
Abstract
The performance demands on real-time platforms increase,
mostly because real-time applications become larger and more
complex. Two reaserch directions with purpose to meet the
increasing performance demands in real-time systems are
utiliziation of multiprocessor platforms and hardware
operating system kernels. In this article we show a
performance comparison between a real-time multiprocessor
kernel implemented in hardware and a corresponding kernel
implemented in software. The hardware kernel showed overall
better performance. For instance the speedup achieved with
the hardware kernel was up to 2.6 times, when measuring the
communication latency between different nodes. We also
present an optimization that has been applied to the software
kernel. The improved software kernel showed in some cases
even better performance than the hardware kernel.

1 INTRODUCTION

Real-time systems are computing systems that have a time
critical nature. When a certain event occurs in the
environment, the real-time system must react with the
correct response within a certain time. An Operating
System (OS) is in simplest form a system program that
provides a higher level of abstraction to the application
programmer than the bare hardware. The most
distinguishing feature with a Real-Time Operating System
(RTOS) compared to such an OS is its deterministic and
predictive time management methods. As real-time
applications become larger and more complex every year,
the demands on real-time platforms also increase, which
motivates moving real-time applications onto
multiprocessor systems. One method to obtain even more
performance is to utilize special purpose hardware.
Examples of such hardware include graphic accelerators
and network cards; another application is the Real-Time
Unit (RTU) [10]. The RTU contains typical RTOS
functionality that has been moved from software into
hardware. In this way it is possible to decrease the RTOS
overhead as for instance scheduling, time management and
communication primitives, since it is processed by parallel
hardware.
In this paper, we present a comparison between a
centralized software kernel and the RTU, both executing on
the same multiprocessor system. The comparison is
achieved by an own series of benchmarks with ingredients
from other well-known benchmarks and focus is on
performance of basic OS functionality. We made an own

benchmark series because there is no existing benchmark
adapted for the target system. If we had ported an existing
benchmark the comparison with other target systems would
anyhow be discussable, since system-calls and other
implementation details differ. Another motivation is that we
could choose according to us the most interesting
benchmarks. The software kernel has been especially
implemented for this comparison; it offers the same but
slightly reduced Application Interface (API) as the RTU.
The gain is that we can execute the same benchmark code
and thereby eliminate implementation differences and strive
towards a fair hardware/software comparison. Furthermore
we apply an optimization to the software kernel, which
should minimize some of the weaknesses. To explore the
potential with the new version of software kernel, some of
its benchmark results are compared with the results
achieved with the former version as well as with the
hardware implementation.
The purpose is to find the differences with implementing
kernels in software and hardware. The expectation is clearly
that the hardware kernel outperforms the software kernel.
But how much can we assume to gain when utilizing
hardware RTOS? Can we unveil any weaknesses with the
current hardware implementation?
A similar comparison has been made in [1]. The differences
are firstly divergent hardware/software API; furthermore
the author relies on executing one covering workload while
we present many smaller independent measurements. In
[11], a comparison between a software kernel and a
hardware kernel on a single processor system has been
done. In [5] the authors present a simulation based
comparison of three different systems; one of the systems is
also included in this benchmark.
The outline of the paper is as follows: The remaining part
of Section 1 firstly introduces the common hardware
platform followed by descriptions of the two kernels.
Section 2 defines the benchmark method and Section 3
presents and discusses the results. In section 4 we shortly
present an optimization of the software kernel, which also is
applicable to the hardware kernel. In the 5th section we
discuss the paper and the 6th and final section contains
suggestions of future work.

A Comparison of Multiprocessor RTOS Implemented in Hardware and Software

Tobias Samuelsson and Mikael Åkerholm
Department of Computer Science and Engineering

Mälardalen University
Västerås, Sweden

{tsn98026, mam98008}@student.mdh.se

Peter Nygren, Johan Stärner, and Lennart Lindh
Computer Architecture Laboratory

Mälardalen University
Västerås, Sweden

{peter.nygren, johan.starner, lennart.lindh}@mdh.se

1.1 Common Hardware Platform
When comparing different RTOS kernels it is important
that the hardware configuration is equivalent, in order to
easily obtain comparable results. The hardware platform
used by both kernels in this paper is the SARA system
described in [6]. The hardware architecture of the SARA
system can be divided into local CPU boards, bus-
arbitrator, global RAM and I/O. Figure 1 shows a schematic
picture of the SARA system. Each board has a Motorla
PPC750 processor, running at 367 MHz and the boards are
connected to each other with a Compact PCI bus (CPCI).
The CPCI bus offers eight slots for CPU boards, however in
a CPCI system there is always one special system-slot. This
slot has a special processor board (system-board) that
handles the arbitration, clock-distribution, etc on the CPCI
bus. Communication and synchronization between different
processes in the system is performed through a global
memory that resides on the system-board. This implies that
all communication between tasks go through the system
board, even if two tasks residing on the same slave board
are communicating.
There are two kinds of PCI buses in the system. All boards
have a local PCI bus that is connected to the CPCI bus
through a PCI-PCI bridge, see figure 1. The system board
has a transparent bridge, while the other boards have
bridges that translate addresses on one bus to another
address on the other bus, in purpose to utilize the whole
local address range.

Figure 1, block-diagram of the SARA system

1.2 Hardware Kernel
The RTU is a special purpose hardware that performs real-
time operating system functions. Examples of such
functions are scheduling, time-management and semaphore
handling. The task-scheduling algorithm is priority-based
and supports preemption of tasks. A Virtual
Communication Bus (VCB) [8] that uses the global
memory on the system board is used for interprocess
communication and synchronization between tasks in the

system. The message-queues are priority based and if an
incoming message has higher priority than the receiving
task, the priority of the receiving task is raised during the
message transaction. By this mechanism, the priority
inversion problem [12] is avoided. For further details
related to the RTU, please refer to [10].

1.3 Software Kernel
The software kernel is designed to act like the RTU, with
respect to API and general semantics. The processor on the
system board executes ordinary tasks as well as a kernel
that handles RTOS functions for all tasks and processors in
the system. The software kernel is written in PPC750
assembler, C and C++, compiled with GNU Compiler
Collection version 2.95.1 [2] without optimization flags.
Small parts of the code are compiler dependent, since inline
assembler and macros are used. This paper contains a brief
description of the central parts: scheduling, interprocess
communication and clock management.
The software kernel is centralized; thereby the kernel on the
system board schedules the whole system. The scheduling
algorithm is priority driven like the algorithm in the RTU
and supports pre-emption of tasks. Scheduling decisions are
enforced through interrupts from the kernel on the master
node to all processors. Each task executes only on the node
where it was created and registered, so no task migration is
allowed. The scheduler holds the current priority and state
of all tasks in the system, while each node has a Task
Control Block (TCB) associated with each of its own tasks.
The TCB contains a reference to the procedure that
represents the task, a stack pointer and the processor
registers needed to store and reload the state for the task to
obey the decisions made by the scheduler.
The VCB connected to the RTU consists of a software layer
containing the API against a hardware layer performing
message transactions. The software kernel replaces the
hardware layer while the interface layer remains untouched.
The message-queues are placed in the global memory on
the system board and to protect them, a priority driven
semaphore-protocol has been implemented.
Since the system board hosts the kernel, all decisions are
made on the system board and therefore it is the only board
that must provide timekeeping methods. This is a gain with
the centralized implementation, because we can avoid
costly clock synchronization and clock-tick interrupts on
the slave boards. Clock-tick interrupts are created with the
standard methods provided by the processor on the master
board, and this is a point where the software kernel differs
from the RTU. The RTU has configurable clock-tick
resolution, however the default and used interval between
two interrupts is 10 µs. But using such a resolution in the
software version leaves no time to other activities than
clock tick administration. Instead the interval between two

ticks is set to 100 ms, this seems to be to long during
normal circumstances, since a kernel should be able to
handle delays for about 10 ms. But as a consequence of
many system calls, such as sleep, send and receive the
kernel executes the scheduling algorithm and can postpone
any pending clock-tick interrupts another 100 ms. As a
result when executing system-call intensive applications,
the software kernel becomes completely event driven. All
benchmarks in this paper are system-call intensive or
measure only the time for a specific system-call. Therefore
the kernel can be considered as event driven during the
benchmarks and clock-tick at 100 ms or 5 ms does not
affect the results. The gain with a 100 ms period is that it is
possible to manually start different tasks and nodes during
the same period.

2 BENCHMARK METHODS

The benchmark is aimed to serve as comparison between
the hardware kernel and the software kernel. Both kernels
have the same programming interface, although the
software kernel has a slightly reduced version.
The benchmark series is built with own ideas and parts
from the established benchmarks: Rhealstone [4], SSU [7]
and Distributed Hartstone [3]. All tests have been repeated
five times in order to compute the average result. In real-
time context it is often the worst-case times that are
considered, but this benchmark is performance oriented so
it is the average times that are analyzed. The authours are
avare of that five times is not enough to prove statistical
confidence, but regarded as enough to consitute bases of
this comparison. In the following sub-sections, the idea and
experimental setup of each independent benchmark is
explained.

2.1 Create Task
This test case is taken from the SSU benchmark and the
time it takes to create a task is measured. The timekeeping
starts when a task is going to be created and stops when the
task has been created. Conditions that may affect the task
creation time are the number of already created tasks and
where in the system the task is located. Therefore the
number of already created tasks is varied between 0 and 16
and the test is performed on both the master and a slave
node independently. In complex multiprocessor systems, 16
tasks are still very low number of tasks. The aim for this
benchmark is to find out if the number of already created
tasks affects the create task time, therefore the maximum of
16 tasks has been considered as enough.

2.2 Taskswitch
This test case has been influenced by the Rhealstone
benchmark and it measures the time to switch between two

independent and active tasks with equal priority. The
taskswitch time is crucial to the performance in a real-time
system. In this test the terms for variation are the number of
simultaneously active tasks and the placement of tasks, i.e.
on master or slave node. Practically we measure the time
between that a task calls for a manual taskswitch, until the
next task becomes executing. The number of active tasks is
varied between 2 and 16, and the tests are performed on
both the master and a slave node independently.

2.2.1 Communication Bandwidth
Variants of this measurement are included in Rhealstone
and Distributed Hartstone. This measurement aims to
measure the number of bytes per second one task can send
to another. The communication bandwidth may be different
for tasks hosted by different processors and tasks hosted by
the same processor. For this reason independent
benchmarks with the receiving and sending task hosted by
different processors are performed. Because the bandwidth
in most systems depends of the message size, it is a target
for variation. The experimental setup used for this
benchmark relies on measuring the time it takes to send a
fixed amount of raw data between two tasks, with no other
communication present. The timekeeping starts when the
first message is sent by the sending task, and ends when the
last message is received by the receiving task. The total
amount of data is constant 10 kB and is divided into
different number of messages in each independent test.

2.2.2 Communication Latency
The end-to-end communication latency is also measured in
Distributed Hartstone. Using different message sizes
between 1 and 128 bytes with regular intervals between the
two extremes, tests the effect of message size. The effect of
task placement is considered by letting the sending and
receiving tasks be hosted by different nodes in independent
test series. The implementation of this benchmark simply
consists of measuring the time from which the message is
sent by the sending task until it is received by the receiving
task, in this implementation it was most suitable to measure
the roundtrip delay. Since we have no accurate external
clock and no clock synchronization between the nodes, it is
easier to take the two necessary timestamps on the same
node to achieve a reliable result. The first timestamp is
taken on the sender side when a message is sent and the
second timestamp when the sender receives an
acknowledgement from the receiver.

2.2.3 RTOS Overhead
The method used in this benchmark is a common
benchmark method and is for instance used in [1]. The
comparison is based on executing an ordinary application
and measuring the time it takes. As applications the classic

problem The Traveling Salesman (TSP) was chosen. It is
not a typical application executed by a RTOS, it should
instead be considered only as synthetic workload. It is
considered beyond the scope of this paper to describe the
implementation to its fully, it should be enough information
to know that the TSP implementation communicates
through many small messages.

3 RESULT

Each benchmark test have been performed with several
configurations, for instance we have run the Create Task
test both on the master node and a slave node. This implies
that we have too many graphs to present, so we show
according to us the most important graphs. We will analyze
all the results, including the graphs that are not presented in
this paper.

Figure 2, create task benchmark on slave node

3.1 Create Task
The results for the Create task benchmark on a slave node
are shown in figure 2. The x-axis indicates the number of
already created tasks in the system. The measured time is
the time it takes to create one task. As we can see the
hardware kernel is faster than the software kernel. A task
that is created has to be registered to the scheduler, in both
cases this is achieved by a synchronous system-call. By
synchronous we mean that the caller has to wait for an
acknowledgement that is delivered when the call is
processed, so this benchmark shows that the software
kernel has longer latencies. Also as predicted the software
kernel has longer latencies with increasing number of
already created tasks. That depends on the list management
latencies that increase with increasing number of tasks. In
any case it is possible to create tasks with fixed latencies in
the software case, but we have not focused on code
optimization. The cache memory effects are also visible in
the test, since the first call is more time consuming than the
second. The RTU is inplemented in hardware and cannot be
affedted by caches, but it still have TCB’s and RTU

interface code implemented in software, and these parts are
affected.
The Create Task benchmark on the master node resulted in
another relationship, the form of the graphs was essentially
the same but the software kernel was faster than the
hardware kernel. This is due to that in the software case the
tasks are created completely locally on the master node, but
when using the hardware kernel we suffer of PCI latencies.

3.2 Taskswitch
When switching tasks on a slave node the hardware kernel
is much faster than the software kernel as we can see in
figure 3. This is explained by the fact that algorithms
implemented in parallel special purpose hardware often are
faster than algorithms implemented in software. Notice that
the software kernel is not affected by the number of tasks in
this test, because the two tasks that are involved in the
taskswitch, has the highest priority in the system. When this
benchmark was executed on master node, the difference
between the two kernels was much smaller. The software
kernel was faster, due to the PCI latencies of the RTU
against local switches on the master node.

Figure 3, taskswitch benchmark on slave node

Figure 4, communication bandwidth benchmark, sender and receiver on
master node

3.3 Communication Bandwidth
In figure 4 the bandwidth between tasks residing on the
master node is compared, and figure 5 shows the bandwidth
between a sending task residing on a slave node and a
receiving task residing on the master node. This benchmark
shows that the bandwidth between two tasks hosted by the
master node is sometimes greater with the software kernel,
but when communicating across node boundaries the
bandwidth is always greater with the hardware kernel. The
software kernel seems to be more efficient with increasing
number of messages, in relation to the hardware kernel. The
reason is that the software kernel executes the scheduling
algorithm as a speculation after many system-calls,
including send and receive message. These speculations can
be considered as successful when the result is to switch
tasks, otherwise they are waste of time. When there are lots
of successful speculations the software kernel is efficient.
Such a situation is when many send and receive are
processed in a rapid sequence. The hardware kernel does
these speculations also, but do not load the system
processors because they are executed in parallel hardware.

Figure 5, communication bandwidth benchmark, sender on slave node and
receiver on master node

3.4 Communication Latency
Figure 6 shows the communication latencies between tasks
hosted by different nodes. The sending task resides on a
slave node and the receiving task resides on the master
node. The test makes clear that the end-to-end delay also
referred as the transmission latency, is shorter with the
hardware kernel in this test case. But as earlier the result
depends on the locality of the involved tasks, the software
kernel has shorter latency when both the sending and the
receiving tasks are hosted by the master which also hosts
the kernel. The observed latencies for the hardware kernel
are almost equal in all test cases, whereas the software
kernel has shorter latencies when both tasks are residing on
the master node and longer latencies when at least one of
the two tasks resides on a slave node. This indicates that the

hardware is a more deterministic solution, and in this way
decreases the demands on real-time application
programmers since it is easier to estimate bounded latencies
that are not too pessimistic.

Figure 6, communication latency benchmark, sender on slave node and
receiver on master node

3.5 RTOS Overhead
In figure 7, we can see when running the TSP application
and exercising the whole system with messages as
synchronization, the hardware kernel is faster. The reason
why the hardware kernel is faster than the software kernel is
larger communication bandwidth, shorter communication
latencies and faster taskswitches.

Figure 7, RTOS overhead benchmark, running TSP

4 OPTIMIZATION OF THE SOFTWARE KERNEL

As we could see in the benchmark results presented in the
previous section, the main drawback with the software
kernel seems to lie in time-consuming system-calls from
tasks on slave nodes. As long as tasks are executing on the
system board, which also hosts the kernel, the software
solution is often faster than the hardware and its enclosed
PCI-access latencies. An optimization that should increase
the performance of both kernels is to increase the locality of
data and try to avoid PCI-accesses. In the remaining part of
this section we will present an optimization of the software
kernel that strives for higher utilization of data locality.
Note that this optimization is not only possible to introduce

in the software kernel, but also in some form in the
hardware kernel. For a more detailed description of this
kernel and complete benchmark results refer to [14].

Figure 8, placement of scheduling queues in the optimized software kernel

A central part of a multiprocessor RTOS is the placement of
the processor schedulers and different task queues. It is a
choice between schedulers residing on the different
processors, a centralized scheduler, perhaps with dedicated
application and system processors or any combined
approach. Unlike the centralized RTU and the original
software version, the improved software kernel consists of
several schedulers. The system board has a complete
scheduler while the slave boards have simpler schedulers or
dispatchers. This quality makes the improved version semi-
distributed, i.e. not pure centralized and not fully
distributed. The idea with several different schedulers can
for instance be found in the Spring system [9] and in RT-
Mach [13].

Figure 9, create task benchmark on slave node

Each slave board has a local ready queue and local blocked
queue, while the system board also have semaphore queues
and a waiting queue, see figure 8. The waiting queue
contains both master and slave tasks sorted on wakeup time.
On each scheduler invocation, the master checks the
waiting queue for ready tasks. If a slave task becomes
ready, an interrupt to the slave is sent. When a slave task
executes a delay, an interrupt to the master is sent and the

first task in the ready queue is dispatched from its local
ready queue. Since the master board handles all timing,
clock distribution and synchronization are avoided, i.e. the
master node is the only node that has clock interrupts.

Figure 10, taskswitch benchmark on slave node

Figure 9, 10 and 11 show three examples of benchmark
tests when the semi-distributed kernel shows clearly better
performance than the centralized software kernel. The semi-
distributed software kernel shows even better performance
than the hardware kernel in figure 9 and 10. The result in
figure 9 is expected, since the tasks are created locally and
we do not need any communication with PCI devices. The
hardware kernel on the other hand is a PCI device with
enclosed latencies. Also as predicted the optimized software
kernel has longer latencies with increasing number of
already created tasks, and the reason to this behavior is the
list management that increase with increasing number of
tasks.

Figure 11, communication latency benchmark, sender on slave node and

receiver on master node

The motivation to figure 10, when the semi-distributed
software kernel is faster than the hardware kernel, is the
taskswitches that can be handled locally on a slave node
with the optimization. Each node manages its own queue of
active tasks. But in the hardware case the kernel queues are
managed centrally in the kernel-core, residing as a PCI
device, which causes access latencies to the queues. As

shown in figure 11, the optimized software kernel has
shorter communication latencies than the centralized
software kernel, but the hardware kernel still shows the best
result.
The optimized software kernel is not fully distributed, since
the semaphore protocol and the IPC is still centralized. The
semi-distributed software kernel will probably not perform
better than the hardware kernel in this benchmark even if it
was fully distributed, because a fully distributed kernel
would require more synchronization in order to keep the
different nodes apprehension of the system-state consistent.

5 DISCUSSION

In this paper we presented the results of a comparison
between a centralized software kernel and the hardware
kernel RTU, both used with the same multiprocessor
system. The comparison was performed with different
benchmark series with importance to real-time. We showed
that the performance of the RTU was in general better than
the corresponding software solution. A great advantage
with the RTU is the execution of scheduling decisions and
other operating system functionality that does not load the
applications processors. A hardware implementation also
makes it easier to create bounded execution times for
system calls, which is desired in real-time systems when
guaranteeing deadlines of events. But notice that since
scheduling decisions and many other system calls does not
load the processors, the gain with a hardware
implementation becomes greater with more complicated
algorithms and increased number of tasks.
We also showed an improvement of the software kernel that
in addition could be applied to the RTU. By moving
intelligence from a centralized source to the system nodes,
this implied that some decisions could be made faster and
we could utilize the natural locality of data close to each
node. The main advantage with the improved software
kernel in comparison with the RTU is that some system
calls can be executed in parallel (on different nodes). The
improved software kernel showed better or equal
performance results in comparison with the centralized
software kernel. In some benchmark tests the semi-
distributed software kernel showed even better performance
than the RTU.

6 FUTURE WORK

As a future work section we present some suggestions to
improve the RTU. Firstly we showed that it was possible to
achieve a more efficient kernel by moving some of the
intelligence closer to the tasks, and thereby get shorter
access latencies. This is an essential part of an RTOS kernel

since it interacts frequently with the tasks, but also a
weakness with the RTU as combined with the SARA
system today. A better target system should therefore in
some way provide shorter access latencies, as for instance a
System On Chip (SOC), where the RTU would have almost
insignificant access latency compared to a PCI-device.
Secondly since the scheduling algorithm does not load the
application processors, it should be possible to use a really
fancy and effective algorithm that hardly cannot be used in
software implementations.

ACKNOWLEDGEMENTS

Thanks go to all personnel at the Computer Architecture
Laboratory, for pushing and realizing this research. A
special thanks goes to Leif Enblom, for many fruitful
discussions of ideas. Raimo Haukilahti and Tomas Lennvall
deserve special appreciation for reviewing this paper.

REFERENCES
[1] J. Furunäs, Benchmarking of a Real-Time System that utilises a

booster, International Conference on Parallel and Distributed
Processing Techniques and Application, 2000.

[2] GNU Compiler Collection, http://www.gnu.org/software/gcc
[3] N. I. Kamenoff and N. H. Weiderman, Hartstone distributed

benchmark: requirements and definitions, in Proceedings of the 12th
IEEE Real-Time Systems Symposium, IEEE Computer Society
Press, 1991.

[4] R. Kar and K. Porter, Rhealstone - a Real-Time Benchmarking
Proposal, Dr. Dobbs’ Journal, February 1989.

[5] J. Lee, V. J. Mooney III, K. Ingström, A. Daleby, T. Klevin and L.
Lindh, A Comparison of the RTU Hardware RTOS with a
Hardware/Software RTOS, In Asia and South Pacific Design
Automation Conference, Japan, January 2003.

[6] L. Lindh, T. Klevin and J. Furunäs, Flexible Multiprocessor
computer Systems, In CAD & Computer Graphics, December 1999.

[7] K. Low, S. Acharya, M. Allen, E. Faught, D. Haenni and C.
Kalbfleisch, Overview of Real-Time Kernels at the Superconducting
Super Collider Laboratory, Particle Accelerator Conference, 1991.

[8] P. Nygren and L. Lindh, Virtual Communication Bus with
Hardware and Software Tasks in Real-Time System, In Proceedings
for the work in progress and industrial experience sessions, 12th
Euromicro conference on Real-time systems, June 2000.

[9] K. Ramamritham and J. A. Stankovic, The Spring Kernel: A new
paradigm for Real-Time Systems, IEEE Software, May 1991.

[10] RF RealFast AB, Real-Time Unit, A New Concept to Design
Real-Time Systems with Standard Components, RF RealFast AB,
Dragverksg 138, S-724 74 Västerås, Sweden, E-mail:
realfast@realfast.se, 2000.

[11] L. Rizvanovic, Comparison between Real time Operative
systems in hardware and software, Masters’ thesis presented at
Mälardalen University, Västerås, Sweden 2001.

[12] L. Sha, R. Rajkumar and J.P. Lehoczky, Priority inheritance
protocols: An approach to real-time synchronization, IEEE
Transactions on Computers, September 1990.

[13] H. Tokuda, T. Nakajima and P. Rao, Real-Time Mach: Towards
a Predictable Real-Time System, In Proceedings of USENIX 1st
Mach Workshop, October 1990.

[14] M. Åkerholm and T. Samuelsson, Design and Benchmarking of
Real-Time Multiprocessor Operating System Kernels, Masters’
thesis presented at Mälardalen University, Västerås, Sweden, June
2002.

