2017 12th International Conference on Design & Technology of Integrated Systems in Nanoscale Era
(DTIS)

Analyzing Ambient Assisted Living Solutions:
A Research Perspective

Ashalatha Kunnappilly
Milardalen University, Visteras, Sweden
ashalatha.kunnappilly @mdh.se

Cristina Seceleanu
Milardalen University, Visteras, Sweden
cristina.seceleanu @mdh.se

Abstract—Typical AAL solutions rely on integrating capabil-
ities for health monitoring, fall detection, communication and
social inclusion, supervised physical exercises, vocal interfaces,
robotic platforms etc. Ensuring the safe function and quality
of service with respect to various extra-functional requirements
like timing and security of such AAL solutions is of highest
importance. To facilitate analysis, latest system development plat-
forms provide underlying infrastructures for model-driven design
(e.g., via the DIME tool), timing and resource-usage specification
(e.g., via the REMES tool), security features (e.g., by employing
SECube), and statistical model-checking techniques (e.g, via
Plasma). In this paper, we discuss the challenges associated
with analyzing complex AAL solutions, from relevant properties
to semantic interoperability issues raised by employing various
frameworks for modeling and analysis, and applicability to
evolving architectures. We take as examples two of the prominent
existing AAL architectures and our own prior experience.

I. INTRODUCTION

In the worldwide trend towards an ageing demographic,
the Ambient Assisted Living (AAL) domain becomes an
intense research focus. A worthy AAL solution should offer
many functions, e.g., health monitoring, fall detection, so-
cial inclusion and connectivity, physical exercise monitoring,
physiotherapy support, home monitoring, robotic platform
support etc. Apart from these functional attributes, many extra-
functional attributes like timeliness, security, resource usage,
reliability, etc. are equally important for the success of AAL
solutions.

Modern AAL systems are increasingly complex, with many
modules catering for different functionalities and acting in
a highly dynamic environment, at the core of IT connected
health platforms. A patchwork of partial solutions has been so
far adopted mostly in projects, but never really at a large scale,
but the first workable solutions are starting to emerge. Philips’
newly launched HealthSuite platform, for example, is an open,
cloud-based platform that collects, compiles and analyzes clin-
ical and other data from a wide range of devices and sources,
based on open APIs. Its computational core, CareCatalyst',
enhances collaborative care between healthcare consumers and

Uhttp://www.usa.philips.com/healthcare/innovation/about-health-
suite/carecatalyst

978-1-5090-6377-2/17/$31.00 ©2017 IEEE

Axel Legay
INRIA, Rennes, France
axel.legay @inria.fr

Bernhard Steffen
TU Dortmund, Germany
steffen @cs.tu-dortmund.de

Tiziana Margaria
Univ. Limerick and Lero, Limerick, Ireland
tiziana.margaria @lero.ie

Louis-Marie Traonouez
INRIA, Rennes, France
Louis-marie.traonouez @inria.fr

healthcare providers by collecting and connecting data across
the health ecosystem.

As the complexity of AAL modules increases, ensuring
correctness, security, safety, and proper real-time behavior of
AAL systems during the early stages of system development
is of utmost importance, as they need to tackle many critical
scenarios that can even result in life loss if mismanaged. For
instance, fall incidents of elderly people may also be critical
indicators of other conditions, and may even lead to death if
proper aid is not given within a prescribed time and proper
follow-up is not provided. In case of a fall event, the AAL
system should raise a fall alarm and inform the care givers,
potentially in an escalation chain, to guarantee that adequate
care will be given in due time.

In previous research experiences, architectures, develop-
ment frameworks, and tools play a significant role in AAL
projects. In this paper, we reconsider previous experience so
far, including diverse prominent examples of AAL architec-
tures (Section II), system design and development platforms
(Section III), and analysis and verification tools (Section 1V).
As this research employs a wide variety of tools, mostly in
subsets according to expertise, we observe that their interop-
erability by syntactic and semantic compatibility is essential
for performing proper verification of critical functionalities. In
Section V we provide a conceptual sketch for the integration of
the design and analysis methods and tools, to exploit synergies
and complementarities. In this way, we wish to provide a
holistic and well-rounded design and analysis platform that
uses the tools listed in the following sections, and ensures the
needed syntactic and semantic compatibility.

II. AAL ARCHITECTURES FOR ANALYSIS

The many challenges associated with the analysis of AAL
solutions span the scope of model-driven design (MDD) (e.g.,
via the DIME [1] tool), timing and resource-usage specification
(e.g., via REMES language [2]), security features (e.g., using
SECube [3], [4]), and statistical model-checking techniques
(e.g, via Plasma [5]). To facilitate discussion, we refer to
two concrete AAL architectures, a cloud-based one and a
service-oriented one, both sharing a set of functional and

Authorized licensed use limited to: Malardalen University. Downloaded on January 22,2021 at 19:47:34 UTC from IEEE Xplore. Restrictions apply.

Selrs_;)r Collector & g Gateway/Switch Intelligent Health Server
ni User- a
=] interface Unit i |3 Server Healthcare
S x — | User Context — Services
® Hardware 5 =)
] Collector = I userlD] + realTimefeedbacks
5 H * userinfo = - historicalSummary
£ Software ot |5 G userHealthinfo i | recommandation
<) Collector & @ £ » userPrefarance [i4 " reminder
O i|User-Interface H lore ° . More
S 2 2
g i :
B 5 << Security %
N Hardware g 3 Manager te]
H Collector = s «
© Software 7] 2 ¢:> generateUserID o Sensor
2F ¥ collector and _.g E A SB"’S""‘[? . % Signals/Measurements &
o ¥ User-Interface S " checkValidation e Electronic Health Records
3 @ > More s
u 9 o
3 g - -
] Hardware 5 Lu Service Broker a Algorithms/
L_IJJ Collector ‘E: el | storeData § Methods Expert
s Software 2 E * getData E - Signal System
8ip: | Collectorand | + getRecommand e Processing OrDSS
g User-Interface : jation T - Machine
5 o — |+ getReminder -] Learning
E | More > Clustering Knowledg
r ¥ - More ...)
End user/patient with sensors,— ; ore Base

Collecter & a light version of User- -
Interface in Smartphones or Tablets HTTPS web servlée (e.q. SOAP and RESTFul) |

Patient with Long-range
Bluetooth-sensors

Third-party User-Interface mostly used by
Doctors/Clinicians and Healthcare Provider/Researchers

Fig. 1. ESS-H: a cloud-based architecture

extra-functional aspects (e.g., timing, resource-usage, security
and privacy etc.) that need to be analyzed. Since the design
of adequate AAL architectures is based on user feedback,
an MDD approach that involves users in the design and
development loop would be extremely beneficial. However, the
different paradigms used in the two architectures may lead to

differences with respect to meeting quality requirements.
a) ESS-H: a cloud-based architecture: The ESS-H

(Embedded Sensor Systems for Health) architecture [6] is
shown in Fig. 1. Its major components are the collector
and user-interface unit, the gateway and switch server, and
the intelligent health server, the last two being cloud based.
ESS-H is a centralized solution, with the intelligent control
embedded within the intelligent health server that decides what
actions to execute.

b) FUSION@: a service-oriented architecture: The
distributed multi-agent-based system, shown in Fig. 2, is
developed for supporting people affected by the Alzheimer
disease. It is based on a Flexible User and Service-Oriented
multi-ageNt Architecture (FUSION @) [7], with agents relying
on the deliberative Belief-Desire-Intention (BDI) paradigm
[8]. Applications and services communicate with the agent
platform using the SOAP protocol, and the inter-agent com-
munication happens through FIPA Agent Communication Lan-
guages (ACL). A distributed artificial intelligence (Al) unit is
implemented through Case-Based Reasoning and Case-Based
Planning techniques.

A. Analysis and comparison

The design aspects that deserve consideration and proper
analysis for both architectures are as follows.

a) Resource usage: In the centralized ESS-H cloud-
based solution, the Decision Support System associated with
the cloud server takes the intelligent decisions. In contrast,
the service-oriented architecture foresees multi-agent systems
(MAS), with all the agents collaborating to deliver the required

ALZ-MAS 2.0

Applications
Mobik: Agent Motule Agent

" - g =0
- 4 el R q ! S
JEN . 4\ L]
il 4 i L /
— T s
N L s e o

Commaunication

e ol Agents Platform

FUSIONE Agents ’\;_5 CURLES

Commurication
Protocol

Services

Fig. 2. FUSION@: a service-oriented MAS architecture for Alzheimer care

intelligent decisions. In both cases, resource-usage analysis
is relevant for the design and implementation stages. For
instance, in the distributed case each agent is basically a
processor with its own memory, so a feasibility analysis should
ensure that the required memory of each agent does not exceed
the provided one. Similarly, a proper load balancing when
distributing computing tasks among agents requires a CPU
usage analysis of each agent.

The communication protocol choice is a further crucial
dimension on which the success of any AAL system largely
depends. While the cloud-based AAL solution leaves space for
a flexible choice, for the distributed Multi Agent System-based
architecture the inter-agent communication protocol choice is
restricted to ACL, hence bandwidth can become a constraint if
large amounts of data need to be transmitted between agents.

b) Security: Security properties, e.g., protecting sensi-
tive medical data or ensuring authorized access to data by
a third party, are essential extra-functional features for any
AAL solution. Since the information flow in the cloud-based
AAL solution is centralized, one can intuitively argue that it is
easier to encrypt and protect the data from unauthorized third
party attacks than in the agent-based solution: there, each agent
should incorporate a security aspect of its own in order to be
safe in cases of third party attacks.

c) Real-time properties: An AAL system should guar-
antee known real-time performance even in a highly dynamic
environment. Many functionalities, like the health parameters
variations, falls etc., need immediate assistance from care
givers. They are thus hard real-time, that is, the respective

Authorized licensed use limited to: Malardalen University. Downloaded on January 22,2021 at 19:47:34 UTC from IEEE Xplore. Restrictions apply.

Emergency Handling

v
A ~

.

E Noise recognition

g: 1

B @)

- e
-]

“ Face recognition

~

T
g
T
I
=)

=

2im >

]

Profile handling and action matching

e I e E—

wady ¢ ; e
BN

\

Fig. 3. AAL noise and face recognition system: Top level workflow model
(left), submodels (right)

deadlines and other timing constraints must be met. In the
distributed agent-based system, communication and synchro-
nization between the agents adds time overheads when taking
a decision after a critical event, therefore real-time property
analysis is a must to still guarantee timely operation.

d) Fault tolerance and Reliability: Fault tolerance has
a strict connection with reliability that refers to how long the
system can deliver its desired functionality successfully. The
centralized cloud-based AAL architecture has a single point-
of-failure risk, hence essential units need to be replicated in
order to ensure reliability. The inherently distributed MAS
architecture should be less exposed to fault tolerance risks
due to the distribution of functionalities.

Modern AAL architectures are highly complex systems and
provide continuous multi-functionality support that is time and
quality critical. To design, represent, analyze, and then guar-
antee the various aspects of functions and quality of service
outlined above, we envision the use of a multitude of tools
specialized to support design and analysis for such properties.
This tool landscape however needs to work coherently, and be
semantically interoperable.

We present next the design platform that one could consider
for developing AAL solutions with the user in the loop, to
which various existing tools can be added to achieve the
analysis along the various dimensions mentioned above.

III. DESIGN PLATFORMS: DESIGN AND ANALYSIS WITH
LIVING MODELS

In the modern connected world, agile and prototype-driven
design is rapidly emerging as the paradigm of choice for the
co-creation of applications and systems that really serve the
needs of the users and healthcare practitioners. In contrast

to the traditional software development process, collabora-
tive approaches that include AAL users and professionals
in the co-production of executable models do not start with
a lengthy analysis to produce textual specifications, distinct
and detached from the design and implementation. Agile
design platforms allow action-based design from inception,
involving the user/application expert continuously throughout
the whole systems’ life-cycle. Developing systems with the
eXtreme Model-Driven Development (XMDD) paradigm [9],
[10], for example, adopts a user-in-the-loop and expert-in-
the-loop model-driven philosophy that works by successively
enriching and refining a single artifact that is a rich multi-
aspect and multi-faceted formal and executable model, as in
the One-Thing Approach (OTA) [11].

In our early projects in the Potsdam Assisted Living Initia-
tive (PALI) that in 2007-2009 responded to the call for AAL
research in the Federal State of Brandenburg, we showed how
to use this modelling style to provide immediately executable
applications that connected heterogeneous systems to a con-
nected health collaborative landscape. Fig. 3 shows the service
logic of a noise and face recognition application for the AAL
Smart Home showcased at the CeBIT 2009 and IFA 2009.
This lightweight nighttime surveillance system is designed
in collaboration with a residential care home for dementia
patients. In this design approach application models are at the
center of the design activity and first class entities of the global
system design process.

Domain specific libraries of models establish a design
language familiar to both IT and non-IT stakeholders, where
building blocks are (elementary) units of behavior rather than
software components. In this example, the top level model
handles emergencies by 1) analyzing and classifying the noises
that microphones capture in the surveilled rooms, detecting
anomalies, and 2) switching on a camera and notifying the
nurse in charge, in case of peril or inconclusive classification.
To recognize the people in the room, it 3) compares the image
to a database of known potential individuals (patients, staff,
family members) and sends an appropriate message or alarm
to the nurse in charge.

Systems are specified by model assembly, using orches-
tration in each model, hierarchy for behavioral refinement,
and configuration as composition techniques. The top level
model includes three submodels, one for the noise recognition,
one for the face recognition, and one for the situation profile
handling and action matching (i.e., what to do in which case).

Knowledge and requirements are expressed as properties,
via constraints formulated in an automatically verifiable fash-
ion. Actually, some of the constraints happen to be domain-
independent, and already taken care of at design time by
the JABC or more recently DIME [1] design environment.
Here, this covers both the functional correctness of each
model element (Action), but also the patterns of usage inside
processes and workflows, i.e., behavioral constraints expressed
in temporal logics (typically CTL and LTL) and verified by
model checking.

As such, models are immediately executable, first in ani-

Authorized licensed use limited to: Malardalen University. Downloaded on January 22,2021 at 19:47:34 UTC from IEEE Xplore. Restrictions apply.

mation mode that proposes a walk through the system, then
with real code (for simulation or for implementation), they are
enactable from the very beginning. Hence the "living models”
name [11] that distinguishes them from the usual software
design models, which are purely descriptive and illustrative,
and do not provide immediate feedback on their own. In most
cases, such models get refined in this style until the atomic
actions get implemented, in source code or reusing previous
assets like a database, components via an API, or services.
In this case, there is no inherent design/implementation gap
between the initial prototype and the final product: the finished
running system is co-created incrementally along the design
process, and grows from the model through prototypes into
the fully implemented and running system.

The design of system behavior uses domain-appropriate
design tools like DIME [1], an IDE for the full model-
based generation of web-based applications, as most AAL
applications are. DIME is itself a CINCO [12] product, and
uses several levels of metamodelling and generation to de-
liver a highly customizable ad verifiable platform along the
lines of [13]. The XMDD design approach is however so
far architecture-agnostic, and its property support is geared
towards workflow-style properties easily expressible in CTL
for model checking with the GEAR [14] game-based model
checker for modal mu-calculus, and in LTL for workflow
(i.e., subprocess) synthesis with the PROPHETS plugin [15],
[16]. Timing properties and resources could and should be
added by a proper integration with REMES IDE [17], an en-
vironment that provides automated model-checking support in
UPPAAL [18] to resource-aware modeling in the REMES [2]
language, and stochastic behavior by integrating with Plasma
tools [5]. Also, architecture-awareness [19] might be a useful
addition, especially in case of distribution, which often leads
to feature interaction problems. It was shown in the past
how incremental formalization [20] turned out beneficial in
managing interferences in telecommunication platforms [21].
We expect the connected healthcare aspect of AAL to share
many traits with those applications, thus profiting from that
experience in evolution-friendly design.

IV. STATISTICAL MODEL CHECKING AND AAL

In the context of motion planning for assisted living [22],
[23], the Plasma Lab platform for Statistical Model checking
(SMC) was integrated with robotic devices in the DALi and
ACANTO EU projects. There, a novel online motion planning
application of SMC helps those with impaired ability to
negotiate complex crowded environments like shopping malls
and museums. While DAL is focused on helping a single
user reach a number of specific locations, ACANTO concerns
therapeutic activities of groups of users, where group cohesion,
social interaction, and exercise are the metrics of interest.

In the basic system architecture shown in Fig. 4, sensors
like fixed cameras and cameras on robotic devices locate fixed
and moving objects in the environment. A predictive stochastic
model of human motion (the “social force model”) constructed
from this information is used to generate plausible future

Sensor Board
Sensor
Processing

Sensors

Motion Planner Board

Social Force
Model |

PLASMA-lab
SMC Engine

Global Suggested
Objectives Motion

Fig. 4. Architecture of the DALi motion planner with Plasma Lab

Fig. 5. Operation of the DALi motion planner

trajectories of all the detected moving agents, given initial
deviations from their current trajectories. After hypothesizing
different initial directions, Plasma Lab estimates the proba-
bility that future trajectories will satisfy path constraints and
objectives expressed in temporal logic. The best deviation is
suggested to the user.

In Fig. 5, a user (the rectangle) walking to the next local
waypoint (green dot) in straight line (in red) would with
high probability collide with other pedestrians (circles), whose
position and velocity are indicated by vectors. By making a
deviation to the user’s trajectory (dashed red line), Plasma Lab
predicts that the pedestrians will avoid each other with high
probability (shaded areas).

The planner can include additional constraints like desired
zones for the pedestrian (e.g., “keep within 5 minutes walk
from a restroom”), undesired zones to avoid, and anomalies
like temporary obstacles over the path. The global planner
starts from a pre-calculated global plan that visits the user’s
objectives in an a priori optimal way, considering all things
known in advance, and calculates a local way point w as the
user’s point of greatest straight line progress along the global
plan within the sensor range.

Then, the motion planner assumes the user will follow
the global plan, but needs to temporarily deviate to avoid
collisions. A short term planning algorithm uses SMC to
suggest a deviation to the user’s direct path.

Authorized licensed use limited to: Malardalen University. Downloaded on January 22,2021 at 19:47:34 UTC from IEEE Xplore. Restrictions apply.

A. Plasma Lab: a Statistical Model Checking platform

SMC is based on the notion that sample runs of a stochastic
system are drawn according to the distribution defined by the
system, and can therefore be used to estimate the probabil-
ity measure on executions. The properties handled by such
approach include BLTL [24], a bounded version of LTL.

PLASMA is a compact, efficient and flexible SMC platform
that offers a series of SMC algorithms, including classical
SMC algorithms and specialized ones for rare events. Being
a platform, PLASMA is designed for API-based integration
of external simulators, input languages, and SMC algorithms.
This ability reduces the effort of integrating new algorithms
and allows us to create direct plugin interfaces with industry-
used specification tools, without using extra compilers, for
example with Simulink.

V. AN ENCOMPASSING SYNERGETIC APPROACH

As just described, many dimensions of analysis and verifi-
cation cooperate to ensure the high quality of AAL solutions.
At each level, the one or other platform, approach, or tool
offers means to express, check, or enforce some characteristics
of the system under design that are crucial to a high quality
AAL solution. Our proposal is to join forces and combine
the strengths of each approach into an integrated design
and verification platform with strong holistic description and
validation capabilities. For each dimension, we sketch the
possible synergies and how we envisage to achieve them.

a) Design and Functional Correctness: We can analyze
functional properties by model checking behavioral models
like, e.g., in DIME, and synthesize functionally correct sub-
models with PROPHETS. We use CTL and LTL, respectively,
directly on our behavioral models. At the metamodel level, we
can formulate correctness criteria in CINCO and ensure that
the tool generated from that CINCO model (e.g., DIME) will
automatically enforce model compliance to them. An example
can be seen in

Probabilistic properties can be covered via SMC through
Plasma Lab [5], most likely by using it as a plugin to
a design environment like DIME or REMES. In fact, the
PLASMA API and plugin-based architecture makes it easy to
add new simulators, checkers, or algorithm components. This
is compatible with both the CINCO tool generation philosophy
and the DIME design environment: the PLASMA GUI is itself
created using the CINCO metamodeling environment [25].

Functionalities can also be mapped to REMES models,
which are hierarchical dense-time models of functional, timing
and resource-usage behaviors of systems, achieving a design
environment that coherently integrates at the model level the
different aspects to describe, and then validates and tests the
systems underlying the AAL solutions.

b) Security, Privacy, Confidentiality: Security is lay-
ered inside the activities, at the model level, and at the global
level including the run-time environment.

Equipping the system with security features via the security
Domain Specific Language and security processes [26] offered
by the SEcube security design platform [3] is an attractive

possibility, especially as SEcube is already integrated with
DIME. We can map also privacy and confidentiality to general
temporal logic properties once we have a role model (e.g. as
RBAC) [4] and a characterization of the security primitives.
If the properties are probabilistic, the SMC capabilities can
again be used.

The entire SEcube”™ platform is ready to support security-
agnostic application designers in their need to add security
aspects to their models, by leveraging predefined abstract
security primitives [27], which they might theoretically not
even know nor understand in detail. For these reasons, DIME
includes by design the support of properties and model ma-
nipulations that are foundational for the OTA-based XMDD.
DIME focuses on application experts, who are typically non-
programmers, and its versatility is a key characteristic. We
showed in [28] how to model a C application in C-IME (a
Cinco product for the design of C applications) and seamlessly
add to it security, and we showed in [29] how to design a web
based application using XMDD. Analog to policy expression
and check [30], if the rules and policies are expressed as logic
constraints, we can check them on the AAL system models.

c) Performance and Real-time properties: The hard
real-time constraints of AAL solutions can be analyzed in our
integrated framework by model checkers like UPPAAL [18],
a state-of-the-art tool for verifying real-time systems. End-to-
end deadlines, response times and synchronization constraints
can be encoded as (timed) CTL properties and model checked
with UPPAAL, assuming the model of the system as a network
of timed automata or its extensions.

PLASMA can be used through its GUI, but also via the
command line or embedded in other software as a library. The
PLASMA GUI, itself created using the CINCO metamodeling
environment [25], supports its use as a standalone SMC with
multiple ‘drop-in” modeling languages, and provides an SMC
engine and a source template to create custom simulator
classes. A plugin system makes adding a simulator, a checker
or an algorithm component pretty straigthforward. To benefit
from massive distribution of the simulations, the PLASMA API
provides generic methods to define distribution algorithms.
These functionalities were used previously to distribute large
number of simulations over a computer grid 2.

REMES is already integrated with UPPAAL, and the latter
can also be added to DIME, and easily interfaced with Plasma
via a dedicated plugin.

d) Resource Analysis: Resource guarantees and opti-
mizations are kept as much as possible distinct from design
issues, in order to maintain information on the structure and
the design decisions independent of the considerations that
lead to a particular optimized implementation.

Resource-related properties of AAL solutions, like CPU,
bandwidth and memory usage, can be expressed and analyzed
in REMES (REsource Model for Embedded Systems) [2],
[17], which is a resource-aware behavioral language of in-
teracting components, called modes, which communicate with

Zhttps://project.inria.fr/plasma-lab/documentation/tutorial/
igrida-experimentation/

Authorized licensed use limited to: Malardalen University. Downloaded on January 22,2021 at 19:47:34 UTC from IEEE Xplore. Restrictions apply.

one another and the environment via shared variables. Each
of the considered abstract resources, that is, memory, CPU,
energy, bandwidth, have a dedicated type in the language:
mem, CPU, eng, bdw, respectively. The semantics of REMES
modes is given in terms of (priced) timed automata, so
feasibility analysis as well as optimal and worst-case resource
usage of various AAL solutions can be checked as (weighted)
CTL properties with the UPPAAL suite.

In the future, one could equip the DIME models with the
ability to express resource models and characteristics as in the
REMES model, in order to also encompass resource-aware
behavior, and be able to reason about possible trade offs
between quality-of-service attributes of AAL solutions.

e) Fault tolerance and Reliability: The reliability of an
AAL solution for a specified period of time under specified
environmental conditions can be modeled probabilistically in
Plasma or UPPAAL SMC (Statistical Model Checker) [31],
and the probability of successful operation can be checked by
hypothesis testing with Plasma for untimed models, and with
UPPAAL SMC for timed models, or estimated via probability
evaluation.

UPPAAL SMC can be interfaced with Plasma for statistical
analysis of complex timed models, and with REMES to
provide statistical model checking of resource-related proper-
ties. Replicated AAL models can be abstracted into networks
of stochastic timed/hybrid automata that can be statistically
model checked to analyze fault tolerance.

f) Evolution and Tools Interoperability: Changes in
models and properties are inevitable for dynamic AAL sys-
tems, to which a new health service can be added at a later
time, or hardware can be replaced depending on the user’s
needs. Such changes need to be supported by a potential inte-
grated framework for modeling and analyzing AAL systems.

In DIME, system changes (e.g., upgrades, customer-specific
adaptations, new versions) occur only, or at least primarily, at
the model level, with a subsequent global re-verification, and
re-compilation (or re-synthesis, in the future).

Evolution can be handled in REMES by depicting intra- and
inter-component dependencies via dependency analysis [32]
that traces the impact of some modification in the model.
Smooth changes are facilitated by tools interoperability, which
means that model artifacts can be exchanged between tools.

Moreover, in order to ensure semantic compatibility be-
tween the involved tools (DIME, SECube, REMES, UPPAAL
and Plasma), that is, guarantee that a model preserves the
original execution semantics from one tool to the other, we
might need to define a “semantic translator” that implements
the model-to-model translations based on a mapping meta-
model, either in a constructive way as in CINCO or in a
transformational manner [33].

VI. CONCLUSION

The technological advances triggered by the IoT and Cloud
computing paradigms enable the development of AAL so-
Iutions that support the independent and safe life of the
elderly. Based on our previous experience in AAL and other

application domains that require high quality assurance, we
are collectively designing a methodology as a general schema
that combines the presented architectures, IDEs and design and
analysis tools. It will allow designers to specify, develop, and
verify system models along with their security, performance,
and resource consumption. In this way, we open the gates
towards an integrated system that closes the gap between
security models and system design models, and the gap
between design and verification, and implementation and its
quality assurance in terms of testing and evolution.

REFERENCES

[1

—

Steve BoBelmann, Markus Frohme, Dawid Kopetzki, Michael Lybecait,

Stefan Naujokat, Johannes Neubauer, Dominic Wirkner, Philip Zwei-

hoff, and Bernhard Steffen. DIME: A Programming-Less Modeling

Environment for Web Applications. In Proc. of the 7th Int. Symp. on

Leveraging Applications of Formal Methods, Verification and Validation

(ISoLA 2016), 2016.

C. Seceleanu, A. Vulgarakis Feljan, and P. Pettersson. Remes: A resource

model for embedded systems. In /4th IEEE Int. Conf. on Engineering

of Complex Computer Systems (ICECCS 2009), pages 84-94. IEEE CS,

2009.

Antonio Varriale, Giorgio di Natale, Paolo Prinetto, Bernhard Steffen,

and Tiziana Margaria. SEcube™: An open security platform: General

Approach and Strategies. In T.Margaria and Ashu M.G.Solo, editors,

The 2016 International Conference on Security and Management (SAM

2016). Special Track ”End-to-end Security and Cybersecurity: from the

Hardware to Application”, pages 131-137. CREA Press, 2016.

Steve BofBielmann, Johannes Neubauer, Stefan Naujokat, and Bernhard

Steffen. Model-Driven Design of Secure High Assurance Systems:

An Introduction to the Open Platform from the User Perspective. In

T.Margaria and Ashu M.G.Solo, editors, The 2016 International Con-

ference on Security and Management (SAM 2016). Special Track ”End-

to-end Security and Cybersecurity: from the Hardware to Application”,

pages 145-151. CREA Press, 2016.

B. Boyer, K. Corre, A. Legay, and S. Sedwards. PLASMA-lab: A Flex-

ible, Distributable Statistical Model Checking Library. In Proceedings

of QEST, volume 8054 of LNCS, pages 160-164. Springer, 2013.

M. Uddin Ahmed, M. Bjorkman, and M. Lindén. A generic system-level

framework for self-serve health monitoring system through Internet of

things (I0T). Studies in health technology and informatics, 211:305-307,

2015.

D.I. Tapia, S. Rodriguez, and J.M. Corchado. A distributed ambient

intelligence based multi-agent system for alzheimer health care. In

Pervasive Computing, pages 181-199. Springer, 2009.

M. Georgeff, B. Pell, M. Pollack, M. Tambe, and M. Wooldridge. The

belief-desire-intention model of agency. In International Workshop on

Agent Theories, Architectures, and Languages, pages 1-10. Springer,

1998.

Tiziana Margaria and Bernhard Steffen. Agile IT: Thinking in User-

Centric Models. In Tiziana Margaria and Bernhard Steffen, editors,

Leveraging Applications of Formal Methods, Verification and Validation,

volume 17 of Communications in Computer and Information Science,

pages 490-502. Springer Berlin / Heidelberg, 2009.

[10] Tiziana Margaria and Bernhard Steffen. Service-Orientation: Conquering
Complexity with XMDD. In Mike Hinchey and Lorcan Coyle, editors,
Conquering Complexity, pages 217-236. Springer London, 2012.

[11] Tiziana Margaria and Bernhard Steffen. Business Process Modelling in
the JABC: The One-Thing-Approach. In Jorge Cardoso and Wil van der
Aalst, editors, Handbook of Research on Business Process Modeling.
IGI Global, 2009.

[12] S. Naujokat, M. Lybecait, D. Kopetzki, and B. Steffen. CINCO:

A Simplicity-Driven Approach to Full Generation of Domain-Specific

Graphical Modeling Tools. Software Tools for Technology Transfer,

2017. to appear.

Bernhard Steffen and Stefan Naujokat. Archimedean Points: The

Essence for Mastering of Change. LNCS Transactions on Foundations

for Mastering Change (FoMaC), 1(1), 2016.

=
it

3

=

[4

=

[5

—

[6

—_

[7

—

[8

—

[9

—

[13

—_

Authorized licensed use limited to: Malardalen University. Downloaded on January 22,2021 at 19:47:34 UTC from IEEE Xplore. Restrictions apply.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27

[28]

[29]

[30]

[31]

[32]

Marco Bakera, Tiziana Margaria, Clemens Renner, and Bernhard Stef-
fen. Tool-supported enhancement of diagnosis in model-driven verifi-
cation. Innovations in Systems and Software Engineering, 5:211-228,
2009.

Anna-Lena Lamprecht, Stefan Naujokat, Tiziana Margaria, and Bernhard
Steffen. Synthesis-Based Loose Programming. In Proc. of the 7th Int.
Conf. on the Quality of Information and Communications Technology
(QUATIC 2010), Porto, Portugal, pages 262-267. IEEE, September
2010.

Stefan Naujokat, Anna-Lena Lamprecht, and Bernhard Steffen. Loose
Programming with PROPHETS. In Juan de Lara and Andrea Zisman,
editors, Proc. of the 15th Int. Conf. on Fundamental Approaches to
Software Engineering (FASE 2012), Tallinn, Estonia, volume 7212 of
LNCS, pages 94-98. Springer Heidelberg, 2012.

D. Ivanov, M. Orli¢, C. Seceleanu, and A. Vulgarakis. Remes tool-
chain: A set of integrated tools for behavioral modeling and analysis of
embedded systems. In Proc. of the IEEE/ACM Int. Conf. on Automated
Software Engineering, ASE’10, pages 361-362. ACM, 2010.

K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a Nutshell. Interna-
tional Journal on Software Tools for Technology Transfer, 1(1):134-152,
1997.

S. Bjornander, C. Seceleanu, K. Lundqvist, and P. Pettersson. ABV-
A verifier for the architecture analysis and design language (AADL).
In Engineering of Complex Computer Systems (ICECCS), 2011, pages
355-360. IEEE CS, 2011.

Bernhard Steffen, Tiziana Margaria, Andreas Clalen, and Volker Braun.
Incremental Formalization: A Key to Industrial Success. Software -
Concepts and Tools, 17(2):78-95, 1996.

Bengt Jonsson, Tiziana Margaria, Gustaf Naeser, Jan Nystrom, and
Bernhard Steffen. Incremental requirement specification for evolving
systems. Nordic J. of Computing, 8:65-87, March 2001.

A. Colombo, D. Fontanelli, A. Legay, L. Palopoli, and S. Sedwards.
Motion planning in crowds using statistical model checking to enhance
the social force model. In IEEE Conference on Decision and Control
(CDC), pages 3602-3608, 2013.

A. Colombo, D. Fontanelli, A. Legay, L. Palopoli, and S. Sedwards.
Efficient customisable dynamic motion planning for assistive robots in
complex human environments. Journal of ambient intelligence and smart
environments, 7:617-633, 2015.

P. Zuliani, C. Baier, and E. Clarke. Rare-event verification for stochas-
tic hybrid systems. In Hybrid Systems: Computation and Control,
HSCC’12, Beijing, China, pages 217-226. ACM, 2012.

Stefan Naujokat, Louis-Marie Traonouez, Malte Isberner, Bernhard
Steffen, and Axel Legay. Domain-Specific Code Generator Modeling:
A Case Study for Multi-faceted Concurrent Systems. In Proc. of the 6th
Int. Symp. on Leveraging Applications of Formal Methods, Verification
and Validation, Part I (ISoLA 2014), volume 8802 of LNCS, pages 463—
480. Springer, 2014.

Giorgio di Natale, Alberto Carelli, Pascal Trotta, and Tiziana Margaria.
Model driven design of crypto primitives and processes. In T.Margaria
and Ashu M.G.Solo, editors, The 2016 International Conference on
Security and Management (SAM 2016). Special Track End-to-end
Security and Cybersecurity: from the Hardware to Application”, pages
152-158. CREA Press, 2016.

Tiziana Margaria, Bernhard Steffen, and Manfred Reitenspief3. Service-
Oriented Design: The Roots. In Proc. of the 3rd Int. Conf. on Service-
Oriented Computing (ICSOC 2005), Amsterdam, The Netherlands, vol-
ume 3826 of LNCS, pages 450-464. Springer, 2005.

Bernhard Steffen Frederik Gossen, Johannes Neubauer. Securing c/c++
applications with a secubetm-based model-driven approach. In Proc.
DTIS 2017, this volume, April 2017.

Tiziana Margaria Steve Boflelmann, Dennis Kiihn. A fully model-based
approach to the design of the secubetm community web app. In Proc.
DTIS 2017, this volume, April 2017.

Martin Karusseit, Tiziana Margaria, and Holger Willebrandt. Policy
expression and checking in xacml, ws-policies, and the jabc. In Proc.
TAV-WEB 2008, Worksh. on Testing, Analysis, and Verification of Web
Services and Applications, with ACM SIGSOFT ISSTA, Seattle, USA,
pages 20-26, 2008.

A. David, K.G. Larsen, A. Legay, M. Mikucionis, and D.B. Poulsen.
Uppaal smc tutorial. STTT Journal, 17(4):397-415, 2015.

R. Marinescu, S. Mubeen, and C. Seceleanu. Pruning architectural
models of automotive embedded systems via dependency analysis. In

Proc. of IEEE Euromicro SEAA Conference (SEAA 2016). IEEE CS,
2016.

[33] G. Karsai, A. Lang, and S. Neema. Design Patterns for Open Tool

Integration. Software and Systems Modeling, 4(2):157-170, 2005.

Authorized licensed use limited to: Malardalen University. Downloaded on January 22,2021 at 19:47:34 UTC from IEEE Xplore. Restrictions apply.

