBounds OutOfBounds = True
92 isoutOfBounds ( Dfval ) = False
93
94 −− | ’ outOfBounds ’ p rov ide s the out o f bounds va lue .
95 outOfBounds : : Dfval a
96 outOfBounds = OutOfBounds
97
98 −− | ’ f a i lwhe re ’ ’ r a i s e s an error and in c l ud e s the module

the error occured .
99 fa i lwhe r e ’ : : String −> String −> a

100 fa i lwhe r e ’ modul e r r o r s t r = error ( ”In ” ++ modul ++ ” : ”
++ e r r o r s t r )

101
102 −− | ’ f a i lwhe re ’ g i v e s an error wi th l o c a t i o n in format ion

.
103 f a i lwh e r e : : String −> a
104 f a i lwh e r e = fa i lwhe r e ’ modulename
105
106 −− Test
107
108
109 −− End o f Module Dfcommon

A.4 Pord.hs

1 −− Package : Da t a f i e l d Haske l l L ibrary
2 −− Module : Pord
3 −− Author : Jesper Simos
4 −− E−Mail : j s s03001@student .mdh . se
5 −− Date : 2006−12−01
6 −− Last Change : 2007−02−12
7 −−
8
9 −− | This module p rov ide s the opera t i ons g l b ( g r e a t e s t

lower bounds ) and lub ( l e a s t upper bounds )
10 −− f o r s e l e c t t ype s and t u p l e s ranging from 2 − 5 .
11 −− The code in t h i s module has been compi led from var ious

Pord c l a s s r e l a t e d f i l e s
12 −− from the prev ious Data F i e l d Haske l l implementat ion (

dfhc98 , h t t p :\/\/www. mrtc .mdh . se \/ p r o j e c t s \/DFH\/ docs
\/) .
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13 −− I t has been extended with an ins tance f o r 5− t u p l e s and
comments .

14
15 −− Copyright no t i c e s and l i c e n s e cover ing the r e l e v an t

f i l e s o f d fhc98 :
16 −− The data f i e l d e x t en s i on s are wr i t t en by Jonas

Holmerin 1998−1999 , and
17 −− some example code were con t r i bu t e d by BjÃ¶rn Lisper .
18 −− Modi f i ca t i ons f o r dfhc98 con t r i bu t e d by Andreas

SjÃ¶gren 2000−2001.
19
20 {−
21 License
22 .
23 .
24 .
25 see o r i g i n a l f i l e
26 −}
27
28 −− This module compi la t ion , Copyright ( c ) 2007 Jesper

Simos
29
30
31 module Pord (Pord ( glb , lub , l t ) )where
32
33 −− Class Dec lara t ion −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
34 −− | The ’Pord ’ c l a s s
35 class Ord a => Pord a where
36 −− | ’ g l b ’ p rov ide s the g r e a t e s t lower bounds o f i t s

arguments
37 −− For t u p l e s ’ g l b ’ can be seen as a po in tw i s e ’

Pre lude .min ’ opera t ion . Ex @ g l b (0 ,5) (5 ,0) =>
(0 ,0) @

38 g lb : : a −> a −> a
39 −− | ’ lub ’ p rov ide s the l e a s t upper bounds o f i t s

arguments
40 −− For t u p l e s ’ lub ’ can be seen as a po in tw i s e ’

Pre lude .max ’ opera t ion . Ex @ lub (0 ,5) (5 ,0) =>
(5 ,5) @

41 lub : : a −> a −> a
42 −− | ’ l t ’ p rov ide s a p a r t i a l order . I t shou ld be

r e f l e x i v e , ant isymmetric and t r a n s i t i v e .
43 −− For non−t u p l e t ype s ’ l t ’ i s the same as ’<=’ in

Prelude .
44 l t : : a −> a −> Bool
45
46 −− Ins tance Dec la ra t i ons −−−−−−−−−−−−−−−−−−−−−−−−−−−−
47
48 instance Pord Bool where
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49 g lb x y = min x y
50 lub x y = max x y
51 l t x y = x <= y
52
53 instance Pord Char where
54 g lb x y = min x y
55 lub x y = max x y
56 l t x y = x <= y
57
58 instance Pord Int where
59 g lb x y = min x y
60 lub x y = max x y
61 l t x y = x <= y
62
63 instance Pord Integer where
64 g lb x y = min x y
65 lub x y = max x y
66 l t x y = x <= y
67
68 instance Pord Ordering where
69 g lb x y = min x y
70 lub x y = max x y
71 l t x y = x <= y
72
73 instance (Pord a , Pord b) => Pord (a , b) where
74 g lb ( x1 , y1 ) ( x2 , y2 ) = ( g lb x1 x2 , g lb y1 y2 )
75 lub ( x1 , y1 ) ( x2 , y2 ) = ( lub x1 x2 , lub y1 y2 )
76 l t ( x1 , y1 ) ( x2 , y2 ) = l t x1 x2 && l t y1 y2
77
78 instance (Pord a , Pord b , Pord c ) => Pord (a , b , c ) where
79 g lb ( x1 , y1 , z1 ) ( x2 , y2 , z2 ) = ( g lb x1 x2 , g lb y1 y2 , g lb

z1 z2 )
80 lub ( x1 , y1 , z1 ) ( x2 , y2 , z2 ) = ( lub x1 x2 , lub y1 y2 , lub

z1 z2 )
81 l t ( x1 , y1 , z1 ) ( x2 , y2 , z2 ) = l t x1 x2 && l t y1 y2 && l t

z1 z2
82
83 instance (Pord a , Pord b , Pord c , Pord d) => Pord (a , b , c ,

d ) where
84 g lb ( x1 , y1 , z1 , u1 ) ( x2 , y2 , z2 , u2 ) = ( g lb x1 x2 , g lb y1

y2 , g lb z1 z2 , g lb u1 u2 )
85 lub ( x1 , y1 , z1 , u1 ) ( x2 , y2 , z2 , u2 ) = ( lub x1 x2 , lub y1

y2 , lub z1 z2 , lub u1 u2 )
86 l t ( x1 , y1 , z1 , u1 ) ( x2 , y2 , z2 , u2 ) = l t x1 x2 && l t y1 y2

&& l t z1 z2 && l t u1 u2
87
88 instance (Pord a , Pord b , Pord c , Pord d , Pord e ) => Pord

(a , b , c , d , e ) where
89 g lb ( x1 , y1 , z1 , u1 , v1 ) ( x2 , y2 , z2 , u2 , v2 ) = ( g lb x1 x2 ,

g lb y1 y2 , g lb z1 z2 , g lb u1 u2 , g lb v1 v2 )
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90 lub ( x1 , y1 , z1 , u1 , v1 ) ( x2 , y2 , z2 , u2 , v2 ) = ( lub x1 x2 ,
lub y1 y2 , lub z1 z2 , lub u1 u2 , lub v1 v2 )

91 l t ( x1 , y1 , z1 , u1 , v1 ) ( x2 , y2 , z2 , u2 , v2 ) = l t x1 x2 && l t
y1 y2 && l t z1 z2 && l t u1 u2 && l t v1 v2

92
93 −− End o f Module Pord


	Introduction
	Background
	Delimitations
	Expected & Actual results

	Haskell
	Pure
	Lazy evaluation
	Strongly typed
	Polymorphism
	Type inference
	Type classes
	Currying
	Algebraic data types
	Anonymous functions
	Binding
	Comments
	Monads
	Do expression
	Exceptions
	Functions
	Guards
	Higher-order functions
	Infinite data structures
	Layout
	Lists
	List comprehensions
	List reductions
	Modules
	Operators
	Pattern matching
	Recursion
	Standard Haskell types & classes
	Standard Prelude
	Tuples
	Type signature

	Extensions
	Template Haskell
	Tools
	Haddock
	Happy
	Glasgow Haskell Compiler

	The Data Field Model
	Data Field Haskell
	Datafields
	Bounds
	Other Functions & Operations
	Syntactical Constructs & Translations
	Deriving Bounds

	Data Field Haskell Library
	Data Field Haskell Library(DFHL)
	Design & Goals
	Implementation
	Future Improvements

	Data Field Haskell Preprocessor(DFHP)
	Design & Goals
	Implementation
	Future Improvements

	Differences with dfhc98

	Conclusions and future work
	Data Field Haskell Modules
	Bounds.hs
	Datafield.hs
	Dfcommon.hs
	Pord.hs


