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Abstract—This paper presents a preliminary study of applying the applications are 100% protected from each other by the
partitioned scheduling in the seL4 microkernel. This micrkernel  means of partitions. Partitoned software is more robust tha
is the first operating system kernel ever to be formally prova for flat software since defects will only bring down a delimited

its functional correctness. Even though the kernel is comgitely P
verified it still delivers high performance comparable to oher part of the software and not the whole system. Partitiongng i

L4 kemnels. The seL4 kernel implementsisolation of components & powerful mechanism and it has been adopted by the avionics
in terms of the memory resource and security. However, there industry in form of the ARINC653 [4] software specification.

is still a missing part when it comes to isolation and that is However, isolation is of course difficult to achieve becawse
time partitioning. Time partitioning can be implemented inside are dealing with many sources, e.g., memory, CPU, security

the kernel (privileged mode) or in user space (user mode). Téh ¢ L4 h | hen it i itioni
latter is done using regular user-space thread(s) and can sdy elc. se as come a fong way when It comes 1o partitioning.

be modified while the other approach requires re-verificatim Applications accessing memory are limited to their assigne
of the kernel whenever modifications to the time-partitionng address space (similar to ARINC653). Also, all system dalls

policy is done. On the other hand, having the time-partitioning  the kernel and Inter-Process Communication (IPC) is $trict
mechanism in privileged mode would yield better performane. controlled by seL4 through a capability-based accessrabnt

We have implemented time partitioning (partitioned scheduing) O o -
in the seL4 user space and we elaborate on its performance in model. This gives the user the possibility to configure asces

terms of overhead costs. rights and thereby isolate software components from each
other.

Index Terms—hard real-time systems, partitioned scheduling,  Thread scheduling in seL4 is based on priorities. The policy

implementation is based on round-robin scheduling of threads when they have

the same priority level. In essence, if threads have differe
priorities then seL4 resembles the scheduling in VxWorks

Introduction Software defects (bugs) is something that iand SCHED_FI FO in Linux, i.e., the highest priority thread
difficult to avoid, especially when the code base is largsill run until it performs a blocking operation and thread
and complex. Take for example a relative small code bageemption occurs when higher priority threads becomeecti
like the (secure embedded L4) seL4 kernel which compris@ghen it stops blocking/suspension). Recall that seL4 tises
around 9000 Source Lines Of Code (SLOC). The code basl&es (round robin) for threads with the same priority, ¢esn
is relatively small compared to, for example, the Linux le&rn this resembles thread scheduling in ARINC653 but limited to
(2.6.35) that has 13.5 million SLOC [1]. Still, the verifitat  one thread per partition and a fixed time slice.
process of the seL4 kernel took 20 person years to performGoal We want achieve protection of real-time applications.
and it revealed 144 software defects [2]. A system is definiteWe focus on the protection of the applications temporal
not safe and reliable if the underlying software platformd¢ aspects.
verified. Critical software applications are not reliaflether Method We want to use partitions to partition applications,
applications on the same platform can disrupt them througbnce, it requires partitioning mechanisms in the scheduli
shared resources such as memory, CPU etc. On the otpelicy. We refer to this partitioning mechanism partitioned
hand, software developmentin domains such as the autcenoeheduling(on a uni-core platform). The terrpartitioned
industry [3] and the avionics industry [4] strive toward¥img schedulingshould not be confused with the corresponding
integrated applications on the same platform. term in the context of multi-core scheduling.

The key idea with seL4 is simple. First of all, make sure that Problem The current thread scheduling in seL4 offers poor
the code base, which has 100% control of the system, is 10fi#he partitioning of real-time applications. At best, tads can
free from defects. It is not enough to ensure that the agmica be scheduled in individual partitions (one thread per par)
code is correct or if the applications are compositionaliy a fair manner (round robin) which is not a suitable policy
developed with well defined components etc. If the kern&r real-time embedded systems. This is illustrated in Fédu
crashes then everything crashes. Secondly, make sure thlaére taskA has the highest priority, tadk and taskC have
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the same priority level, and tadR has the lowest priority. choice. However, as future work, it would be very interegtin
TasksB and C are scheduled in a fair manner using rountb measure how much the performance difference is between
robin between time andx (since they have the same priority)these two solutions (1 and 2). This is the main driver behind
We see that taskB and C are scheduled using enforcementhis paper.

(which resembles partitions) in order to implement round- Our main goal is to develop a verified partitioned-scheduler
robin time-slices. If threads have different priority léwve for the selL4 user space. One important feature is that the
then there is no support for partitioned scheduling. This &heduler should have good performance (otherwise we ruin
illustrated in Figure 1 between tinve andz, and also between the whole idea with selL4 since it is a high performance

time x andy. microkernel). We have previously developed [5] such a \etifi
— partitioned scheduler for VxWorks. However, it has poor-per
'j'?jfk'“"” formance and a large model (with many states and transjtions
AL == since it is based on timed automata. We intend to develop a
s DDDE!-d new scheduler but based on a different language than timed
¢ 08 94d automata. The first obstacle is to find out if it is possible
P ! ] to implement partitioned scheduling in the selL4 user space.
T T T T Secondly, if possible in user space, implement a (manually

coded) prototype scheduler and observe the overhead.

Contribution In this paper we present a prototype PS
implemented for the seL4 microkernel. We will present exact

We aim at giving seL4 a flexible scheduling policy (welPverhead measurements (with CPU cycle accuracy) of the im-
suited for real-time systems) by supporting time partitigrof  Plemented scheduler itself and other related system ozdehe
applications. This form of scheduling is illustrated in Gig 2 e cannot compare this solution to (2) since such a scheduler
where all tasks are confined inside a partition (constrabyed d0€S not exist yet but this prototype scheduler can be used
the partition budget) and the partitions are schedulecbgeri 12ter as a reference when comparing against a verified (user
ically according to Earliest Deadline First (EDF). Pagiited space) version. We coq3|der the implementation presented i
scheduling is the only lacking piece in seL4 which would maki®iS Paper as our baseline.

it a complete resource-partitioning aware kernel. Outline The outline of this paper is as follows: In Section Il
we present the preliminaries. Section Il presents thetedla

Fig. 1. Scheduling in seL4.

Girertiion]  work. Further, Section IV describes the scheduler implemen
-- E E ?;iﬁ;se tation and, in Section V, we evaluate the overhead of our
A . solution and related system overheads. Finally, Section VI
8 T = a T concludes our work.
¢ T [l. PRELIMINARIES
Tms Partitioning is, as mentioned, the primary method that seL4
uses to tackle software complexity since partitioninglfeates
Fig. 2. Partitioned scheduling on uni-core processor. verification and verification itself facilitates the hamudji of

_ ) _ software complexity. The partitioning mechanism is alsedus
Possible solutionsThere are in essence 2 ways of supporgy the avionics industry (ARINC653) to build safe systems.

ing partitioned scheduling in seL4: When it comes to partitioning of time, i.e., the CPU resoyace
1) Implement the partitioned scheduler (PS) in user modssmmon framework used (for example in ARINC653) is a two
Poor performance but flexible solution. level (hierarchical) scheduling scheme as depicted inrgigu
2) Implement the PS in privileged mod&ood perfor- We can observe that there are two kinds of schedulers; global
mance but static solution. and local. The global scheduler is responsible for scheduli

We see that there is a performance difference between fBrtitions and the local scheduler (if any) handles schiegul
and (2). This is obvious since solution (1) implements thef threads (tasks). The scheduling policy at any level can be
scheduler in a user thread while (2) can keep the schedudbitrary. For example, ARINC653 defines static time-table
inside the kernel itself, hence, less thread context-wvite  scheduling at the global level and Fixed-Priority Preexgti
The downside with solution (2) is that any change of th&cheduling (FPPS) of periodic threads at the local level.
scheduling policy implies re-verifying the seL4 kernel.ride, The main advantage with hierarchical scheduling is the run-
we are more or less stuck with one or a few defined policigime mechanism that divides the CPU cycles among groups

In this paper we adopt to solution (1). The obvious reasaf threads (a partition) instead of giving CPU resource dis-
behind this choice is that we cannot access the seL4 kertrdution at the level of threads which is common in most
source code. But even if we could, we do not possess thperating systems. Hence, the CPU resource is distributed
knowledge of re-verifying a kernel with 8700 SLOC usingt the level of applications which is more suitable if we
the Isabelle/HOL theorem prover. Hence, we do not havelet different applications share the same CPU. Examples of



and VxWorks without requiring kernel modifications. Molnos
et al. [29] presents an implementation of a light-weight RTOS
with two-level scheduling running on top of a SoC platform.
The global scheduler resides within the RTOS itself alonttp wi

a few local schedulers. The RTOS and all of its schedulers
e teriece sy are claimed to be verified. Applications (in this case H264
and JPEG decoders) can either use their own (un-trusted)
local scheduler or one of the verified local schedulers in the
RTOS. The global scheduler is in charge of scheduling the
applications.

b) Scheduler modelling/verificationFew papers touch
upon the field of modelling and verification of hierarchical
(partitioned) scheduling. Mulleet al. [30], [31] presented
Bossa in 2002/2004. This framework is used for scheduler
development and has a domain specific language (DSL) which
can model schedulers (such as hierarchical schedulers$aBo
applications can be a Virtual Machine (VM) or an engingéupports scheduler synthesis for early Linux kernel vessio
control management system. The division of the CPU becontds et al. [32] (2004) presented theorem-proving verification
easier, as well as the analysis, and we get a form of fa@l the Integrated Modular Avionics (IMA) scheduler in the
isolation within partition bounds. Another benefit is thagliv DEOS kernel (which is used in safety-critical domains).sThi
defined partitions with clear interfaces have the advantiagle Scheduler assigns a period and a time slice to each thread
they are easier to reuse in other systems. and schedules them using Rate Monotonic (RM). Singhoff

al. [33] (2007) presented modelling and schedulability arialys
Il. RELATED WORK of two-level hierarchical scheduling (using timed automat
A significant amount of work [6], [7], [8], [9], [10], [11], in their simulation tool Cheddar. Recently (2011§sberg
[12], [13] has focused on analyzing hierarchically schedul et al. [5] presented modelling, verification and synthesis of
systems, which initially originated from the open systemtsvo-level hierarchical FPPS. The synthesized scheduler wa
principle [14] back in the 90’s. Open-systems analysis sagh integrated into VxWorks.
the work from Shiret al. [8] fits well with our implementation.
a) Scheduler implementation&he first papers dealing IV. IMPLEMENTATION

with resource reserves of the CPU was Waeetgal. [15] The PS implementation is based on the seL4 microkernel
and Oikawaet al. [16] (1999). Both approaches are basegersion 1.1. Compilation was done using the cross-compiler
on modifications of the Linux kernel in order to enhancg Sourcery CodeBench Lite 4.6.3.

the real-time capabilities by introducing some form of CPU The PS prototype implements EDF scheduling of parti-
reserves. Kimet al. [17] proposed the SPIRIT-puKernel backijons where each partition contains one thread each. Hence,
in year 2000 that implemented a two-level hierarchical FPRfis scheduler is identical to th@eCHED DEADLINE [21],
framework. The next year, Regekt al. [18] presented an [22] scheduler in Linux. We have chosen not to add local
implementation of hierarchical scheduling in Windows 200@cheduling inside the partitions due to technical chaksng

In 2005, Linet al. [19] implemented a scheduler (Vsched) thafith implementing the periodic task model [34] in seL4. We

could schedule periodic type-2 virtual machines in Linukwi defer the work of adding a second layer scheduling to future
out requiring modifications to the kernel. “Hijack” [20] (bywork.

Parmeret al, 2007) is a resource reservation module for Linux |t js easy to switch the EDF algorithm at the global
which does not require any modifications to the kernel itse§cheduling level to FPPS instead. Its just a matter of rapac
SCHED_DEADLINE by Faggioliet al. [21], [22] (2009) is the deadline queue with a thread-priority queue.

a scheduler that implements EDF scheduling of partitions in partitions have the parameters periad, (deadline D) and
Linux. AQUoSA (Adaptive Quality of Service Architecturey b pydget ©). The active partition with the smallest absolute
Palopoliet al. [23] (2009) is a resource reservation schedulgfeadline will always be the current executing partitioa.,, ithe

for Linux based on feedback. More recently, Behna&i priority of the partitions are dynamic depending on the entr

al. [24] (2008), Heuvekt al. [25] (2009) and Inanet al.[26] apsolute deadline. The reason for choosing EDF instead of
(2011) implemented two-level hierarchical FPPS in the conepps s because they have the same implementation complex-
mercial real-time operating systems VxWorksZ/OS-Il and ity and almost the same runtime overhead (EDF has one more
FreeRTOS respectively. Yareg al.[27] (2011) implemented a aqdition operation than FPPS) but EDF has in general better

two level hierarchical scheduler in the L4/F|aSCO microledr CPU utilization and it generates less number of preemp“ons
running L4Linux virtual machines on tofisherget al. [28] compared to FPPS [35].

(2012) presented the ExSched scheduling framework which
is capable of hierarchical and multi-core scheduling inuxin  'seL4 http:/www.ertos.nicta.com.au/software/seL4/bgiyl

Global scheduler

Fig. 3. Hierarchical Scheduling Framework.



seL4 has a sealed kernel since it is verified and any
modifications would invalidate the verification. Hence, we (9695 s 6665 6463 s 3433 3231 e 2 1)
are forced to implement the scheduler in a user thread. We 3130 s+ 1 0 3130 e« 1 0 3130 e 1 0
implemented the EDF PS in the root thread which is the first [0]1[ === [0]0] [0f0] ... [O]0][0fO[ ... [O]1]
thread to start at bootup. We set up this thread to be awakenedt Y A ]\ J

by periodic interrupts (Figure 4). l int32 int32 int32 |
T

1. while(true) { int bitmap(3]

2. // Acknowledge the interrupt.

3. seL4_IRQHandler _Ack(irqg);

4. // Wait to receive interrupt notifications. 96 9594939291908988 87654321

5. sel4Wait(endpoint, &sender); ANnAnnnnnEEnnnnnnnn;

6.} VY VY VYV VYV VY VYV VY

Fig. 4. Main loop in the PS.

We let the root thread be responsible for setting up the |

o . Y
partitions and creating threads (to schedule) and conhesét node *bitmap_nodes[97]
to their partitions. The thread body is represented in Fdur
We save a timestamp in the beginning of its execution so that Fig. 6. Representation of the bitmap queue structure.

we can trace and record the execution of threads. Since we
do not have access to the kernel we cannot do proper thread-
execution recording which is important in order to debug theand 95 stored in the queue currently. Thie map_nodes

scheduler. structure keeps the information about which threads that ar
represented in the bitmap quebiet map. For example, there

1. void threadgoid) { are two threads, both with the value 1. The linked-list stice

z ';’7%';’;%3‘:22 hem this thread started. in bi t map_nodes links the thread ID (through the linked

4. tstamp = getRDTSCY(); nodes) to the bitmap. The nodes are inserted/retrieved in

. \'A‘/’t%?‘a’)“p) FIFO order in the linked list (this will minimize unneces-

7.} ' sary task switches). Thiei t map_nodes structure could of

course be optimized in terms of memory usage by having
a bi t map_nodes structure with less elements and use a

Fig. 5. Thread body. hash function to map between it and the bitmap structure
(bi t map).
A. Queue management Recall the discussion about the problem with wrap arounds.

The core functionality of the EDF scheduler is the releas® solve this problem we have the data structures in Figure 6
and deadline queue. The release queue keeps the relgaplicated. So for example, assume we have a task with period
times ordered with the smallest value first. The orderirf@p. When the schedule reaches absolute time 95 then we
will decrease the thread-release overhead, especiallye sirelease the task and update its value in the release queue
element insertion and retrieval has O(1) complexity in ofFigure 6). The next absolute release time for this task will
implementation. The deadline queue has the thread absoldxe 95 + 95 = 190. We wrap the new period value around 96
deadlines stored in a ordered fashion. Hence, the complexdince the queue in this example can only represent the values
to determine the highest priority thread is also O(1). A%—96. Hence, the new period value will 860 — 96 = 94. So
mentioned, deadlines are stored as absolute values, the sw@ insert the value 94 into the replicated queue. We always
as for release times. The reason for storing them as absokgep one queue as the active one, hence, this means that we
values (instead of relative [25]) is because we avoid tHisst retrieve the elements in the active queue. When theeacti
complexity of having to decrement the relative time as timgueue is empty then we switch to the second queue and start
progresses. However, the problem with absolute valuesais thetrieving elements from this queue instead. Hence, therskc
they must wrap around at some point (an unsigned 32 biteue becomes the active queue. In this manner we form a
integer will for example wrap at 4 294 967 296). We solveircular queue that wraps the element values.
this by keeping two data structures of the queue. The vahges a The period and deadline values of all the partitions in
stored in the second queue whenever there is a wrap arouhe. system will dictate the length of the bitmap queue. The
The queue itself is based on bitmaps, i.e., an element in fkagth of the bitmap queue must be large enough to contain
queue is represented by a bit in an integer. The queuethe largest period/deadline value otherwise the wrappiitig w
illustrated in Figure 6. not work. Using a hash table and/or small period/deadline

As the figure shows, bit O imi t map[ 0] and bit 30 in values may actually incur less memory overhead than non
bi t map[ 2] is set which means that we have the two valudstmap-based queues. However, if the period/deadlineevalu



distribution is too wide then it could be the other way around\. Hardware and software setup

The positive aspect with a bitmap queue is that it only has ag,; ps implementation was executed in the Quick EMU-
time complexity of O(l)_for both insertion ar_1d r_etrieval Ofator? [37] (QEMU), version 0.13.91, running on Linux open-
elements. As a comparison, one of the main _Llnux kemngE 11.4. QEMU is an open-source machine (processor)
queue-structures is the Red Black Tree (RBT) which has a tirggyyjator that emulates real hardware accurately down to CPU
complexity of O(log n), i.e., worse than bitmap. For exampl@ycle level. We configured QEMU to emulate an Intel 533
SCHED_DEADLINE [21], [22] uses RBT. _ MHz Pentium3 Katmai processor (model 7, stepping 3). We
The reason why the bitmap queue has O(1) time complexflisse Pentium3 Katmai since it is reliable to use its tinrapta

is because it takes a constant time to set a bit in an integefnter for time measurements. We will elaborate more an thi
and the same goes for the retrieval of the least significaAtine next section.

bit. The time length to perform these two operations are

constant independent of the amount of elements (bits) dtof®. Time measurement

in the queue. The algorithm to retrieve the least signifitaint  \We chose to use the ReaD Time-Stamp Counter (RDTSC)
is shown in Figure 7. The algorithm systematically detecfocessor register (only for x86 architecture) for accimgnt
bits and bit-shifts towards the least significant bit. Usingme since we wanted a low overhead (and high resolution)
the corresponding CPU instructidnf s did not affect our facility for time measurements. The RDTSC instruction nesu
experimental results significantly (Section V). Howevesing the processor timestamp from a CPU register. This register
this algorithm instead makes the implementation hardwatgcords the number of CPU clock-cycles since the processor
independent. was last reset. However, there are well known issues which
can make RDTSC timestamping unreliable.

int my_ffs(int the_integer) { 1) In multi-core architectures, cores may have different
' values in their RDTSC registers. Hence, threads that
migrate from one CPU to another might read incorrect
timestamps since registers on different CPUs are not

int least signif_bit = 1;

1.
2
3
4.
5. if (the_integer ==0)
6
7
8

return O; !

' ‘ synchronized.
s M (t?ﬁj?;‘fgggrg;gfol%qFFFF) =01 2) Dynamic frequency scaling (called SpeedStep on x86)
10. leastsignif_bit += 16; will change the elapsed time between clock cycles,
i;: .}} ( (the_integer & 0X000000FF) == 0 | hence, the counter value becomes unreliable.
13. theinteger >>= 8; 3) Out-of-order execution can change the location of the
ig: ) leastsignif_bit += 8; RDTSC timestamp in the source code. Hence, the times-
16. if ( (theinteger & OX0000000F) == 0 tamp may happen earlier or later than intended, giving
i e s incorrect time measurements.
19. 1} i -
20, T ( (theinteger & 0x00000003) == 0 § _ In order to tac_kle these issues we chose a processor (Pen
21. theinteger > >= 2; tium3 Katmai) with only one core and no SpeedStep. Before
gg ) leastsignif_bit += 2; each call to RDTSC we put a CPUID instruction-call to
24, if ( (theinteger & 0x00000001) == 0 | flush the instruction pipeline. This will serialize the insttion
25. the integer>>= 1; gueue in order to prevent out-of-order execution of the ROTS
26. leastsignif_bit += 1; .
27. %} operation.
28. return leastsignif_bit;
29.} C. Overhead measurements

Figure 8 shows the measured overhead of the PS (without

Fig. 7. Algorithm to retrieve the least significant bit in a B integer.  follback), PS using rollback when resuming threads (rokba

is used for tracing purposes, see Section V-D) and the selL4

The intention with this scheduler implementation is teontext switch when switching from the scheduler thread to
reduce the number of scheduler invocations (hence we hather thread. Rollback means that a resume of a thread will
chosen EDF) and to minimize the scheduler execution time-start the thread from its first instruction in its sequent
(hence the bitmap queues). We did this in order to keep thede. Without the use of rollback, threads are resumed to the
overhead to a minimum, since having the scheduler implemdast instruction they were at, prior to the thread preenmptib
tation in user space is not efficient in general. rollback is not used then we can not perform task tracing (for
debugging purposes) since the trace point is located poior t

) ) ) ) _ the first task instruction (on all tasks). A context switclings
This section presents our experiments with the PS implgsjipack will re-start the task at the trace point, hencis will

mentation. We will present the measured overhead of thfaple task tracing and the context switch will be registere
scheduler itself and selL4 context switches. Further, we a'&ee line 4 and 5 in Figure 5).

provide execution traces of threads scheduled by the PS and
we visualize these using the Grasp tool [36]. 2QEMU www.gemu.org/

V. EVALUATION



The server (partition) parameters were as follows; perioddD Athlon processor. Another comparison is the measured
(T') were set randomly to 11, 12, 14, 17, 19, 21, 23, 25 anitne of a system call deL4_Send(), seL4 Wit (),
28 time units while the budgetd) was set to 1 time unit seL4_Repl yWait()) in seL4 on an ARM Cortex-A8
on all servers. Maximum server utilization (with 9 serversJ00MHz which takes approximately 20 ps [38]. Another
is approximately 52.5% and the time length that we ran tlexample from [38] is the time it takes from the arrival of an
systems and measured overhead was 5000 time units (s@itérrupt until a thread handler starts. This time was messsu
ticks). We chose maximum 9 servers due to a limitation a6 be 59.5 ps and 318.3 ps depending on whether certain

the memory allocation in selL4. system calls were allowed (open system) or not (closed sys-
i tem). [39] reported on inter- and intra-process commuitoat
2 ‘ ‘ ‘ ‘ ‘ ‘ (IPC) overheads of 54 pus and 35 ps respectively, running

on an ARM1176 (416MHz) processor (with L4/Fiasco). The
—meameag || COMparisons are summarized in Table I.
TR || CONClUsively, it is difficult to draw any final conclusion®in

our measurements. The comparisons we have made relate to
general system overheads in the seL4 and L4/Fiasco kernels.
. 1 Based on this, the overhead of the PS (without rollback) does
not seem overwhelming, i.e., this overhead is at least not
orders of magnitude larger than general system overheads in
selL4/L4/Fiasco kernels.

)
T

Y
T

N
T
L

e
@
T
I

e
1S
T
I

Average number of CPU clock-cycles per invocation

ol | Measurement Platform Time (us)
" PS (with rollback) Intel Pentium3 533MHz (selL4) 346
of L L L L L L . PS Intel Pentium3 533MHz (selL4) 213
Number of partitions Context switch Intel Pentium3 533MHz (selL4) 109
Set timer in HSF [27]| AMD Athlon 2GHz (L4/Fiasco) 236
Fig. 8. Average overhead measurements of the PS (with ahduwtitollback) System call [38] ARM Cortex-A8 800MHz (seL4) 20
and sel4 thread context-switches. Interrupt delivery [38]| ARM Cortex-A8 800MHz (seL4)| 59/318
IPC [39] ARM1176 416MHz (L4/Fiasco)| 35/54
The context switch was triggered by tlseL4 it () TABLE |

call from the scheduler thread. The figure shows the average OVERHEAD COMPARISON
amount of CPU cycles it took at each scheduler invocation and
context switch for different server (partition) configuoais
(2—9). The context switch overhead should be constant relativeFigure 9 shows the execution trace when the PS interrupts an
to the number of servers running. We see a slight increaseecuting thread to perform a scheduling operation. It énth
which is likely due to measurement uncertainties such #&sllowed by the selL4 context-switch execution. The context
cache effects etc. However, the scheduler overhead of the $¥itch was measured by timestamping the end of the PS
(with and without rollback) should increase as the numbend the start of the next running thread. It is not possible
of servers increase since more servers increase the risktafmeasure the time (of the context switch execution) betwee
multiple scheduling jobs (server releases and server ltudgen interrupted thread and the PS due to that the interrupted
depletions) happening at the same time during a scheduleread cannot timestamp the time when it gets interrupted.
invocation. Simultan_eous scheduling jobs, fpr exgmplesﬂv D. Execution trace
server releases, during a scheduler invocation will ireeehe
measured average time represented in Figure 8. The differen Figure 10 shows a thread execution trace scheduled with
in scheduler overhead (PS with rollback) when we compa®&l EDF PS. The threads (denottskl, task2 and task3
the configuration of 2 and 9 servers is only 14283 clodk this figure) partitions had the period’) values 3, 4 and 5.
cycles (26.8 ps) which is relatively small. This is due to th&he budget ©) values were set to 1, 1 and 2 respectively.
effective O(1) queue management (Section IV-A) in the PS.As mentioned in Section V-B, we used the RDTSC instruc-
The overhead of PS without rollback is also increasing wition to timestamp the start and end of the thread execution.
the number of servers but at a lower rate. The average numbbese timestamp points were placed at the beginning of the
of clock cycles for a scheduler invocation (with rollback) ithread body and at the beginning and end of the PS code.
184661 (346 ps). PS without rollback is in average 11374¥e also created a background thread with the lowest priority
clock cycles (213 ps) per invocation which may be perceivddis thread represents the part of the trace when the sagedul
as long. On the other hand it is only two times the time lengthreads are not running. In order to be able to trace thread
of a context switch which is in average 58282 clock cyclggeemptions, we simply restart (rollback) the thread to the
(109 ps). beginning of its body such that we can get a timestamp when
As a comparison, the overhead of setting a timer (at tfitegets re-scheduled by the PS.
global scheduling level) in a hierarchical scheduling feem The trace (Figure 10) was verified by comparing it with
work [27] in L4/Fiasco takes in average 236 ps on a 2GHz corresponding EDF trace from the TIMES tool [40]. Its



task3 |
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Fig. 9. Execution trace of the PS (with rollback) and a contitch in seL4.

interesting to note that the FIFO order in the thread deadlinvith the observed interrupt latency (from interrupt to tmte
gueue prevents unnecessary preemptions when deadlineshareller) of 318 us in an open system running on a platform
equal. This can be seen tsk3s third instancetaskl is that is faster than ours (533MHz vs. 800MHz). But still, the
released in the middle ofask3s execution with the sameoverhead is substantial. Two facts can still justify our swrad
deadline (15) but there is no preemption sirtesk3 was values. First of all, we used an outdated and slow CPU (for
released beforéaskl and hence it is ahead ¢éskl in the the sake of getting reliable measurements). For example, if
deadline queue at index 15. our platform would have a frequency of 800MHz, then the
VI. CONCLUSION scheduler-invocation length would be 142 ps. Hence, it doul

e comparable to the interrupt-latency time. Secondly, we

The seL4 microkernel is a high performance kernel WitE . L
the uniqueness that the entire kernel is verified using tveor elieve that further optimizations could decrease the arhou
of overhead of our scheduler.

proving. Hence, this makes the kernel suitable for safety- _ L

critical systems. The principle of seL4 is to isolate apgiicns Future yvork includes optimizing the scheduler for perfor-
from each other and execute them on a safe and trusted p gnce gains. Ifwe manage to ge_t itdown to a reasonab_le level
form. This means that if an application is correctly constied, then we mlght consider de"e"?P'”g anew scheduler with .the
in terms of its functionality, then it will never be disrupter same pollc_:y, but based on verification using theorem proving
fail due to a faulty kernel or other error-prone applicaﬂ'onThe idea is to use Event-B or Frama-C formal analysis and

One missing piece in the selL4 kernel is the partitioning Jfrification, and try to_deve_lopasch_eduler that IS simitethe
time. A solution to this is to put the policy outside of thescheduler presented in this paper (in terms of its sourde-co

kernel, i.e., in user space. The downside with this apprdmcH'jmd performance).
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