
TDDHQ: Achieving Higher Quality Testing in
Test Driven Development

Adnan Čaušević, Sasikumar Punnekkat and Daniel Sundmark
School of Innovation, Design and Engineering

Mälardalen University, Västerås, Sweden
{adnan.causevic, sasikumar.punnekkat, daniel.sundmark}@mdh.se

Abstract—Test driven development (TDD) appears not to
be immune to positive test bias effects, as we observed in
several empirical studies. In these studies, developers created a
significantly larger set of positive tests, but at the same time
the number of defects detected with negative tests is significantly
higher than those detected by positive ones. In this paper we
propose the concept of TDDHQ which is aimed at achieving higher
quality of testing in TDD by augmenting the standard TDD with
suitable test design techniques. To exemplify this concept, we
present combining equivalence partitioning test design technique
together with the TDD, for the purpose of improving design of
test cases. Initial evaluation of this approach showed a noticeable
improvement in the quality of test cases created by developers
utilising TDDHQ approach.

I. BACKGROUND

One of the most prominent, quality related, practices in ag-
ile is test driven development. Test driven development (TDD)
gained on popularity with the introduction of the eXtreme
Programming (XP) methodology [1]. As its name reveals, TDD
is a development practice which essentially requires from the
developers to first create a test case before writing the code
for a given functionality. What is important to note here is
that developers now have the full responsibility for creating
executable test cases with an automated verdict for the unit
or component level of the system that they are developing. In
the systematic literature review [2], we catalogue the current
body of knowledge with respect to empirical studies performed
for the purpose of evaluating TDD. Seven potentially limiting
factors of industrial adoption of TDD were identified, one of
them being developers inability to write efficient and effective
test cases. To gain better understanding of this problem and
validate significance of such a limiting factor, we performed
an empirical study as part of a master-level course on Software
Verification & Validation. The main goal of this study [3]
was to investigate how developers can benefit from additional
knowledge on software test design techniques while perform-
ing TDD. Although, we could not establish any statistically
significant difference between students performance before and
after the course, we did notice a surprisingly high ratio of
positive test cases within their test suites. This effect is known
as “positive test bias“ [4] where testing is done using more
positive or specification defined inputs. However, such a result
may not come as a surprise considering that TDD is designed
in way to lead developers in the writing of positive tests which
will guide them forward in the implementation of a correct
functionality. What was noteworthy to investigate further was
consequences on the quality of testing in TDD we might face
if developers’ focus is only on creating positive test cases.

A follow-up study [5] was designed to further investigate if
there are any differences in the defect detection effectiveness
of positive and negative test cases created when following the
TDD approach. By the term negative test case, we refer to
a test case that was created for the purpose of exercising
a program in a way that was not explicitly specified in the
requirement. On the other hand, a positive test case exercises
a program behaviour as it is specified in the requirement.
The results of our study again point out a significantly higher
number of positive tests compared to negative ones, but at
the same time a much higher defects detection effectiveness
of negative tests compared to positive ones. We replicated
our experiment in an industrial setting, using professional
developers as subjects of study. The results of this study
[6] showed a statistically significant difference between the
number of positive and negative test cases. This way we could
identify that positive test bias exists even when professional
and experienced developers are following TDD. The difference
in defect detection effectiveness, between positive and negative
test cases, was also statistically significant. Around 29% of all
test cases created by developers were negative, but at the same
time contributing in revealing as much as 71% of all the defects
found by all test cases. After further analysis of the solutions
provided by the participants, we identified a general problem
of when to consider convenient to write negative test cases
during the test driven development process. We noticed that a
more systematic approach in modifying TDD is needed and our
idea was to investigate the possibility of extending test-driven
development with a particular test design technique. This way
we can facilitate consideration of unspecified requirements
during the development to a higher extent and thus minimise
the impact of a potentially inherent effect of the positive test
bias in TDD.

II. TDDHQ - HIGHER QUALITY TESTING IN TDD

Although, in simple words, TDD is about writing test cases
before writing the code, there are few noteworthy steps in the
process that should be mentioned here. Execution of test cases
happens twice and this at first might seems like a redundant
task. However, it is needed for a developer to see that the
newly added test case is failing (usually displayed in red)
in order to continue working on creating minimal changes
to the code to pass that test (this time displayed in green)
[1]. In addition, after fully implementing a set of features,
developer have to perform refactoring of the code. Refactoring
is a process of modifying the code for the purpose of improving
its design, readability, maintainability, etc. without violating
existing functionality. Because of these mentioned aspects,

TDD is sometimes refereed as a ”red-green-refactor” process.
In the definition of TDD there is no explicit guidance on
how a developer should design and add a new test case. The
reason for this problem is very obvious. TDD is a development
practice and not a test design technique. Test data is usually
formed from usage examples and serve as a safety net to detect
potential miss-implementation of required functionality. In
other words, test cases created using TDD could be considered
as a by-product of the development process. But, often they
are not. Many agile teams see the value in having a high
number of automated test cases created at such an early
(unit level) stage of software product development and value
those tests as a considerable addition to the overall testing
effort. It is known that benefits, mostly in terms of cost, are
significant when defects are detected at the early stage of
development [7]. However, as we discussed in the previous
section, test cases created in TDD are not designed to detect
defects but rather to provide confidence in the correctness
of implemented functionality. In order to increase a defect
detection effectiveness of test cases created when using test
driven development, we are proposing a modification to the
standard TDD process flow, named TDDHQ - Higher Quality
Testing in Test Driven Development, detailed in Figure 1.

• A - Choosing Quality Improvement Aspect

When testing software product, members of quality assur-
ance teams investigate various aspects of product quality:
functionality, performance, security, usability, robustness, etc.
For them, it is important to cover both functional and non-
functional quality features. However, developers tend to focus
mainly on the functional aspects of software quality, as it was
noticed in our previous empirical studies. This is why it is
needed for a developer to explicitly choose an aspect of quality
improvement during test driven development which will further
guide designing of subsequent test cases.

• B - Selecting Test Design Technique

After deciding on the quality improvement aspect that should
be in the focus of the current iteration, one of the appropriate
test design technique should be selected. It is however impor-
tant that this test design technique directly contribute to the
previously chosen quality improvement aspect. In case there
is a possibility to select two or more complementary test design
techniques, developers could choose to iterate the process flow
with the same quality improvement aspect but each time using
a different test design technique for the same feature.

• Check Whether More TCs for B in A

Once the quality improvement aspect and the test design
technique are determined, a classical red-green phase of TDD
is conducted. Since a particular test design technique could
require (by design) creation of several test cases, it is important
to reflect if more test cases are needed for a given test design
technique selected in B to satisfy a quality improvement aspect
selected in A. If more test cases are needed, an additional red-
green phase should be conducted for each test case individu-
ally.

• Check Whether All Q.I. Aspects Covered

After fully implementing a feature with the specific quality
improvement aspect in mind and using the appropriate test

Start

All Features

Implemented

Stop

Select a new

Feature

True

False

Add a new

Test Case

Execute all

Test Cases

Make minimal

code changes

Execute all

Test Cases

Code

Refactoring

Failed

Passed

Failed Passed

More TCs

for B in A

Choose Quality

Improvement

Aspect (A)

Select Test

Design

Technique (B)

All Q.I.

Aspects

Covered

Yes

No

Yes

No

Fig. 1. TDDHQ additions to standard TDD Process Flow

design technique(s), developers could iterate through the im-
plementation of the selected feature with a new A-B com-
bination, or choose to continue with adding new features, if
they exists. Sometimes, the decision on usage of the set of
A-B combinations could be taken upfront, for all features by
developer itself, or it could be enforced at the organisational
level as a development policy implied to all development
teams.

A. Combinations of A and B

By using the general TDDHQ process flow (Figure 1),
a specific instance of the process could be created purely
based on the combinations of quality improvement aspects
and test design techniques selected (A and B). Let us assume

that a developer would like to use a classical TDD process
for implementing a new feature. Focusing on functionality
as quality improvement aspect and using functional testing
as a test design technique, developers can continue working
using accustomed traditional TDD flow. If, on the other hand,
developers would like to increase robustness of their software
product, set of combinations provided in Table I could be one
example of how to achieve such a goal. Those combinations
are used as well in the empirical evaluation of our approach,
detailed in Section III.

TABLE I. A-B COMBINATION FOR INCREASED ROBUSTNESS IN TDD

Step A B
1 Functional Functional testing
2 Robustness Equivalence partitioning

III. EVALUATION OF THE PROPOSED APPROACH

To better understand the potential improvements and the
overall effect that our proposed approach might have on the
software product quality, an empirical study was conducted in
an academic environment. The experiment was setup with one
goal in mind. We wanted to investigate if choosing set of A-B
combinations for increased robustness in TDD (Table I) when
following the TDDHQ process flow, will significantly increase
the defect detection effectiveness of the produced test cases.
For that purpose, a following research question was defined:

RQ: Does the usage of TDDHQ improve defect
detection effectiveness of test cases?

By a defect detection effectiveness of test cases, we con-
sider test case’s ability to detect a defect in the code. This way,
for each test case, we have a number of how many defects a
particular test case can reveal. In order to realistically measure
the quality of testing we need to essentially have access to an
ideal test suite which is capable of finding all the defects. Our
approach here will be to approximate such an ideal test suite by
combining all the test suites developed by several individual
developers working on the same problem. Given such a set
of multiple implementations and associated test suites, we are
then able to cross-compare the ability of test cases to find
defects. This is a similar approach we used in our previous
empirical studies ([5], [6]). In order to test the goal of the
experiment, with respect to the stated research question, the
following null and alternative hypotheses were formulated:

H1
0 There is a difference in the quality of tests of

TDD and TDDHQ participants.
H1

a There is no difference in the quality of tests of
TDD and TDDHQ participants.

Subjects of the experiment are 22 master students admitted
to the course on Software Verification & Validation (V&V) at
Mälardalen University in Sweden during the autumn semester
of 2012. The experiment was part of the hands-on laboratory
assignment within the V&V course, and the subjects earned
credits for the participation. Students were informed that the
final grade for the course will be calculated only based on
the written exam and their performance during the laboratory
work will not affect the final grade. However, they had to
fully complete their assignment. Similarly as in our previous
studies, this experiment used a bowling game score calculator

problem. The specification for this was based on the Bowling
Game Kata. Participants in the TDDHQ group were instructed
to use TDD in combination with equivalence partitioning test
technique to develop software solutions. Participants in the
TDD group were instructed to use traditional TDD approach
for software development. Detailed information about the prob-
lem and instructions are provided on first authors webpage1.
To avoid problems with subjects’ unfamiliarity with the JUnit
testing framework and/or Eclipse IDE, a dedicated lecture on
the usage of both in TDD was provided to students as well
as several hands-on assignments. In addition, subjects were
given an Eclipse project code skeleton with one simple test
case at the beginning of the experiment. Subjects worked in-
dividually on the implementation and were randomly assigned
to follow either TDD or TDDHQ approach. Their work was
not time-boxed and subjects were given an opportunity to
work on the implementation until they have enough quality
confidence in the submitted solution. Experiment participants
were instructed, upon finalising their software implementation,
to upload the source code together with the test cases to
Blackboard, the course management tool.

Table II presents aggregated data of our participants test
cases categorised by type of the test case and experiment group
who created them. Looking at the overall number of test cases
there is no significant difference, since TDDHQ group created
around 5% less test cases than TDD group. By using just
positive test cases from both groups we detected 355 defects,
while negative test cases contributed with 1268 defects. This
is one more evidence how valuable negative test cases are as
part of any test suite. Looking at the differences between the
groups we can observe that TDDHQ group detected around
17% more defects in total, but if we look only at the negative
test cases, the increase in defect detection is around 20%. With
this study we are mainly focusing on the quality of produced
test cases by measuring number of defects they can detect in
the code. Since this code is also written by our participants,
we can as well observe number of defects found in the code of
our experiment participants’ groups. In total, code of TDDHQ

group had around 26% less defects than code of TDD group.
Only looking at the defects detected by negative tests, TDDHQ

group had as much as 31% less than TDD group. Interestingly,
more positive defects (around 8%) are detected in TDDHQ

group.
TABLE II. AGGREGATED DATA

Test Cases
Distribution

Defects Detected
by Test Cases

Defects Found
in Code

Test Type TDD TDDHQ TDD TDDHQ TDD TDDHQ

Positive 124 116 169 186 171 184
Negative 108 103 576 692 749 519
Total 232 219 745 878 920 703

This data is also used to address the research question.
The Mann-Whitney nonparametric test was used in order to
test the H1

0 null hypotheses with α = 0.05. We can not
reject stated hypothesis (p-value is 0.2370851), leading to the
conclusion that there is no statistically significant difference in
the quality of tests produced by participants of our experiment
when following TDD and TDDHQ approach. Similarly to
several previously published experiments on TDD, this study
was also performed in an academic setting. Therefore, external

1http://www.mrtc.mdh.se/∼acc01/tddhq/

http://www.mrtc.mdh.se/~acc01/tddhq/

validity and the possibility to generalise the results of this
study, is threatened with following limitations: (i) using stu-
dents as subjects, (ii) using small scale objects of investigation,
and (iii) having short duration of the experiment.

IV. RELATED WORK

Our work in this paper consists of two major aspects which
should be considered when relating it to the current body of
knowledge: (i) theoretical proposal for achieving higher quality
of testing in test driven development - TDDHQ and (ii) empir-
ical study designed to measure defect detection effectiveness
as a quality attribute of a test case. When looking at empirical
studies with TDD as the main focus of investigation, we can
observe that most of them are performed for the purpose of
detecting potential benefits in the quality of the produced code.
This was as well one of the finding in our systematic literature
review [2] listing 48 empirical studies on TDD. One study
did however had the focus on quality attributes of test cases
when a test-first approach was used. Madeyski [8] investigated
how usage of TDD can impact branch coverage and mutation
score indicators. In his experiment, 22 students were divided
in two groups: the test-first and the test-last, with the task of
developing a web based conference paper submission system.
This experiment shows no statistically significant differences
in branch coverage and mutation score indicators, between
the test-first and the test-last groups. We identified one ad-
ditional study with the focus on developer’s testing ability
when following test driven development approach [9]. This
was an industrial observational experiment where developers
performed programming tasks in their own offices without the
control of researchers. Once developers submitted their code
and test cases, researchers performed mutation testing analysis
to identify complementary test cases to the ones created during
TDD process. Those unit tests, created by researchers, were
still able to find several software faults in the developers’
submitted code.

V. CONCLUSIONS AND FUTURE WORK

This paper present TDDHQ concept, an approach for
achieving higher quality testing in test driven development.
TDDHQ approach is focused on augmenting the standard
TDD methodology with a suitable test design technique,
for the purpose of satisfying a criteria of a specific quality
improvement aspect we would like to achieve. Classical test
driven development is designed in way to lead developers
in writing of positive tests which will guide them forward
in the implementation of a correct functionality. By using
TDDHQ, developers do not necessarily focus only on verifying
functionality, as it is defined in the given requirements, but
they can as well increase security, robustness, performance
and many other quality improvement aspects for the given
software product, without interfering the classical “red-green-
refactor” flow. To exemplify this concept, we defined a set
of quality improvement aspects and test design techniques
combinations, for the purpose of improving robustness of the
produced software solution. This was achieved by combining
equivalence partitioning test design technique together with
the test driven development. Initial evaluation of this approach
was performed in an academic experiment, where the group
who followed this approach created 5% less test cases but
at the same time detected 17% more defects compared to a

group of participants using classical test driven development.
Such an increase in defects detection at an early stage of
development (unit level) could have a very strong impact on
the overall development process. Detecting defects at later
stages (integration and system level testing) comes with a
much greater cost [7]. However, since we could not show a
statistically significant difference in the quality of test cases,
between our group of participants, a new study needs to be
conducted with a larger sample size. Since this empirical study
investigated only one specific combination of quality improve-
ment aspect (A) and accompanied test design technique (B), an
additional research effort is needed to fully list, categorise and
map sets of appropriate A-B combinations for each particular
domain where TDDHQ could be fully utilised. Once this list
is complete, a further investigation of its significance should
be performed in the form of several empirical studies. Design
of those studies should, in addition, account for investigation
of the significance of possible threats when using TDDHQ,
specifically threats to developers productivity and efficiency.
The proposed improvements (TDDHQ) in the process flow
of performing test driven development is expected to result
in not just higher quality of produced tests but also in the
higher quality and productivity in software systems, in terms
of robustness and early defects detection.

ACKNOWLEDGMENT

This work was supported by the Mälardalen Real-Time
Research Center (MRTC) and SSF-funded Synopsis project
at Mälardalen University in Sweden.

REFERENCES

[1] K. Beck, Extreme Programming Explained: Embrace Change. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2000.

[2] A. Causevic, D. Sundmark, and S. Punnekkat, “Factors Limiting Indus-
trial Adoption of Test Driven Development: A Systematic Review,” in
Software Testing, Verification and Validation (ICST), 2011 IEEE Fourth
International Conference on, march 2011, pp. 337 –346.

[3] A. Causevic, D. Sundmark, and S. Punnekkat, “Impact of Test Design
Technique Knowledge on Test Driven Development: A Controlled Ex-
periment,” in XP, ser. Lecture Notes in Business Information Processing,
C. Wohlin, Ed., vol. 111. Springer, 2012, pp. 138–152.

[4] L. M. Leventhal, B. Teasley, D. S. Rohlman, and K. Instone, “Positive
Test Bias in Software Testing Among Professionals: A Review,” in
Selected papers from the Third International Conference on Human-
Computer Interaction. London, UK: Springer-Verlag, 1993, pp. 210–
218.

[5] A. Causevic, S. Punnekkat, and D. Sundmark, “Quality of Testing in Test
Driven Development,” in Quality of Information and Communications
Technology (QUATIC), 2012 Eight International Conference on the,
September 2012.

[6] A. Causevic, R. Shukla, S. Punnekkat, and D. Sundmark, “Effects of
Negative Testing on TDD: An Industrial Experiment,” in XP, ser. Lecture
Notes in Business Information Processing, H. Baumeister and B. Weber,
Eds., vol. 149. Springer, 2013 (to be presented).

[7] R. Megen and D. Meyerhoff, “Costs and benefits of early defect detec-
tion: experiences from developing client server and host applications,”
Software Quality Journal, vol. 4, no. 4, pp. 247–256, 1995.

[8] L. Madeyski, “The impact of Test-First programming on branch coverage
and mutation score indicator of unit tests: An experiment,” Inf. Softw.
Technol., vol. 52, pp. 169–184, February 2010.

[9] W. Shelton, N. Li, P. Ammann, and J. Offutt, “Adding Criteria-Based
Tests to Test Driven Development,” in Proceedings of the 2012 IEEE
Fifth International Conference on Software Testing, Verification and
Validation, ser. ICST ’12. Washington, DC, USA: IEEE Computer
Society, 2012, pp. 878–886.

	Background
	TDDHQ - Higher Quality Testing in TDD
	Combinations of A and B

	Evaluation of the Proposed Approach
	Related Work
	Conclusions and Future Work
	References

