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ABSTRACT

In an attempt to increase productivity and the workers’ safety, the
construction industry is moving towards autonomous construction
sites, where various construction machines operate without human
intervention. In order to perform their tasks autonomously, the
machines are equipped with different features, such as position
localization, human and obstacle detection, collision avoidance, etc.
Such systems are safety critical, and should operate autonomously
with very high dependability (e.g., by meeting task deadlines, avoid-
ing (fatal) accidents at all costs, etc.).

An Autonomous Wheel Loader is a machine that transports ma-
terials within the construction site without a human in the cab. To
check the dependability of the loader, in this paper we provide a
timed automata description of the vehicle’s control system, includ-
ing the abstracted path planning and collision avoidance algorithms
used to navigate the loader, and we model check the encoding in
UPPAAL, against various functional, timing and safety require-
ments. The complex nature of the navigation algorithms makes the
loader’s abstract modeling and the verification very challenging.
Our work shows that exhaustive verification techniques can be
applied early in the development of autonomous systems, to enable
finding potential design errors that would incur increased costs if
discovered later.
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1 INTRODUCTION

Industrial robots are used in modern manufacturing sites to au-
tomate repetitive tasks and reduce labor costs. Advances in self-
driving vehicles have propelled similar developments in the con-
struction industry, by the outset of autonomous construction equip-
ment, which are heavy vehicles that operate without human inter-
vention.

The environment where the autonomous construction equip-
ment operates is hazardous, that is, dusty, with possibly harsh
weather conditions, and populated with static and dynamic obsta-
cles that need to be discovered and avoided by all means. These
vehicles are designed to perform predefined tasks, and, unlike indus-
trial robots, they operate in large construction sites, alongside other
vehicles and humans. On the one hand, their environment is con-
tained and controlled, thus their autonomy is bounded. On the other
hand, being complex safety-critical systems, the autonomous con-
struction equipment’s dependability is crucial for ensuring safety
and increased productivity, hence verifying formally an abstraction
of the system’s behavior could be highly beneficial. In this paper, we

take upon such a task and formally model and verify an industrial
prototype of an autonomous wheel loader against functional, tim-
ing, and safety requirements. The complexity of the system stems
from the integrated intelligent algorithms, such as path planning,
obstacle detection, and collision avoidance, etc. The crux of our
work is the formalization of an abstraction of the vehicle’s motions,
control system, path-planning and collision-avoidance algorithms,
such that resulting model is analyzable via exhaustive model check-
ing. We use the timed automata (TA) [6] framework for modeling,
and the UPPAAL [4] model checker for verification.

In comparison to related efforts of verifying autonomous ve-
hicles [2, 3, 13, 20], our approach encodes the A* algorithm [19]
for initial path planning, as well as the dipole flow field algorithm
[23] used for avoiding static and dynamic obstacles, which are
two algorithms that resolve many issues of implementing reliable
collision avoidance effectively. Both algorithms are encoded as C
functions in UPPAAL. To create the model of the machine’s con-
trol system, we map the activity diagrams of components to TA
representations. The system requirements, initially described in
natural language, are formalized in Timed Computation Tree Logic
(TCTL), as UPPAAL queries that the formal model needs to satisfy
for any possible behavior. We show that under the mentioned ab-
stractions, the exhaustive verification of the autonomous loader is
possible, and we also discuss some identified issues of verifying a
more faithful model.

This paper is organized as follows. In Section 2, we present the
architecture of the autonomous wheel loader, as well as its natural
language requirements. Section 3 overviews the preliminaries, that
is, timed automata and UPPAAL, as well as the A* algorithm for the
loader’s initial path planning, and the dipole flow field algorithm
for collision avoidance. In Section 4, we show the TA model of the
loader’s control tasks and algorithms, the verification queries and
model checking results. A short discussion and lessons learned are
provided in Section 5, after which we compare to related work in
Section 6. Finally, Section 7 concludes the paper.

2 AUTONOMOUS WHEEL LOADER:
ARCHITECTURE AND REQUIREMENTS

In this section, we introduce the Autonomous Wheel Loader (AWL),
which is an industrial prototype and serves as our use case. The
AWL is a heavy vehicle used in the construction site to transport
materials (e.g., blasted rocks), which works independently, without
any manual intervention. The AWL operates in a quarry (see Figure
1), where it transports rocks between a stone pile and a crusher.
To be able to operate autonomously, the AWL is equipped with a
path planning system that computes the initial path from the stone
pile to crusher and back, which the AWL should follow. We assume
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Figure 1: The AWL in its working environment

that there are various obstacles in the quarry, such as humans,
other machines, holes, signs, etc. Other functions like autonomous
digging, unloading etc. are not considered here. To ensure safety, the
AWL is equipped with a collision avoidance system that identifies
nearby objects, and deviates from the planned path (i.e., changes
the direction and possibly the speed of the AWL), if needed, to
avoid collision. This mechanism should cope with different light
conditions (from bright sunlight to complete darkness), possibly
bad weather (heavy rain or snow), dust, etc. To ensure it perceives
its surroundings accurately, the AWL has a set of sensors, including
GPS and IMU (Inertial Measurement Unit) for localization, and
LIDAR, radar and camera for obstacles capture and identification.

The architecture of the AWL’s control system, presented in Fig-
ure 2, consists of three main units: the vision unit, the control unit,
and the execution unit, which are connected via Ethernet. The roles
of these units are as follows:

e The vision unit is connected to the LIDAR and camera, and is
responsible for detecting obstacles within the vision range.

o The control unit collects data (e.g., position of the AWL, obstacles,
system status, etc.) from other units, plans the path, schedules
the tasks, and sends commands to the execution unit.

e The execution unit controls the actuators, the steering and the
brakes, based on the commands received from the control unit.
It also collects data from the GPS and IMU, and sends them to
the control unit.
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Figure 2: The architecture of the AWL’s control system

AWL’s Functionality. The functionality of the system is imple-
mented through a set of tasks that are assigned and executed on
the three units respectively, as depicted in Figure 3.

The obstacle detection relies on the Do Obstacle Task in the
Vision Unit. This task is responsible for: (i) acquiring data from the
sensors (e.g., LIDAR, camera), and (ii) executing the recognition
algorithms to determine the presence and the type of the obstacles
(e.g., human, other machines, holes).

The Control Unit executes three parallel tasks, described below:

e Read Position Task that reads the loader’s position from the
Execution Unit,

e Main Task that is responsible for generating the initial path,
analyzing the environment, and devising control strategies to
avoid different obstacles,

e Calculate Path Task that calculates a new path when the AWL
encounters an obstacle and deviates from the initial path.

Three parallel tasks are assigned to the Execution Unit, namely
Receive Command Task, Do Command Task, and Calculate Posi-
tion Task. The tasks are responsible for getting commands from
the Control Unit, executing the commands to move or brake the
AWL, and calculating the position of the AWL and sending it to the
Control Unit, respectively.
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Figure 3: Task allocation in the control system

The communication among these tasks is asynchronous, that
is, the tasks do not await response after they send out data. The
tasks interact and cooperate with each other to accomplish specific
missions of the control system, e.g., perceiving information from the
environment, formulating an efficient (or close to optimal) path to
avoid a dynamic obstacle, etc. Figure 4 depicts the partial interaction
between tasks. Main Task takes one path segment of the initial path
from Path Stack 1, which stores the initial path in the control unit.
Next, it calls the Valid Path Function to check if the path segment
leads to any collision. If the validation passes, the path segment is
sent to Receive Command Task in the execution unit. Otherwise,
the AWL might encounter an obstacle or malfunction, in which
case Calculate Path Task will receive a new path request from the
Main Task. Consequently, the corresponding algorithm employed
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Figure 4: Sequence diagram of tasks in the control system
for collision avoidance, called the dipole field algorithm [23], is
executed in Calculate Path Task before a new path segment is sent
to Receive Command Task, if it exists. If the calculation does not
return any new path segment, Calculate Path Task will send a



braking command to Receive Command Task, which then stores
the path segment into Path Stack 2 where Do Command Task gets
path segments. In the end, Do Command Task generates an output
to the actuator, based on the commands.

System Requirements. The AWL has a large set of functional and
extra-functional requirements. Below, we present some of these
requirements, which are formally verified in this paper.

1) Initial path computation: during initialization, the AWL
must compute an initial path to the destination, which must
avoid all the static obstacles identified in the quarry;

2) Obstacle avoidance and path recalculation: the AWL
must avoid static and dynamic objects around it in due time
before returning to the initial path;

3) Mode switch: when a critical error occurs (e.g., an obstacle
cannot be safely avoided or be reported to the control unit),
the AWL must switch to the safety mode in order to freeze all
motions within a certain time limit, to avoid further damage.
In this case, the reaction time limits are error-specific;

4) End-to-end deadline: To guarantee a certain productivity,
the AWL must reach the destination within 2200 millisec-
onds.

3 PRELIMINARIES

In this section, we overview the background information needed
for the rest of the paper: timed automata and UPPAAL, as well as
the A* and dipole flow field algorithms.

3.1 Timed Automata and UPPAAL

UPPAAL [6, 15] is a tool suite for modeling, simulation, and model
checking of real-time systems. The modeling formalism of UPPAAL
is an extension of timed automata (TA) [1], which is defined as the
following tuple:

<LIy,AV,C,EI> (1)

where: L is a finite set of locations, Iy € L is the initial location,
A =X U is aset of actions, where ¥ is a finite set of synchroniz-
ing actions and 7 ¢ X denotes internal or empty actions without
synchronization, V is a set of data variables, C is a set of clocks,
E C LXB(C,V) x Ax2C x Lis the set of edges, where B(C,V)
is the set of guards over C and V, that is, conjunctive formulas of
clock constraints (B(C)), of the form x »< n or x — y » n, where
x,y € C,n e N,e€ {<, <,=,2>,>}, and non-clock constraints over
V (B(V)),and I : L — B;.(C) is a function that assigns invariants
to locations, where B;.(C) € B(C) is the set of downward-closed
clock constraints with =€ {<, <,=}. The invariants bound the
time that can be spent in locations, hence ensuring progress of
TA’s execution. An edge from location [ to location I’ is denoted by

1 250 p , where g is the guard of the edge, a is an update action,
and r is the clock reset set, that is, the clocks that are set to 0 over
the edge.

In UPPAAL, locations are marked as urgent (denoted by encircled
u) or committed (denoted by encircled c), indicating that time cannot
progress in such locations. Committed locations are more restrictive,
requiring that the next edge to be traversed needs to start from
a committed location. Variables and clocks can be set to certain
values by the updates along the edges. In UPPAAL, an update can

be a comma-separated list of expressions, or a C-code style function
that is implemented in the declaration of TA.

The semantics of TA is a labeled transition system. The states
of the labeled transition system are pairs (I, u), where [ € L is the
current location, and u € REO is the clock valuation in location [.
The initial state is denoted by (ly, up), where Vx € C, up(x) = 0. Let
u E g denote that clock value u satisfies guard g. We use u + d to
denote the time elapse where all the clock values have increased
by d, for d € R>(. There are two kinds of transitions —:

d
(i) Delay transitions: < l,u >—>< Lu+d > ifu £ I(l) and
(u+d)eI(l),for0 <d’ <d, and

(ii) Action transitions: < [, u >4« UV .u >ifl 287, l',a €
3, u k g, clock valuation u” in the target state (I’, u”) is derived from
u by resetting all clocks in the reset set r of the edge, such that
u e I(l").

TA are composed into a network of TA over a common set of
clocks and actions [4]. In this paper, we model the communication
between TA via synchronization channels (e.g., a! and a?) with
rendezvous semantics: a sender (a!) synchronizes with a receiver
(a?), provided that the sending and receiving edges are enabled, that
is, their guards are satisfied. The UPPAAL model checker supports
the verification of queries written in a decidable subset of Timed
Computation Tree Logic (TCTL) [4]. The syntax of a TCTL formula
consists of quantifiers over paths and path-specific temporal oper-
ators. There are two types of path quantifiers: the universal one,
“A” meaning “for all paths”, and the existential one, “E” denoting
“there exists a path”. We are interested in two path-specific temporal
operators, that is, “Always” (O) temporal operator meaning that a
given formula is true in all states of a path, and the “Eventually”
(¢) operator meaning that a formula becomes true in finite time, in
some state along a path. The UPPAAL queries that we verify in this
paper are properties of the form: (i) Invariance: AOp means that
for all paths, for all states in each path, p is satisfied, (ii) Liveness:
A¢p means that for all paths, p is satisfied by at least one state in
each path, (iii) Reachability: E¢p means that there exists a path
where p is satisfied by at least one state of the path, and (iv) Time-
bounded Leads to: p ~> <; g, which means that whenever p holds,
q must hold within at most ¢ time units thereafter; it is equivalent
to the property: A0 (p = A0<; q).

3.2 A" Algorithm

The A* algorithm is a widely used algorithm for path finding and
graph traversal [19], and it was first introduced by Hart et al. [11].
In this paper, we use it to compute the initial path for AWL. It is an
extension of Dijkstra’s algorithm that uses a heuristic function to
guide the graph traversal in order to achieve better performance.
The basic idea of the A* algorithm is to find a lowest cost path from
all possible paths to the destination, similar to Dijkstra’s algorithm.
While exploring the graph, the cost of the current node is calculated
by the following function: f(n) = g(n)+h(n), where n is the current
node, g(n) is the cost from the starting node to n, and h(n) is the
estimated cheapest cost from n to the destination. Intuitively, the
A* algorithm aims to find the path that minimizes f(n).

The pseudo code of the A* algorithm [16] is shown by Algorithm
1. It works in weighted graphs and constructs a tree of paths starting
from a specific node of the graph, which is defined as the input.



Algorithm 1: A* Algorithm
Input: Node start, Node destination

Output: If the path is found or not
1 closed := open := @

2 parent(start) := start

3 g(start) =0

4 open.Insert(start, g(start) + h(start))
5 while open # @ do

6 current := open.top() /*return and remove the node with
the minimum cost in open®/
7 if current = destination then
8 ‘ return "arrived"
9 end
10 closed.Insert(current)
11 foreach n € neighbors(current) do
12 if n ¢ closed then
13 if n ¢ open then
14 g(n) := oo
15 parent(n) := NULL
16 end
17 Yold = g(n)
18 if g(current) + c(current,n) < g(n) then
19 parent(n) = current
20 g(n) = g(current) + c(current, n)
21 end
22 if g(n) < go7q4 then
23 if n € open then
24 ‘ open.Remove(n)
25 end
26 open.Insert(n, g(n) + h(n))
27 end
28 end
29 end
30 return "no path found"
31 end

From line 1 to line 4, two arrays are initialized, that is, open: the set
of currently discovered nodes that are not evaluated yet, and closed:
the set of nodes that have been evaluated already. From lines 5 to 16,
the main loop starts, in which the node with the minimum cost in
open is selected. If this node is the destination, the calculation ends.
Otherwise, the neighbors of this node and denoted by n, which are
one-cell distance away around the node, are considered one by one
as candidates to the open set, and evaluated in the rest of the code.
From lines 17 to 21, the cost of node n is updated to the minimum
and its parent node is changed accordingly. And between lines 22
to 26, the open set either updates the cost of node n, or inserts a
new node n and its cost into the set.

3.3 Dipole Flow Field for Collision Avoidance

Modeling the paths of moving vehicles or other dynamic objects
is not an easy task. Some studies have adopted the so-called static
flow field and dynamic dipole field algorithms to represent the in-
teractions of such moving objects [23]. In such scenarios, a vehicle
moves within a certain area, called the map, and travels along a

preset path that avoids the static obstacles, and approaches the des-
tination. As soon as it discovers a moving obstacle within its vision
range, the vehicle runs the collision avoidance algorithm to stay
away from the obstacle as well as move towards the destination.

In this case, the static flow field force attracts the vehicle to its
goal, ensuring that the vehicle avoids the static obstacles on the
map. Meanwhile, as soon as a dynamic obstacle is encountered (be
it another moving vehicle or a human), the dynamic dipole field
algorithm generates forces that push the vehicle away from the
dynamic obstacle, based on the latter’s respective moving direction
and velocity when within a close range from the original vehicle.
The static flow field force is calculated by the following equation:
F, = k“ggQ, F, = % and Ffj,y, = Fq + Fr, where Fy is the
attractive force that draws the vehicle back to its initial path, F, is
the repulsive force from the nearby static obstacles, k4, kr, g0, g1, Q
are coefficients whose values are problem specific, whereas D and d
are the distances between the vehicle and its goal, and between the
vehicle and the static obstacle, respectively. Unlike the dipole field
forces, the attraction and repulsive forces always exist, regardless
of whether the vehicle is moving or not.

In the theory of dipole field, every object is assumed to be a
source of magnetic dipole field, in which the magnetic moment
is aligned with the moving direction, and the magnitude of the
magnetic moment is proportional to the velocity. Concretely, the
repulsive force of a moving obstacle acting on the vehicle can be
formulated as follows:

m = kmno (2)
S k
Fd=d—;’[oﬂo-f’)xrﬁ,-+(rfiz~7>xﬁo+<na'o.nzi>xﬂ—
o N 3
5 (riip - ¥) - (ni; - F) 7] @)
d—zxr,

where 7 is the distance vector between the two objects (km, kg €
R*). The combination of the static flow field and the dynamic dipole
field (F = Fgoy, + Fg) guarantees that the vehicle moves safely by
avoiding all detected obstacles, and reaches the destination eventu-
ally as long as the path is safe.

4 AWL’S MODELING AND VERIFICATION

In this section, we present the formal model of the AWL, as a net-
work of TA, and the verification results after employing UPPAAL
on the formal model. The model consists of three parts: the map, the
AWL’s movements, and the AWL’s control system. Figure 5 depicts
the verification methodology proposed in this paper. First, the map
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Figure 5: AWL’s modeling and verification process



is modeled as a data structure. Next, the movements of dynamic
obstacles and AWL, which include straight moving, turning and
braking, are designed, assuming the actors are functionally correct
in the given map. Then, we model the AWL’s control system as a
network of timed automata, in which tasks are TA that commu-
nicate via shared global variables and synchronize via channels.
The UPPAAL model checker is then applied to verify whether the
timed automata network satisfies the AWL requirements that are
formalized as TCTL properties.

4.1 Map Abstraction

The loader’s working environment consists of a map and several
obstacles. The map is abstracted into a 2-dimensional Cartesian
grid of disjoint cells with resolution € € Ry. As Figure 6 shows,
the location of an object on the map is denoted by (x,y), with
x, Yy € Rxg.

]

{ons } ‘ ‘
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Figure 6: Abstraction of the map

The grid is encoded as (zx, zy), with zx, zy € Z>¢. The mapping
from reals to integers on two axes is given by the following:

fiiRE =78 f(xy) = (2x. 2y)

i € (4)
1fx—§ <zy <x+

€ € €
E,andy—g < zy <y+§
If an object (static or dynamic) is located at the intersection of x
and y axes, the object’s position is marked by X as shown in Figure
6. If the intersection is occupied, no other object can move to that
point anymore. In our model, each intersection point is assigned
0 or 1, denoting that the point is empty or occupied, respectively.
Furthermore, we assume that a dynamic obstacle occupies one point
only, whereas a static obstacle can occupy more than one point
as one can see in Figure 6. Based on this abstraction, the map is
defined as a 2-dimensional array in UPPAAL, where each element
represents a point on the map, and is assigned 0 or 1. A vertex is
defined as a structure Vertex with two elements, integers x and
y, representing the coordinates on x and y axes, respectively; the
static obstacle is defined as a constant array of Vertex, representing
the coordinates of each of its vertices (see Code 1).

Code 1: Vertex and static obstacle definitions

const int N = 15;
typedef struct
{

int[@, N] x;
int[0, NI y;
}Vertex;
const Vertex staticObstacle[10]

{(3,03,{3,13,{3,2},{3,3}, {3 4},{4,4},{4,33,{4,23,{4,1},{4,0}};

4.2 Movements Abstraction

As the objects’ locations are mapped onto the line intersections
in the map, their movements are then restricted to the edges or
the diagonals of the cells, as depicted in Figure 6. In our model, we
separate the path into several path segments that are defined as
pairs of vertices. A vertex is denoted by (zx, z) as in formula (4),
whereas v denotes the velocity of the AWL. Consequently, the path
is defined as a sequence of path segments:

p= (Zxov Zyg)(le s Zyl) T (zxnfl > ZYn-1 )(an , Zyn) ©)
Zx; = Zx;_, £ U, where x; > 1
- 0
Zy; = Zyia
As mentioned previously, the AWL cannot occupy the vertices of a
static obstacle, as shown in Figure 7.
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Figure 7: Three types of forbidden movements
When the loader starts to move, it accelerates from the minimum

velocity (modeled as 0) to the maximum velocity (modeled as 2).
The AWL stays at the current position for 2 time units at speed 0,
then the duration decreases by 1 as the speed increases by 1, until
it reaches the maximum velocity. The time unit is the execution
period of Main Task in the control unit of the AWL.

We model the dynamic obstacle as a TA in UPPAAL, with a
self-looping location that encodes the movements of the obstacle.
The changing position of the obstacle is implemented by a function
executed when the self-loop edge is traversed.

4.3 Formal Model of AWL’s Control System

As shown in Figure 2, the control system consists of three units:
vision unit, execution unit, and control unit. The vision unit ac-
quires data from LIDAR and executes the recognition algorithms to
identify the shapes, types, moving directions, etc., of the obstacles.
However, in our model, we do not include this algorithm per se.

—
A

Figure 8: Detection range of the AWL
Instead, our model checks the values of the map’s points (0 or 1) to

detect the obstacles present in the vicinity of the AWL, assumed
as an area of maximum 3-cells distance from the AWL. In Figure
8, we see that object A cannot be detected as it is out of range, but
object B is reported as an obstacle.

To model the AWL’s control system, we create a TA for each task
and function presented in Figure 3, whose procedures are captured
by activity diagrams (e.g., Figure 9(a)) and sequence diagrams (e.g.,
Figure 4). We map the elements of such diagrams (e.g., decision
nodes and action nodes in the activity diagrams) to our model, so
that each TA’s structure is respectively constructed. Even if the
TA are manually created, we have used a 1-to-1 mapping in this
process, described as follows:
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(1) For each action node of the activity diagram (except for
those that call other functions), we create functions and
corresponding locations and edges to ensure the same order
of execution of the respective task, as in the original diagram.

(2) Decision nodes of the activity diagram are represented as
locations with multiple outgoing edges, with edges enabled
based on the associated guards.

(3) For action nodes that call other functions, we use synchro-
nization among TA to model the invoking relation. This step
is elaborated in the following examples.

(4) After the structure of the TA is constructed, we implement
the A™ and dipole field algorithms as C-code functions in the
TA, respectively.

The final model contains 12 TA (i.e., 11 TA for the tasks and func-
tions, 1 for the dynamic obstacle), and 61 C-code functions. Due to
space limitation, we select to describe the respective behaviors and
communication among Main Task, Calculate Path Task, and Get
Path Function TA.

According to Main Task’s activity diagram of Figure 9(a), the first
two action nodes aim to initialize the system, check its surroundings,
and run the A" algorithm. Hence, two locations, namely Init and
Configuration, and the edge connecting them are created in the
Main Task automaton shown in Figure 9(b). Along the edge, two
functions, namely initialize() and checkSurrounding(), initialize
the system’s variables and check for obstacles around AWL, when
executed. The A* algorithm is also executed in initialize() to generate
the initial path. Next, two mutually exclusive outgoing edges from
location Configuration are added, corresponding to the decision
node in Figure 9(a) that follows the action node Check Surrounding,
and indicating that if some error occurs during the initialization,
the system moves to location Error to freeze the AWL. In case of no
error, it moves to location Wait, where the task waits to be invoked.
The other TA (e.g., Figure 10 and 11) are constructed by following
similar steps.

After representing each individual task by a corresponding TA,
the communication and scheduling of tasks need to be modeled.
Every task has an execution period and is scheduled in a certain
order. To achieve this, we add extra locations and invariants in
the model, which are not corresponding to the action nodes and
decision nodes of the activity diagram, such that some TA are exe-
cuted periodically. The tasks for detecting obstacles and acquiring
positions must be started earlier and executed more frequently than
other tasks, such that the control system always makes decisions
on the latest information. Hence, as it is shown in Figure 9(b), the
automaton of Main Task, which awaits position information from
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Figure 11: Timed automaton of Get-Path function

other tasks, stays at location Wait until clock t reaches the value
of taskDelay, which is 7 in this case. This delay enables Main Task
to start later than the tasks using the system clock. To model the
period of the task, after it moves to location Sleep, the automaton
waits again until clock t reaches its task period, i.e., constant integer
w_main_period, when it can be executed.

According to the sequence diagram of Figure 4, Main Task calls
sub-functions. Hence, the automaton of Main Task is synchronized
with Execution Function, via channel exe that decorates the edge



connecting locations Wait and Exe. Then Main Task delays in loca-
tion Exe until it synchronizes again with Execution Function via
channel finish or error, indicating that the work is done or some
€ITOr OCCUTS.

The automaton Execution Function is also synchronized with
other automata for the same reason. For instance, as shown in
Figures 10 and 11, on channel task[0], the automaton Get Path
Function is synchronized with Execution Function, indicating that
Get Path Function is called by Execution Function. In addition,
waiting for data from another task is modeled by locations and
invariants added to Get Path Function automaton. For example, Fig-
ure 11 depicts that Get Path Function automaton waits for position
data (global_position), in location Wait until clock w_task1_trigger
reaches its limit w_task1_ threshold, when both w_task1_trigger is
set to w_task1_threshold and variable global_position is set to true
by other TA, indicating that the AWL’s position has been acquired,
or the variable global_position remains false until the invariant
is violated; if the latter, the automaton moves back to the initial
location Start, meaning that a time-out event occurs in Get Path
Function.

t<=taskDelay

brake_udp:=true,
brake_udp:=brakeOption, path_request_udp:=false,
path_request_udp:=true, setp_trigger:=sefpxthreshold

setp_trigger:=setp_threshold

Success

t=—=period&&
ISY SML_ERROR&&
ath_request_D 3

t==period&&
ISYSTEM\ERROR&& P

!path_requkst_mutex

t:=0
SYSTEM_ERROR

path_Tequest_mutex

calep_trigger<=threshold&& calculdtcForces()

t<=period

Calculation

\’alidalinn

t<=period&&
c<=executionTime

Figure 12: Timed automaton of Calculate Path task

The dipole field algorithm is implemented as C functions in the
automaton Calculate Path Task, as shown in Figure 12. The task
is executed in case an obstacle is detected, or AWL deviates from
the initial path, so in the task’s automaton, the first function being
executed after initialize() is findNextPosition(), where the grid point
in the initial path closest to the current position is returned as
the new next position, which cannot be ensured to be safe. Hence,
the forces applied on the AWL are computed in function calcu-
lateForces() based on the new position and equations described in
Section 3.3. After that, a new path segment, if it exists, is calcu-
lated in function calculateNewPath() according to the field forces,
which guarantees the safety of the AWL. The implementation is
explained in detail in Section 5. If the new path segment does not
exist (hewPathCorrect==false), the automaton moves to location
Error and sends out the brake command (brake_request_udp :=
true).

4.4 AWL’s Model Verification

By applying the modeling process described in Sections 4.1, 4.2, and
4.3, we create the formal model of the AWL and its environment as
a network of TA. As mentioned, the formal model consists of 12 TA
(11 TA for the tasks and functions presented in Figure 3, plus one
TA for the dynamic obstacle), four data structures (one for the map,

two for the A* algorithm, and one for the path stack, which is used
to store the path segments), 23 clocks, 49 global variables, 61 C-code
functions, etc. To verify whether this model satisfies the informal
requirements given in Section 2, we formalize the latter as TCTL
queries that we check with UPPAAL. Two versions of the map are
used in the verification. As depicted in Figure 13, we use a map
with a static obstacle that occupies 10 grid points, and where the
stone pile and crusher are located at (1,1) and (14,6), respectively.
Next, as shown in Figure 14, we add one dynamic obstacle to this
map, which starts at point (9,8) and moves along a predefined path.

; |

s Crusher

5

1

2
1
L3
Stone pile %

0 1 2 ENE 5 6 7 8 9 10 11 12 13 14 15
Figure 13: The AWL’s trajectory on the map with a static ob-
stacle
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Figure 14: The AWL’s trajectory on the map with a static and
a dynamic obstacle

Table 1 presents the TCTL queries and the verification results.
In the rest of this section, we describe these results.

Initial path computation. To verify that the AWL cruises be-
tween the stone pile and the crusher, and avoids the static obstacle,
we use the map of Figure 13. Seven queries are specified to verify
this requirement.

Queries Q1.0 and Q1.1 require that the initial path is calcu-
lated after the automaton mainTask moves to location Wait (main-
Task Wait). The integer variable lenOfPathStack, whose initial value
is 0, is assigned by the length of the path stack, where the initial
path is stored. Once the variable becomes greater than 0, the ini-
tial path is generated. Query Q1.3 states that, if the AWL is at the
stone pile (currentPosition == pile) and its destination is the crusher
(destination == crusher), the AWL will indeed eventually reach the
crusher (currentPosition == crusher). Since UPPAAL’s "leads to"
operator (p ~» q) is equivalent to A0 (p = A ¢ q), we first check in
query Q1.2 if the antecedent of Q1.3, that is, (currentPosition ==
pile and destination == crusher) is reachable. In our scenario, the
AWL’s initial location is the stone pile and the target is the crusher,
thus query Q1.2 is satisfied by the initial state of the model and the
verification explores only one state, the initial state. Similarly, in
queries Q1.4 and Q1.5 we verify whether the AWL moves back from
the crusher to the stone pile, whereas in query Q1.6 we check that



Table 1: Verification queries and results

Requirement Query Result | States explored Time
Q1.0: E<> mainTask.Wait Pass 2 110 ms
Q1.1: A<> mainTask.Wait imply lenOfPathStack > 0 Pass 8780 484 ms
Q1.2: E<> currentPosition == pile and destination == crusher Pass 1 0 ms
Initial path computation | Q1.3: (currentPosition == pile and destination == crusher) —> currentPosition == crusher | Pass 14191 1125 ms
Q1.4: E<> currentPosition == crusher and destination == pile Pass 2339 297 ms
Q1.5: (currentPosition == crusher and destination == pile) —> currentPosition == pile Pass 14204 782 ms
Q1.6: A[] forall(i:int[0,9]) currentPosition != staticObstacle[i] Pass 8780 485 ms
Q2.0: A[] currentPosition != currentObstacle Pass 125941 6297 ms
Obstacle avoidance Q1.3: (currentPosition == pile and destination == crusher) —> currentPosition == crusher | Pass 227646 13969 ms
Q1.4: E<> currentPosition == crusher and destination == pile Pass 2678 375 ms
Q1.5: (currentPosition == crusher and destination == pile) —> currentPosition == pile Pass 192406 10656 ms
. Q3.1: E<> errorStart == true Pass 30 234 ms
Mode switch: error A Q3.2: error_start==true —> (SYSTEM_ERROR==true and reaction_time<=20) Pass 91 250 ms
Mode switch: error B Q3.1: E<> errorStart == true Pass 29 234 ms
Q3.2: error_start==true —> (SYSTEM_ERROR==true and reaction_time<=15) Pass 320 266 ms
End-to-end deadline Q4.0: (currentPosition==pile and destination==crusher) —> (currentPosition==pile and | Pass 590326 36641 ms
destination==pile and gClock <= 2200)

the autonomous loader avoids the static obstacle. Concretely, query
Q1.6 requires that the AWL must never occupy one of the grid
points of the static obstacle (A O forall(i:int[0,9]) currentPosition
I= staticObstacle[i]).

The combination of the first seven queries of Table 1 verifies that
the autonomous loader cruises safely between the stone pile and
crusher and back, without colliding with the static obstacle, thus
showing that the AWL has the ability to compute a safe initial path.
Furthermore, in order to visualize this path, we use the following
queries:

E ¢ currentPosition == pile and destination == pile
E ¢ currentPosition == crusher and destination == crusher

These queries require that there exists at least one execution path
in which the AWL eventually reaches the stone pile and the crusher,
respectively. They are weaker than queries Q1.3 and Q1.5, but
for these queries, the model checker generates a witness trace,
which represents the initial path. The path presented in Figure 13
is generated in this way.

Obstacle avoidance and path recalculation. To verify this
requirement, one dynamic obstacle (e.g., another vehicle) is added
to the map, as shown in Figure 14. We assume that this object
is not equipped with an obstacle avoidance feature, thus it does
not change its path when it approaches the AWL. To verify this
requirement, we need to check again that the AWL can reach the
crusher and the stone pile, respectively, that is, queries Q1.2 to Q1.4,
assuming the updated map. In query Q2.0, we check that AWL
does not collide with the dynamic obstacle (A O currentPosition
!= currentObstacle) for all possible execution paths of the model.
As presented in Table 1, the number of states explored and the
verification time for queries Q1.3, Q1.4 and Q1.5, in this case, are
drastically increased as compared to the initial path computation
case, since the dynamic obstacle increases the complexity of the
model. As previously, we generate the path followed by AWL, which
is depicted in Figure 14. The solid arrows represent the path to the
crusher, the dashed arrows represent the way back to the stone
pile, and the double-line arrows represent the preset path of the
dynamic obstacle.

Mode switch. This requirement is verified on the map that
contains the dynamic obstacle. To verify that AWL switches to
safety mode and freezes its motion whenever it malfunctions, we
introduce a global boolean variable SYSTEM_ERROR that "injects"
errors into the model. For instance, in Figure 10, the TA moves to
location Error whenever SYSTEM_ERROR becomes true. To check
that this variable never evaluates to true, we use the following
query:

A 0O !SYSTEM_ERROR
As expected, this query is satisfied unless we inject faults into the
model. In this paper, we model two faults that mimic real malfunc-
tions:

e Error A: we set the boolean variable do_obstacle heartbeat
in the Do Obstacle Task to false, when it is sending a message
and is resetting the clock reaction_time to zero at the same
time, indicating that the information on obstacles cannot be
reported to the control unit, which can be very dangerous.

o Error B: we set the boolean variable position_udp in the Posi-
tion Task to false when it is sending the position information
through the Ethernet, implying that the information is lost
during the transmission.

For both these errors, two queries (Q3.1 and Q3.2) are formulated
for verification. Query Q3.1 checks that there exists at least one
execution path in which the error eventually happens (E ¢ er-
rorStart == true). Formula Q3.2 requires that once an error occurs
(SYSTEM_ERROR == true), the system must detect and react to the
error within a certain time bound. This time bound is 20 time units
for error A (reaction_time <= 20 in Q3.2 A), and 15 times units for
error B (reaction_time <= 15 in Q3.2 B). The verification results
show that, when error A or error B occur, the system moves to the
SYSTEM_ERROR mode within the required time bound.
End-to-end deadline. The autonomous wheel loader must not
only be able to travel to the crusher and then return to the stone pile
position, but it also needs to accomplish this task within a certain
time bound, which is its end-to-end deadline of 2200 time units.
This requirement is verified by query Q4.0, which is a time-bounded
leads to property, whose antecedent (that is, currentPosition ==



pile and destination == crusher) is the initial state of the model, and
the consequent requires AWL to return to the stone pile before the
deadline (currentPosition == pile and destination == pile and gClock
<= 2200). Since Q4.0 is a leads-to property, we also need to verify
that its antecedent is reachable, by proving Q1.2. Furthermore, by
checking the query:

E¢ currentPosition==pile and destination==pile,

we can request the model checker to generate the fastest diagnostic
trace, which gives us the fastest time (1620 ms) to complete one
cruise.

5 DISCUSSION

The issue with our abstraction of movements is that the short-
est path that A" algorithm generates in the discrete area is not
equivalent to the shortest path in the continuous area, because
it constrains paths to be formed by the edges or diagonals of the
cells. Some other path-planning algorithms, e.g., Theta* algorithm,
overcome this drawback by changing the path to an any-angle path
that does not necessarily follow the edges of the cells[16]. However,
as traditional UPPAAL only supports integers, it is very difficult
to implement algorithms like Theta* or dipole field as such, there-
fore they must be simplified. Hence, in our model, the forces in
the dipole field algorithm that is employed by AWL for collision
avoidance, are calculated using integers, based on the formulas in
Section 3.3. Moreover, instead of using Newton’s law of motion,
which involves real numbers to calculate the loader’s position, we
use the sign of the combination of forces to decide the next posi-
tion. Formula 7 shows the relation between the signs of forces and
the AWL position, where (x’,y’) models the next position of AWL,
(x,y) represents the current coordinates of AWL, Fy., Fy model the
combination of attractive and repulsive forces on x axis and y axis,
respectively, and T is the threshold for movements. This formula
restricts the AWL to move only along the edges or diagonals of the
cells, which is exactly our abstraction for movements.

(x+1,y+1),if Fe 2T,Fy 2T
(x+1,y),if Fix 2T,Fy <T
(e,y+1),if Fx <T,Fy 2T
(x,y), if Fx < T,Fy<T

To fully implement the dipole field algorithm, a tool that fully sup-
ports floating point numbers is desirable. UPPAAL SMC (Statistical
Model Checker) satisfies this requirement while still enjoying most
of the useful features of UPPAAL [8]. With UPPAAL SMC, we can
also model stochastic behaviors, e.g., the occurrence of dynamic ob-
stacles, the reliability problem of Ethernet, etc. However, UPPAAL
SMC does not provide exhaustive model checking, for it provides
the probability of satisfying the queries.

We have also verified the AWL model in different scenarios, e.g.,
by letting the dynamic obstacle move arbitrarily within the map
rather than along a preset path. It turns out to be very difficult to
satisfy the requirements of reaching the destination while avoiding
the obstacle under such circumstances. Two scenarios are gener-
ated by UPPAAL, where the AWL either collides with the dynamic
obstacle or is stuck into a "livelock". As depicted in Figure 15, the
AWL and the obstacle move back and forth on the same axis because

x"y") = TezZ" (7)

there is no force on the other axis that turns the AWL at an angle
to the obstacle. Therefore, the AWL consistently moves back and
forth on this axis but never gets to the destination.

or)

AWL |  |Destination

Figure 15: A livelock scenario

In another scenario the obstacle keeps “pushing” the AWL until
both of them reach the edge of the map and stop, on grounds of
our assumption that the dynamic obstacle does not avoid the AWL
even though they come close to each other. One possible solution is
to optimize the implementation of the dipole field algorithm so that
the AWL can actively and angularly move towards the obstacle’s
moving direction, such that the AWL will bypass the obstacle from
behind instead of being pushed away by the obstacle.

6 RELATED WORK

A number of formal methods have been applied to the verification
of autonomous vehicles. Saberi et al. [20] propose using high-level
languages, namely mCRL2 and Modal pi-calculus, for specifying and
verifying multi-robot systems. Smith et al. [22] propose a method,
based on weighted transition systems and Buchi automata, to find
the optimal trajectory for the robot, which satisfies the require-
ments described in LTL. Koo et al. [14] propose a framework for
the coordination of a network of autonomous robots with respect
to formal requirements specifications in temporal logics, in which
hybrid automata and Cadence’s SMV model checker are used. Quot-
trup et al. [17] [2] design a high level abstraction of a multi-robot
system using timed automata. Their model consider 4-directions
movements of autonomous robots. Moreover, they also generate
the shortest path with UPPAAL. Our research is inspired by such
studies and provides modeling and verification of a complex control
system of an autonomous wheel loader. However, instead of using a
model checker to generate paths, we employ intelligent algorithms
for path planning and collision avoidance (via dipole field) that we
formally verify together with the control system.

There are also different approaches for modeling and analyzing
the path-planning algorithms of autonomous vehicles. Fainekos et
al. [9] apply temporal logic and model checking tools to generate
discrete path plans that are later translated to continuous trajecto-
ries using hybrid control. The approach that they propose is built
upon an existing framework [5] and proves that discrete plans and
continuous trajectories are bisimilar, so that the satisfaction of LTL
properties on the former is preserved by the latter. Kripke models
and model checking techniques have been employed by Jeyaraman
et al. in their study of modeling and verification of cooperative un-
manned aerial vehicle (UAV) teams [12]. Rabiah et al. [18] use the
Z specification language to formally specify the A* path planning
algorithm, and verify the correctness of the algorithm by theorem
proving. Saddem et al. [21] also use UPPAAL and CTL to verify
reachability properties of autonomous behavior, including path
finding. They propose a decomposition methodology to reduce the
memory requirement and execution time of model checking. What
makes our work different from the above studies is that we carry
out a more extensive verification of the autonomous vehicle against




a rich set of complex and realistic safety properties expressed in
TCTL, e.g., whether the system can react to an error within a certain
time limit. In addition, our formal model is more detailed, includ-
ing the tasks in the control system and their communication, the
algorithms, acceleration and deceleration of the vehicle. The con-
junction of all these elements increases the size of model’s state
space dramatically, and hence the complexity of verification.

Some studies focus on the formal modeling and verification of
the control logic or internal architecture of the automation system.
Chouali et al. [7] propose an approach to model and ensure formally
the reliability of automotive applications. They use SYSML to model
the system before verifying the model described using interface
automata. Hanisch et al. [24] [10] adopt the Net Condition/Event
Systems (a modular extension of Petri nets) in their modeling and
verification of several automated systems in intelligent manufac-
turing area. In comparison to these studies, our model includes not
only the components in the control system but also the behaviors
of the AWL and its environment, which allows us to simulate the
model in a reactive mode, and our verification includes properties
that are crucial for real-time automotive systems (e.g., end-to-end
deadlines).

7 CONCLUSIONS

In this paper, we have presented the formal modeling and verifica-
tion of an industrial prototype of an Autonomous Wheel Loader
equipped with path planning and intelligent obstacle avoidance.
Our modeling process maps the elements in activity diagrams to
timed automata and implements the algorithms as C-code functions
of the model, such that the model represents the entire control sys-
tem of AWL. The (T)CTL queries used for verification completely
express the informal requirements written in natural language, and
provided by industry. The counter-examples that we have found
during verification are helpful for the future optimization of the
control system and the design of algorithms. Our model is the ab-
straction of the actual system, which serves to check correctness
of the system at design level. Future work includes proving the
correctness of the transformation from activity diagrams to UP-
PAAL TA and automating this process, modeling the dynamics of
the AWL, injecting probabilistic events in the model in order to
construct and verify a model that is closer to reality, etc.
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