Using Componentsto Facilitate Stochastic Schedulability Analysis

Thomas Nolte

Anders Moller

Mikael Nolin

Maéalardalen Real-Time Research Centre
Deptartment of Computer Science and Engineering
Malardalen University, Vésteras, SWEDEN

E-mail: t homas. nol t e@dh. se

Abstract

In this work-in-progress paper we present how Com-
ponent Based Software Engineering (CBSE) may be used
to facilitate stochastic schedulability analysis of embedded
real-time systems, by providing realistic models of execu-
tion time distributions.

We present our ongoing work regarding the usage of Ex-
ecution Time Profiles (ETPs) to represent the timing be-
haviour of real-time components. These ETPs are to be
used in a tool for stochastic schedulability analysis of em-
bedded real-time systems. The tool is intended for real-time
engineers to make cost-reliability trade-offs by dimension-
ing hardware resources in a cost efficient way to achieve the
reliability goals.

1 Introduction

Component Based Software Engineering (CBSE) is to-
day recognised as a promising technology to achieve soft-
ware reuse, efficient software development, and reliable
software systems [4]. Traditionally, a software component
is used to encapsulate some functionality. That functional-
ity is accessed though the interface of the component. How-
ever, current research is addressing issues on how to as-
sociate extra-functional attributes (such as execution time,
memory consumption, and reliability) to the components.
These extra-functional attributes are intended to be used
by tools that analyse systems built using components. For
example, in order to perform deterministic schedulability
analysis the components should be annotated with their
Worst-Case Execution Time (WCET) (other information,
such as the mapping of components to tasks is also needed,
but that is typically not regarded as extra-functional infor-
mation).

In the real-time community large efforts has been spent
on schedulability analysis. Typically, deterministic schedu-
lability analysis is concerned with predicting the worst case
behaviour of a system. Several pessimistic assumptions are

usually made regarding the system behaviour. Such as-
sumptions include: each task execute for its WCET, the
phasing between tasks is the worst possible (the critical in-
stant assumption), each task executes with its maximum al-
lowed rate, each task experience its maximum blocking on
shared resources, etc.

Naturally, schedulability analysis made under these as-
sumptions leads to results which are exaggeratedly pes-
simistic for the normal operation of the system. For systems
with high criticality, such pessimism may be warranted.
However, for many systems the predictability achieved by
performing a schedulability analysis is desired, whereas the
cost for dimensioning the hardware for the extreme worst
case is not justified. For these types of systems a stochastic
schedulability analysis, giving some quantifiable measure
of the systems’ expected performance, could allow system
designers to make well founded trade-offs between system
reliability, or Quality of Service (QoS) and the amount of
system resources required by the system (cost versus qual-
ity trade-off). That is, a designer could decide to allow some
probability of system timing-failures and in return be able
to use cheaper hardware, or the other way around, the de-
signer could choose the cheapest hardware that makes the
system fulfil its reliability or QoS requirements.

The problem with existing stochastic schedulability anal-
ysis techniques is typically that they make assumptions on
the system that are unrealistic. Most notably, the assump-
tions on execution time are that they are described using
known probability distribution functions. However, the ex-
ecution time of software is generally not very well described
by probability distribution functions. Typically, a piece
of software has a small set of “probability peaks” around
which most execution times are gathered. Furthermore, ex-
ception and error handlers are usually executed with very
low probability, but yet, when exception handling takes
place the execution time may be significantly longer than
normal. Hence, representing execution time probabilities
with simple distribution functions do not necessary give
good correlation between the representation and real exe-

cution times.

In this paper we will present how CBSE may be used
to facilitate stochastic schedulability analysis using realis-
tic models for execution time distributions. Our proposal
builds on the facts that (1) components it the fundamental
unit of reuse, and (2) components can have introspective in-
terfaces that allow storage and retrieval of information of
extra-functional properties. Specifically, we will for each
component store a representation of the Execution Time
Profile (ETP) that are collected during use of that compo-
nent. Once a component has been used enough, high confi-
dence in the execution time distribution is obtained. Hence,
in addition to the traditional software engineering benefits
of CBSE, it also facilitates stochastic schedulability analy-
sis.

2 CBSE for Embedded Systems

During the last decade, the PC-/Internet-oriented soft-
ware engineering community has achieved tremendous
progress in component technologies and component ori-
ented software construction. A component technology con-
sists of a component model, an infrastructure, and tools for
creating, composing, and analysing components. When us-
ing components, the main idea is to reuse code in a pre-
dictable way. The components should be assembled as
easy as the Lego™ building-blocks, and the systems should
be built up without having to care about the source code;
maybe even without access to the source code.

Today, it is possible to download components on the fly
and have them executed within the context of another pro-
gram such as a web browser or a word processor. Software
developing companies can purchase off-the-shelf compo-
nents and embed them into their own software products.
Technologies like CORBA [17], Java Beans [19], .NET
[16], and other component models are used on a daily ba-
sis in software development. However, existing component
technologies are not applicable to most embedded computer
systems, since they do not consider aspects such as safety,
timing, and memory consumption, that are crucial for many
embedded real-time systems.

On the other hand, today’s software for embedded
real-time control systems is characteristically monolithic,
platform-dependent and often difficult to maintain, upgrade
and modify. In elder software systems, hardware access and
operating system calls are often mixed with the application
source code, leading to messy and elusive code. Upgrading
these systems to a new hardware platform or a new operat-
ing system is difficult, error prone and expensive. This is es-
pecially problematic since companies traditionally develop
new systems in an evolutionary way, i.e. new systems are
to a large extend based upon previously developed systems.
The development tools often lack support for analysing the

software with respect to extra-functional properties, such
as timing behaviour and memory consumption. This ap-
proach, in trying to adopt existing software to be fit for new
environments and new requirements, is far from optimal,
and a change of generations in the software development
process for embedded systems is approaching.

One major reason to introduce CBSE in embedded real-
time systems development is that the software systems are
getting more and more advanced. In order to be able to
support all the functionality that the users of embedded sys-
tem demand, novel techniques to master software complex-
ity is needed. Also, for software developing companies to
stay competitive their systems must be easy to maintain, up-
grade, and modify and the time-to-market has to be kept to
a minimum. To be able to tackle these problems, many em-
bedded real-time system developers are interested in using
a component based approach.

3 Stochastic Real-Time Analysis

Traditional real-time analysis is based on worst-case as-
sumptions. The first schedulability analysis methods [14]
as well as the response-time analysis [9] typically assumes
worst-case task-interference and execution times. Also,
over the years, efforts to calculate the execution times has
focused on calculation of the WCET [18, 7]. However, this
is a non-trivial problem, as program timing is difficult to
analyse both due to complex program and data flows, and
due to non deterministic execution times of program in-
structions. In fact, no industrial strength tools for WCET-
analysis are available on the market.

As real-time systems gets more and more complex, tra-
ditional deterministic real-time analysis both becomes more
difficult and produce overly pessimistic results. Hence,
there is an apparent need for stochastic analysis methods.
These stochastic analysis methods should use distributions
of execution times instead of the traditionally used worst-
case value. Also, stochastic task interference-patterns for
schedulability analysis should be accounted for. By tak-
ing a stochastic point of view for real-time analysis, less
pessimistic analysis results can be provided for the system
designers.

3.1 Stochastic Schedulability Analysis

Several stochastic analysis methods have been presented
in the real-time research community over the years. Basi-
cally these stochastic schedulability analysis methods can
be divided into two major groups, where the first group of
stochastic analysis methods is based on simplifying, and of-
ten unrealistic, assumptions and the second group is using
special schedulers that simplify the analysis.

To be able to cope with the complexity of stochastic anal-
ysis, virtually all presented research results are based on
some restrictive assumptions. One of the more common as-
sumptions is the assumption of the critical instant, where
all tasks or messages are released at the same time, causing
the highest load as well as the worst-case response times.
Tia et al. [20] present Probabilistic Time Demand Analysis
(PTDA) as an extension of the Time Demand Analysis by
Lehoczky et al. [10]. PTDA is restricted to systems that
are using fixed priorities. Also, another requirement is that
deadlines have to be less or equal to their corresponding task
or message periods. Gardner et al. [8] present Stochastic
Time Demand Analysis (STDA) as an extension of General
Time Demand Analysis by Lehoczky [11]. STDA is better
than PTDA in the sense that it can cope with general dead-
lines. Both PTDA and STDA can use arbitrary execution
time distributions.

Other stochastic analysis methods are, e.g., the one pre-
sented by Manolache [15] for uniprocessor systems and the
one presented by Leulseged et al. [13] for multiprocessor
systems. However, both of these methods assume that the
deadlines of the tasks or the messages are smaller or equal
to their corresponding periods. Furthermore, they assume
that jobs (tasks or messages) are dropped if their deadlines
are to be violated, which is undesirable for many real sys-
tems.

Another group of stochastic analysis methods are the
Real-Time Queuing theory by Lehoczky [12]. Real-Time
Queuing theory can provide stochastic guarantees. How-
ever, it requires high traffic load, thus not suitable for a gen-
eral system configuration.

Finally, several results have been presented requiring a
specific scheduler. By using a special scheduling algorithm,
tasks can be analysed independently of other tasks in the
system, thus simplifying the analysis. Examples of these
analysis methods are the one by Abeni [1] for reservation-
based systems, and the Statistical Rate Monotonic Schedul-
ing by Atlas et al. [2].

Recent work tries to remove most of the limitations of
the methods described above. In order to remove the sim-
plifying assumption of critical instant, Diaz et al. [5] have
presented an extension to PTDA. Their method is based on
the usage of Markov processes. The presented method pro-
vides exact response-time distributions for any given prior-
ity driven scheduler.

3.2 Stochastic Execution-Time Analysis

A problem with stochastic response-time analysis meth-
ods and schedulability tests is to find representative distribu-
tions of execution times to use in the analysis. Usually the
execution times are assumed to follow some known distri-
bution controlled by a few parameters. Whether these distri-

butions are representative or not is normally not considered.

However, several researchers have proposed methods for
stochastic estimation of task execution times. One method
is proposed by Edgar et al. [6]: They show that extreme-
value statistical analysis on end-to-end measurements of a
tasks, can be used in order to reason about the probability of
a violation of the worst case observed response time during
testing. Another work is presented by Bernat et al. [3],
based on the usage of Execution Profiles (EP) to represent
execution times of sections of a program. These EPs can
then be combined in order to represent the execution times
of a whole program. However, issues regarding whether
EPs are independent or not are considered.

What we propose in this paper is that the components
them self, collect and store information that can be used as
representative execution times. In the following section we
will present a framework for our approach.

4 Using Components to Facilitate Stochastic
Timing Analysis

In order to provide components with representative val-
ues for their execution times, we propose that the compo-
nents themselves log their execution times. By saving in-
formation such as: a summary of execution times, all exe-
cution times, or some mean values, this information could
be collected from the components running in several differ-
ent applications. This information is then processed, giving
a representative description of the components Execution
Time Profile (ETP). One of the motivations for using com-
ponents in a system is that the components can be reused.
Hence, by continuously adding information to an ETP, com-
monly used components will fast get highly representative
information describing their execution times.

@
28 usage "
29 < 3
0B 8 Q
= U=

C c e o
£ 3 ETP

Figure 1. Evolution of Execution Time Profiles

As the components have ETPs of high confidence, the
components will become more attractive and used more of-
ten. This, in turn, will make the ETPs even more represen-
tative as more information on their execution times will be
collected. This positive spiral is depicted in Figure 1.

The exact contents and representation of the ETPs could
vary from situation to situation. The amount and granu-
larity of the information in the ETPs should be adapted to
the desired quality of the analysis to be performed. If only
crude estimates of the system timing are needed, the ETPs

need only to store some basic statistical metrics, such as
average execution time, standard deviation, and maybe, the
95%-quartile for the execution times. Where as, when high
confidence and detailed timing predictions is needed, the
ETPs should contain more elaborate data. For instance,
histograms of execution times and histograms of blocking
times should be of interest.

We have not yet decided which levels of details to sup-
port in our future work. However, the examples listed above
will be used as initial candidates.

5 Summary and Future Work

In this work-in-progress paper we have presented our
ideas regarding the usage of components as a suitable vehi-
cle to extract and store Execution-Time Profiles (ETPs) that
can be used for stochastic real-time schedulability analysis.

We have looked into related work already done in the re-
search community regarding stochastic execution-time cal-
culations. Based on this State-Of-The-Art survey (SOTA),
we are proceeding towards extending a component model so
ETPs easily can be logged and collected in order to continu-
ously improve the confidence of the ETP associated to each
component. Using the information from running compo-
nents on various platforms in various applications, realistic
ETPs are collected and stored within the component.

We have in this paper also summarised the current SOTA
regarding stochastic real-time analysis methods. Based on
this SOTA, we are designing a tool that can be used for
stochastic real-time analysis of component based embedded
real-time systems. Using this tool, real-time engineers will
be able to make cost-reliability tradeoffs by dimensioning
hardware resources to achieve the desired reliability.

References

[1] L. Abeni and G. Buttazzo. Stochastic Rate Monotonic
Scheduling. In Proceedings of the 9™ International Work-
shop on Parallel and Distributed Real-Time Systems (WP-
DRTS01), April 2001.

[2] A. Atlas and A. Bestavros. Statistical Rate Monotonic
Scheduling. In Proceedings of the 19" IEEE Real-Time Sys-
tems Symposium (RTSS 98), pages 123-132, Madrid, Spain,
December 1998. IEEE Computer Society.

[3] G. Bernat, A. Colin, and S. M. Petters. WCET Analysis
of Probabilistic Hard Real-Time Systems. In Proceedings
of the 23" | EEE Real-Time Systems Symposium (RTSS 02),
pages 289-300, Austin, Texas, USA, December 2002. IEEE
Computer Society.

[4] 1. Crnkovic and M. Larsson, editors. Building Reliable
Component-Based Software Systems. Artech House pub-
lisher, 2002. ISBN 1-58053-327-2.

[5] J.L.Diaz, D. F. Garcia, K. Kim, C. G. Lee, L. LoBello, J. M.
Lopez, S. L. Min, and O. Mirabella. Stochastic Analysis

of Periodic Real-Time Systems. In Proceedings of the 237
|EEE Real-Time Systems Symposium (RTSS 02), pages 289-
300, Austin, Texas, USA, December 2002. IEEE Computer
Society.

[6] S. Edgar and A. Burns. Statistical Analysis of WCET for
Scheduling. In Proceedings of the 22" |EEE Real-Time
Systems Symposium (RTSS 01), London, England, Decem-
ber 2001. IEEE Computer Society.

[7] J. Engblom. Processor Pipelines and Satic Worst-Case
Execution Time Analysis. PhD thesis, Uppsala University,
Dept. of Information Technology, Box 337, Uppsala, Swe-
den, April 2002.

[8] M. K. Gardner and J. W. Liu. Analyzing Stochastic Fixed-
Priority Real-Time Systems. In Proceedings of the 5** Inter-
national Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems, March 1999.

[9] M.Joseph and P. Pandya. Finding Response Times in a Real-
Time System. The Computer Journal - British Computer
Society, 29(5):390-395, October 1986.

[10] J. Lehoczky, L. Sha, and Y. Ding. The Rate Monotonic
Scheduling Algorithm - Exact Characterization and Average
Case Behaviour. In Proceedings of 10°" IEEE Real-Time
Systems Symposium (RTSS 89), pages 166-171, December
1989.

[11] J. P. Lehoczky. Fixed Priority Scheduling of Periodic Task
Sets with Arbitrary Deadlines. In Proceedings of the 11*"
|EEE Real-Time Systems Symposium (RTSS 90), pages 201-
209, Lake Buena Vista, Florida, USA, December 1990.
IEEE Computer Society.

[12] J. P. Lehoczky. Real-Time Queuing Theory. In Proceedings
of 17*"* |EEE Real-Time Systems Symposium (RTSS 96),
pages 186-195, Los Alamitos, CA, USA, December 1996.
IEEE Computer Society.

[13] A. Leulseged and N. Nissanke. Probabilistic Analysis of
Multi-processor Scheduling of Tasks with Uncertain Param-
eter. In Proceedings of the 9" International Conference on
Real-Time and Embedded Computing Systems and Applica-
tions, February 2003.

[14] C. L. Liu and J. W. Layland. Scheduling Algorithms for
Multiprogramming in a Hard Real-Time Environment. Jour-
nal of the ACM, 20(1):40-61, 1973.

[15] S. Manolache. Schedulability Analysis of Real-Time Sys-
tems with Stochastic Task Execution Times. Licentiate The-
sis No. 985, Dept. of Computer and Information Science,
IDA, Linkdping University, Sweden, December 2002.

[16] Microsoft. .NET Home Page. http://www.microsoft.com/-
net/.

[17] OMG. CORBA Home Page. http://www.omg.org/corba/.

[18] P. Puschner and A. Burns. A Review of Worst-Case
Execution-Time Analysis. Real-Time Systems, 18(2/3):115-
128, May 2000.

[19] SUN Microsystems. Enterprise Javabeans Technology.
http://java.sun.com/products/ejb/.

[20] T.S. Tia, Z. Deng, M. Shankar, M. Storch, J. Sun, L. C. Wu,
and J. S. Liu. Probabilistic Performance Guarantee for Real-
Time Tasks with Varying Computation Times. In Proceed-
ingsof the 1°* | EEE Real-Time Technology and Applications
Symposium (RTAS 95), pages 164-173, Chicago, IL, USA,
May 1995. IEEE Computer Society.

