
Abstract 
The performance demands on real-time platforms increase, 
mostly because real-time applications become larger and more 
complex. Two reaserch directions with purpose to meet the 
increasing performance demands in real-time systems are 
utiliziation of multiprocessor platforms and hardware 
operating system kernels. In this article we show a 
performance comparison between a real-time multiprocessor 
kernel implemented in hardware and a corresponding kernel 
implemented in software. The hardware kernel showed overall 
better performance. For instance the speedup achieved with 
the hardware kernel was up to 2.6 times, when measuring the 
communication latency between different nodes. We also 
present an optimization that has been applied to the software 
kernel. The improved software kernel showed in some cases 
even better performance than the hardware kernel. 

1 INTRODUCTION 

Real-time systems are computing systems that have a time 
critical nature. When a certain event occurs in the 
environment, the real-time system must react with the 
correct response within a certain time. An Operating 
System (OS) is in simplest form a system program that 
provides a higher level of abstraction to the application 
programmer than the bare hardware. The most 
distinguishing feature with a Real-Time Operating System 
(RTOS) compared to such an OS is its deterministic and 
predictive time management methods. As real-time 
applications become larger and more complex every year, 
the demands on real-time platforms also increase, which 
motivates moving real-time applications onto 
multiprocessor systems. One method to obtain even more 
performance is to utilize special purpose hardware. 
Examples of such hardware include graphic accelerators 
and network cards; another application is the Real-Time 
Unit (RTU) [10]. The RTU contains typical RTOS 
functionality that has been moved from software into 
hardware. In this way it is possible to decrease the RTOS 
overhead as for instance scheduling, time management and 
communication primitives, since it is processed by parallel 
hardware. 
In this paper, we present a comparison between a 
centralized software kernel and the RTU, both executing on 
the same multiprocessor system. The comparison is 
achieved by an own series of benchmarks with ingredients 
from other well-known benchmarks and focus is on 
performance of basic OS functionality. We made an own 

benchmark series because there is no existing benchmark 
adapted for the target system. If we had ported an existing 
benchmark the comparison with other target systems would 
anyhow be discussable, since system-calls and other 
implementation details differ. Another motivation is that we 
could choose according to us the most interesting 
benchmarks. The software kernel has been especially 
implemented for this comparison; it offers the same but 
slightly reduced Application Interface (API) as the RTU. 
The gain is that we can execute the same benchmark code 
and thereby eliminate implementation differences and strive 
towards a fair hardware/software comparison. Furthermore 
we apply an optimization to the software kernel, which 
should minimize some of the weaknesses. To explore the 
potential with the new version of software kernel, some of 
its benchmark results are compared with the results 
achieved with the former version as well as with the 
hardware implementation. 
The purpose is to find the differences with implementing 
kernels in software and hardware. The expectation is clearly 
that the hardware kernel outperforms the software kernel. 
But how much can we assume to gain when utilizing 
hardware RTOS? Can we unveil any weaknesses with the 
current hardware implementation? 
A similar comparison has been made in [1]. The differences 
are firstly divergent hardware/software API; furthermore 
the author relies on executing one covering workload while 
we present many smaller independent measurements. In 
[11], a comparison between a software kernel and a 
hardware kernel on a single processor system has been 
done. In [5] the authors present a simulation based 
comparison of three different systems; one of the systems is 
also included in this benchmark. 
The outline of the paper is as follows: The remaining part 
of Section 1 firstly introduces the common hardware 
platform followed by descriptions of the two kernels. 
Section 2 defines the benchmark method and Section 3 
presents and discusses the results. In section 4 we shortly 
present an optimization of the software kernel, which also is 
applicable to the hardware kernel. In the 5th section we 
discuss the paper and the 6th and final section contains 
suggestions of future work. 
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1.1 Common Hardware Platform 
When comparing different RTOS kernels it is important 
that the hardware configuration is equivalent, in order to 
easily obtain comparable results. The hardware platform 
used by both kernels in this paper is the SARA system 
described in [6]. The hardware architecture of the SARA 
system can be divided into local CPU boards, bus-
arbitrator, global RAM and I/O. Figure 1 shows a schematic 
picture of the SARA system. Each board has a Motorla 
PPC750 processor, running at 367 MHz and the boards are 
connected to each other with a Compact PCI bus (CPCI). 
The CPCI bus offers eight slots for CPU boards, however in 
a CPCI system there is always one special system-slot. This 
slot has a special processor board (system-board) that 
handles the arbitration, clock-distribution, etc on the CPCI 
bus. Communication and synchronization between different 
processes in the system is performed through a global 
memory that resides on the system-board. This implies that 
all communication between tasks go through the system 
board, even if two tasks residing on the same slave board 
are communicating. 
There are two kinds of PCI buses in the system. All boards 
have a local PCI bus that is connected to the CPCI bus 
through a PCI-PCI bridge, see figure 1. The system board 
has a transparent bridge, while the other boards have 
bridges that translate addresses on one bus to another 
address on the other bus, in purpose to utilize the whole 
local address range. 

Figure 1, block-diagram of the SARA system 

1.2 Hardware Kernel 
The RTU is a special purpose hardware that performs real-
time operating system functions. Examples of such 
functions are scheduling, time-management and semaphore 
handling. The task-scheduling algorithm is priority-based 
and supports preemption of tasks. A Virtual 
Communication Bus (VCB) [8] that uses the global 
memory on the system board is used for interprocess 
communication and synchronization between tasks in the 

system. The message-queues are priority based and if an 
incoming message has higher priority than the receiving 
task, the priority of the receiving task is raised during the 
message transaction. By this mechanism, the priority 
inversion problem [12] is avoided. For further details 
related to the RTU, please refer to [10]. 

1.3 Software Kernel 
The software kernel is designed to act like the RTU, with 
respect to API and general semantics. The processor on the 
system board executes ordinary tasks as well as a kernel 
that handles RTOS functions for all tasks and processors in 
the system. The software kernel is written in PPC750 
assembler, C and C++, compiled with GNU Compiler 
Collection version 2.95.1 [2] without optimization flags. 
Small parts of the code are compiler dependent, since inline 
assembler and macros are used. This paper contains a brief 
description of the central parts: scheduling, interprocess 
communication and clock management. 
The software kernel is centralized; thereby the kernel on the 
system board schedules the whole system. The scheduling 
algorithm is priority driven like the algorithm in the RTU 
and supports pre-emption of tasks. Scheduling decisions are 
enforced through interrupts from the kernel on the master 
node to all processors. Each task executes only on the node 
where it was created and registered, so no task migration is 
allowed. The scheduler holds the current priority and state 
of all tasks in the system, while each node has a Task 
Control Block (TCB) associated with each of its own tasks. 
The TCB contains a reference to the procedure that 
represents the task, a stack pointer and the processor 
registers needed to store and reload the state for the task to 
obey the decisions made by the scheduler. 
The VCB connected to the RTU consists of a software layer 
containing the API against a hardware layer performing 
message transactions. The software kernel replaces the 
hardware layer while the interface layer remains untouched. 
The message-queues are placed in the global memory on 
the system board and to protect them, a priority driven 
semaphore-protocol has been implemented. 
Since the system board hosts the kernel, all decisions are 
made on the system board and therefore it is the only board 
that must provide timekeeping methods. This is a gain with 
the centralized implementation, because we can avoid 
costly clock synchronization and clock-tick interrupts on 
the slave boards. Clock-tick interrupts are created with the 
standard methods provided by the processor on the master 
board, and this is a point where the software kernel differs 
from the RTU. The RTU has configurable clock-tick 
resolution, however the default and used interval between 
two interrupts is 10 µs. But using such a resolution in the 
software version leaves no time to other activities than 
clock tick administration. Instead the interval between two 



ticks is set to 100 ms, this seems to be to long during 
normal circumstances, since a kernel should be able to 
handle delays for about 10 ms. But as a consequence of 
many system calls, such as sleep, send and receive the 
kernel executes the scheduling algorithm and can postpone 
any pending clock-tick interrupts another 100 ms. As a 
result when executing system-call intensive applications, 
the software kernel becomes completely event driven. All 
benchmarks in this paper are system-call intensive or 
measure only the time for a specific system-call. Therefore 
the kernel can be considered as event driven during the 
benchmarks and clock-tick at 100 ms or 5 ms does not 
affect the results. The gain with a 100 ms period is that it is 
possible to manually start different tasks and nodes during 
the same period.  

2 BENCHMARK METHODS 

The benchmark is aimed to serve as comparison between 
the hardware kernel and the software kernel. Both kernels 
have the same programming interface, although the 
software kernel has a slightly reduced version. 
The benchmark series is built with own ideas and parts 
from the established benchmarks: Rhealstone [4], SSU [7] 
and Distributed Hartstone [3]. All tests have been repeated 
five times in order to compute the average result. In real-
time context it is often the worst-case times that are 
considered, but this benchmark is performance oriented so 
it is the average times that are analyzed. The authours are 
avare of that five times is not enough to prove statistical 
confidence, but regarded as enough to consitute bases of 
this comparison.  In the following sub-sections, the idea and 
experimental setup of each independent benchmark is 
explained. 

2.1 Create Task 
This test case is taken from the SSU benchmark and the 
time it takes to create a task is measured. The timekeeping 
starts when a task is going to be created and stops when the 
task has been created. Conditions that may affect the task 
creation time are the number of already created tasks and 
where in the system the task is located. Therefore the 
number of already created tasks is varied between 0 and 16 
and the test is performed on both the master and a slave 
node independently. In complex multiprocessor systems, 16 
tasks are still very low number of tasks. The aim for this 
benchmark is to find out if the number of already created 
tasks affects the create task time, therefore the maximum of 
16 tasks has been considered as enough. 

2.2 Taskswitch 
This test case has been influenced by the Rhealstone 
benchmark and it measures the time to switch between two 

independent and active tasks with equal priority. The 
taskswitch time is crucial to the performance in a real-time 
system. In this test the terms for variation are the number of 
simultaneously active tasks and the placement of tasks, i.e. 
on master or slave node. Practically we measure the time 
between that a task calls for a manual taskswitch, until the 
next task becomes executing. The number of active tasks is 
varied between 2 and 16, and the tests are performed on 
both the master and a slave node independently. 
 
2.2.1 Communication Bandwidth 
Variants of this measurement are included in Rhealstone 
and Distributed Hartstone. This measurement aims to 
measure the number of bytes per second one task can send 
to another. The communication bandwidth may be different 
for tasks hosted by different processors and tasks hosted by 
the same processor. For this reason independent 
benchmarks with the receiving and sending task hosted by 
different processors are performed. Because the bandwidth 
in most systems depends of the message size, it is a target 
for variation. The experimental setup used for this 
benchmark relies on measuring the time it takes to send a 
fixed amount of raw data between two tasks, with no other 
communication present. The timekeeping starts when the 
first message is sent by the sending task, and ends when the 
last message is received by the receiving task. The total 
amount of data is constant 10 kB and is divided into 
different number of messages in each independent test. 
 
2.2.2 Communication Latency 
The end-to-end communication latency is also measured in 
Distributed Hartstone. Using different message sizes 
between 1 and 128 bytes with regular intervals between the 
two extremes, tests the effect of message size. The effect of 
task placement is considered by letting the sending and 
receiving tasks be hosted by different nodes in independent 
test series. The implementation of this benchmark simply 
consists of measuring the time from which the message is 
sent by the sending task until it is received by the receiving 
task, in this implementation it was most suitable to measure 
the roundtrip delay. Since we have no accurate external 
clock and no clock synchronization between the nodes, it is 
easier to take the two necessary timestamps on the same 
node to achieve a reliable result. The first timestamp is 
taken on the sender side when a message is sent and the 
second timestamp when the sender receives an 
acknowledgement from the receiver. 
 
2.2.3 RTOS Overhead 
The method used in this benchmark is a common 
benchmark method and is for instance used in [1]. The 
comparison is based on executing an ordinary application 
and measuring the time it takes. As applications the classic 



problem The Traveling Salesman (TSP) was chosen. It is 
not a typical application executed by a RTOS, it should 
instead be considered only as synthetic workload. It is 
considered beyond the scope of this paper to describe the 
implementation to its fully, it should be enough information 
to know that the TSP implementation communicates 
through many small messages. 

3 RESULT 

Each benchmark test have been performed with several 
configurations, for instance we have run the Create Task 
test both on the master node and a slave node. This implies 
that we have too many graphs to present, so we show 
according to us the most important graphs. We will analyze 
all the results, including the graphs that are not presented in 
this paper. 

Figure 2, create task benchmark on slave node 

3.1 Create Task 
The results for the Create task benchmark on a slave node 
are shown in figure 2. The x-axis indicates the number of 
already created tasks in the system. The measured time is 
the time it takes to create one task. As we can see the 
hardware kernel is faster than the software kernel. A task 
that is created has to be registered to the scheduler, in both 
cases this is achieved by a synchronous system-call. By 
synchronous we mean that the caller has to wait for an 
acknowledgement that is delivered when the call is 
processed, so this benchmark shows that the software 
kernel has longer latencies. Also as predicted the software 
kernel has longer latencies with increasing number of 
already created tasks. That depends on the list management 
latencies that increase with increasing number of tasks. In 
any case it is possible to create tasks with fixed latencies in 
the software case, but we have not focused on code 
optimization. The cache memory effects are also visible in 
the test, since the first call is more time consuming than the 
second. The RTU is inplemented in hardware and cannot be 
affedted by caches, but it still have TCB’s and RTU 

interface code implemented in software, and these parts are 
affected. 
The Create Task benchmark on the master node resulted in 
another relationship, the form of the graphs was essentially 
the same but the software kernel was faster than the 
hardware kernel. This is due to that in the software case the 
tasks are created completely locally on the master node, but 
when using the hardware kernel we suffer of PCI latencies. 

3.2 Taskswitch 
When switching tasks on a slave node the hardware kernel 
is much faster than the software kernel as we can see in 
figure 3. This is explained by the fact that algorithms 
implemented in parallel special purpose hardware often are 
faster than algorithms implemented in software. Notice that 
the software kernel is not affected by the number of tasks in 
this test, because the two tasks that are involved in the 
taskswitch, has the highest priority in the system. When this 
benchmark was executed on master node, the difference 
between the two kernels was much smaller. The software 
kernel was faster, due to the PCI latencies of the RTU 
against local switches on the master node. 

Figure 3, taskswitch benchmark on slave node 

Figure 4, communication bandwidth benchmark, sender and receiver on 
master node 



3.3 Communication Bandwidth 
In figure 4 the bandwidth between tasks residing on the 
master node is compared, and figure 5 shows the bandwidth 
between a sending task residing on a slave node and a 
receiving task residing on the master node. This benchmark 
shows that the bandwidth between two tasks hosted by the 
master node is sometimes greater with the software kernel, 
but when communicating across node boundaries the 
bandwidth is always greater with the hardware kernel. The 
software kernel seems to be more efficient with increasing 
number of messages, in relation to the hardware kernel. The 
reason is that the software kernel executes the scheduling 
algorithm as a speculation after many system-calls, 
including send and receive message. These speculations can 
be considered as successful when the result is to switch 
tasks, otherwise they are waste of time. When there are lots 
of successful speculations the software kernel is efficient. 
Such a situation is when many send and receive are 
processed in a rapid sequence. The hardware kernel does 
these speculations also, but do not load the system 
processors because they are executed in parallel hardware. 

Figure 5, communication bandwidth benchmark, sender on slave node and 
receiver on master node 

3.4 Communication Latency 
Figure 6 shows the communication latencies between tasks 
hosted by different nodes. The sending task resides on a 
slave node and the receiving task resides on the master 
node. The test makes clear that the end-to-end delay also 
referred as the transmission latency, is shorter with the 
hardware kernel in this test case. But as earlier the result 
depends on the locality of the involved tasks, the software 
kernel has shorter latency when both the sending and the 
receiving tasks are hosted by the master which also hosts 
the kernel. The observed latencies for the hardware kernel 
are almost equal in all test cases, whereas the software 
kernel has shorter latencies when both tasks are residing on 
the master node and longer latencies when at least one of 
the two tasks resides on a slave node. This indicates that the 

hardware is a more deterministic solution, and in this way 
decreases the demands on real-time application 
programmers since it is easier to estimate bounded latencies 
that are not too pessimistic. 

Figure 6, communication latency benchmark, sender on slave node and 
receiver on master node 

3.5 RTOS Overhead 
In figure 7, we can see when running the TSP application 
and exercising the whole system with messages as 
synchronization, the hardware kernel is faster. The reason 
why the hardware kernel is faster than the software kernel is 
larger communication bandwidth, shorter communication 
latencies and faster taskswitches. 

Figure 7, RTOS overhead benchmark, running TSP 

4 OPTIMIZATION OF THE SOFTWARE KERNEL 

As we could see in the benchmark results presented in the 
previous section, the main drawback with the software 
kernel seems to lie in time-consuming system-calls from 
tasks on slave nodes. As long as tasks are executing on the 
system board, which also hosts the kernel, the software 
solution is often faster than the hardware and its enclosed 
PCI-access latencies. An optimization that should increase 
the performance of both kernels is to increase the locality of 
data and try to avoid PCI-accesses. In the remaining part of 
this section we will present an optimization of the software 
kernel that strives for higher utilization of data locality. 
Note that this optimization is not only possible to introduce 



in the software kernel, but also in some form in the 
hardware kernel. For a more detailed description of this 
kernel and complete benchmark results refer to [14]. 

Figure 8, placement of scheduling queues in the optimized software kernel  

A central part of a multiprocessor RTOS is the placement of 
the processor schedulers and different task queues. It is a 
choice between schedulers residing on the different 
processors, a centralized scheduler, perhaps with dedicated 
application and system processors or any combined 
approach. Unlike the centralized RTU and the original 
software version, the improved software kernel consists of 
several schedulers. The system board has a complete 
scheduler while the slave boards have simpler schedulers or 
dispatchers. This quality makes the improved version semi-
distributed, i.e. not pure centralized and not fully 
distributed. The idea with several different schedulers can 
for instance be found in the Spring system [9] and in RT-
Mach [13]. 

Figure 9, create task benchmark on slave node  

Each slave board has a local ready queue and local blocked 
queue, while the system board also have semaphore queues 
and a waiting queue, see figure 8. The waiting queue 
contains both master and slave tasks sorted on wakeup time. 
On each scheduler invocation, the master checks the 
waiting queue for ready tasks. If a slave task becomes 
ready, an interrupt to the slave is sent. When a slave task 
executes a delay, an interrupt to the master is sent and the 

first task in the ready queue is dispatched from its local 
ready queue. Since the master board handles all timing, 
clock distribution and synchronization are avoided, i.e. the 
master node is the only node that has clock interrupts. 

Figure 10, taskswitch benchmark on slave node 

Figure 9, 10 and 11 show three examples of benchmark 
tests when the semi-distributed kernel shows clearly better 
performance than the centralized software kernel. The semi-
distributed software kernel shows even better performance 
than the hardware kernel in figure 9 and 10. The result in 
figure 9 is expected, since the tasks are created locally and 
we do not need any communication with PCI devices. The 
hardware kernel on the other hand is a PCI device with 
enclosed latencies. Also as predicted the optimized software 
kernel has longer latencies with increasing number of 
already created tasks, and the reason to this behavior is the 
list management that increase with increasing number of 
tasks. 

Figure 11, communication latency benchmark, sender on slave node and 

receiver on master node 

The motivation to figure 10, when the semi-distributed 
software kernel is faster than the hardware kernel, is the 
taskswitches that can be handled locally on a slave node 
with the optimization. Each node manages its own queue of 
active tasks. But in the hardware case the kernel queues are 
managed centrally in the kernel-core, residing as a PCI 
device, which causes access latencies to the queues. As 



shown in figure 11, the optimized software kernel has 
shorter communication latencies than the centralized 
software kernel, but the hardware kernel still shows the best 
result. 
The optimized software kernel is not fully distributed, since 
the semaphore protocol and the IPC is still centralized. The 
semi-distributed software kernel will probably not perform 
better than the hardware kernel in this benchmark even if it 
was fully distributed, because a fully distributed kernel 
would require more synchronization in order to keep the 
different nodes apprehension of the system-state consistent. 

5 DISCUSSION 

In this paper we presented the results of a comparison 
between a centralized software kernel and the hardware 
kernel RTU, both used with the same multiprocessor 
system. The comparison was performed with different 
benchmark series with importance to real-time. We showed 
that the performance of the RTU was in general better than 
the corresponding software solution. A great advantage 
with the RTU is the execution of scheduling decisions and 
other operating system functionality that does not load the 
applications processors. A hardware implementation also 
makes it easier to create bounded execution times for 
system calls, which is desired in real-time systems when 
guaranteeing deadlines of events. But notice that since 
scheduling decisions and many other system calls does not 
load the processors, the gain with a hardware 
implementation becomes greater with more complicated 
algorithms and increased number of tasks. 
We also showed an improvement of the software kernel that 
in addition could be applied to the RTU. By moving 
intelligence from a centralized source to the system nodes, 
this implied that some decisions could be made faster and 
we could utilize the natural locality of data close to each 
node. The main advantage with the improved software 
kernel in comparison with the RTU is that some system 
calls can be executed in parallel (on different nodes). The 
improved software kernel showed better or equal 
performance results in comparison with the centralized 
software kernel. In some benchmark tests the semi-
distributed software kernel showed even better performance 
than the RTU. 

6 FUTURE WORK 

As a future work section we present some suggestions to 
improve the RTU. Firstly we showed that it was possible to 
achieve a more efficient kernel by moving some of the 
intelligence closer to the tasks, and thereby get shorter 
access latencies. This is an essential part of an RTOS kernel 

since it interacts frequently with the tasks, but also a 
weakness with the RTU as combined with the SARA 
system today. A better target system should therefore in 
some way provide shorter access latencies, as for instance a 
System On Chip (SOC), where the RTU would have almost 
insignificant access latency compared to a PCI-device. 
Secondly since the scheduling algorithm does not load the 
application processors, it should be possible to use a really 
fancy and effective algorithm that hardly cannot be used in 
software implementations. 

ACKNOWLEDGEMENTS 

Thanks go to all personnel at the Computer Architecture 
Laboratory, for pushing and realizing this research. A 
special thanks goes to Leif Enblom, for many fruitful 
discussions of ideas. Raimo Haukilahti and Tomas Lennvall 
deserve special appreciation for reviewing this paper. 

REFERENCES 
[1] J. Furunäs, Benchmarking of a Real-Time System that utilises a 

booster, International Conference on Parallel and Distributed 
Processing Techniques and Application, 2000. 

[2] GNU Compiler Collection, http://www.gnu.org/software/gcc 
[3] N. I. Kamenoff and N. H. Weiderman, Hartstone distributed 

benchmark: requirements and definitions, in Proceedings of the 12th 
IEEE Real-Time Systems Symposium, IEEE Computer Society 
Press, 1991. 

[4] R. Kar and K. Porter, Rhealstone - a Real-Time Benchmarking 
Proposal, Dr. Dobbs’ Journal, February 1989. 

[5] J. Lee, V. J. Mooney III, K. Ingström, A. Daleby, T. Klevin and L. 
Lindh, A Comparison of the RTU Hardware RTOS with a 
Hardware/Software RTOS, In Asia and South Pacific Design 
Automation Conference, Japan, January 2003. 

[6] L. Lindh, T. Klevin and J. Furunäs, Flexible Multiprocessor 
computer Systems, In CAD & Computer Graphics, December 1999. 

[7] K. Low, S. Acharya, M. Allen, E. Faught, D. Haenni and C. 
Kalbfleisch, Overview of Real-Time Kernels at the Superconducting 
Super Collider Laboratory, Particle Accelerator Conference, 1991. 

[8] P. Nygren and L. Lindh, Virtual Communication Bus with 
Hardware and Software Tasks in Real-Time System, In Proceedings 
for the work in progress and industrial experience sessions, 12th 
Euromicro conference on Real-time systems, June 2000. 

[9] K. Ramamritham and J. A. Stankovic, The Spring Kernel: A new 
paradigm for Real-Time Systems, IEEE Software, May 1991. 

[10] RF RealFast AB, Real-Time Unit, A New Concept to Design 
Real-Time Systems with Standard Components, RF RealFast AB, 
Dragverksg 138, S-724 74 Västerås, Sweden, E-mail: 
realfast@realfast.se, 2000. 

[11] L. Rizvanovic, Comparison between Real time Operative 
systems in hardware and software, Masters’ thesis presented at 
Mälardalen University, Västerås, Sweden 2001. 

[12] L. Sha, R. Rajkumar and J.P. Lehoczky, Priority inheritance 
protocols: An approach to real-time synchronization, IEEE 
Transactions on Computers, September 1990. 

[13] H. Tokuda, T. Nakajima and P. Rao, Real-Time Mach: Towards 
a Predictable Real-Time System, In Proceedings of USENIX 1st 
Mach Workshop, October 1990. 

[14] M. Åkerholm and T. Samuelsson, Design and Benchmarking of 
Real-Time Multiprocessor Operating System Kernels, Masters’ 
thesis presented at Mälardalen University, Västerås, Sweden, June 
2002. 

 

 


