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Abstract. Elemental intrinsic overloading is used successfully in vector

parallel and data parallel programming languages. It allows scalar oper-

ators to be applied to arguments of array type, where the semantics is

a new array where every element is the result of applying the operator

to the corresponding elements of the argument array. This type of over-

loading makes programs with extensive use of array operations easier

to read, write and maintain. However, it is typically restricted to allow

overloading only of built-in functions and de�ned only for operators on

one parallel data type, mostly arrays. In order to extend this feature to

a larger class of languages, we propose elemental function overloading

together with a polymorphic type discipline. Elemental function over-

loading, which is de�ned for all functions, also incorporates promotion

of \scalar" values. In this paper we formalize the concept of elemental

functional overloading in an explicitly typed polymorphic language and

present an algorithm for resolving this overloading. We also make a pre-

liminary study of elemental function overloading in an implicitly typed

polymorphic language with type inference.

1 Introduction

Array-based languages like Apl [13], Fortran 90 [1] and HPF [11] and systems

like MatLab [18] allow elemental intrinsic overloading, where a scalar operator

may be applied to arguments of array type. The semantics is that a new array

is produced where every element is the result of the operator applied to the

corresponding elements of the argument arrays. Apl, Fortran 90, and HPF also

allow vector valued subscripts or indirect indexing, where an array with index

values is given as index to another array. The semantics is a new array, of the

same length as the argument array, which holds the indirectly indexed elements

of the outer array. The following Fortran 90 code exempli�es the use of these

features:



REAL, DIMENSION (N) :: A, B, C

INTEGER, DIMENSION (N) :: IND

REAL, DIMENSION (M) :: D

C = SQRT(A) + B**2 + D(IND)

After the operation, every element C(I) will hold the value of the expression

SQRT(A(I)) + B(I)**2 + D(IND(I)). This style of programming, which goes

back to Apl, is appreciated among scienti�c computing programmers since

it yields a succinct, yet natural and readable way for expressing many algo-

rithms [14, p. 56].

A similar, but slightly di�erent kind of overloading was provided in late

versions of the data parallel language *lisp [21] for the Connection Machine. An

example is the expression

(+!! x!! 2)

Here, x!! is a pvar, an array distributed throughout the Connection Machine,

and +!! is an operation for elementwise addition of pvar's. Thus, the second

argument ought to be a pvar as well, but the overloading allows the scalar 2

to be interpreted as a pvar with elements 2 throughout. This overloading is

sometimes called promotion.

However, existing languages with these features impose a number of restric-

tions on their use. First, Fortran 90 and HPF allow the use of elemental intrinsic

overloading only for a number of builtin operations, not for functions in general.

1

. Second, these features are usually only allowed for a single indexed data type,

like arrays. It is not hard to see that they would work for indexed data types

in general. Elemental overloading and promotion, in particular, should also be

possible to apply for other structured types like homogeneous lists. Third, these

features only appear in explicitly typed monomorphic languages. Moreover, us-

ing this kind of overloading in languages with nested structures may lead to

ambiguities [19].

The aim of the work reported here is to give these kinds of overloading a �rm

theoretical basis, in order to overcome the somewhat ad hoc nature of current

approaches and to make the features more generally applicable. In particular

we want to support the generalization from intrinsic operations to functions

in general, from certain indexed data types to homogeneous indexed datatypes

in general, from monomorphism to polymorphism, and, further down the road,

from explicitly typed languages to languages with Hindley-Milner style type in-

ference [12, 16, 4, 3]. For this purpose, we have formalized the notion of elemental

function overloading, extending the Hindley-Milner type system for an explicitly

typed functional language with a rewrite procedure which transforms overloaded

terms into well-typed terms where the overloading is resolved.

1

For MatLab the overloading works also for user-de�ned functions. This is since Mat-

lab has a degenerate type system where all data are matrices. Thus, operators and

functions are not really overloaded. This approach works only if the language has a

single data type for all data.



We prove that this system does not rewrite terms which are typed by the

original type system, and that successfully rewritten terms always have a type

in the original system. Furthermore, if a term is not rewritten, it is assigned the

same type in both the original and our proposed system. We call these properties

soundness and transparency with respect to the original system, respectively.

For this explicitly typed system we also give an algorithm which resolves the

overloading for overloaded terms and calculates the type of the result. We prove

that the algorithm is sound and complete with respect to the extended type

system. Furthermore, we have adapted the formalization of elemental function

overloading to an implicitly typed language. We conclude by showing that the

properties that hold for the explicitly typed system, also holds for the implicitly

typed system. However, we have not yet developed an algorithm for inferring type

and resolving elemental function overloading in the implicitly typed language.

Due to space constraints, full proofs of all properties are left out. However,

they can be found in [22].

2 Related Work

Although elemental intrinsic overloading, vector valued subscripts, promotion

and other collection-oriented features [19] have been proposed for and used in

many di�erent programming languages, most signi�cantly, maybe, in array- and

data parallel languages, only a few have worked on the formal de�nition of

these concepts and how to resolve them. For instance, the HPF speci�cation [11]

does not give any formal account for how to resolve these forms of overloading

even though the language supports them. In Apl and Apl2, the semantics

of implicit scaling is both complex and ad hoc. Our work, on the other hand

gives a formal de�nition of the combination of three features elemental function

overloading, vector valued subscripts, and promotion, and how to resolve these

kinds of overloading.

Elemental overloading of operators to functions over time has been proposed

for the Duration Calculus [2], and in a proposed extension to the Z speci�cation

language [5, 7]. A complete algorithm for this scheme has been presented [6], but

the algorithm is reduced to a proliferation of case-sensitive lifting processes [5,

p. 11]. In contrast, our algorithm is quite easy to understand, comprising only

one rule schema, which describes how an expression is transformed.

Thatte [20] proposes a type system for implicit scaling based on structural

subtyping, de�ned for a monomorphic language which is a simply typed di-

alect of the �-calculus with lists and pairs. Thatte's approach has several draw-

backs. First, it does not incorporate explicit parametric polymorphism. Second,

Thatte's system also restrict the notion of what a scalar value is. In compari-

son, our approach incorporates parametric polymorphism, where explicit type

instantiations resolve the ambiguities that may otherwise arise when combining

scaling and polymorphism, see Example 3. Also, our proposed system extends

the notion of what a scalar value is.



The resolution of class-based overloading in Haskell [8] and related systems

of overloading [17] use combined type inference and rewrite systems somewhat

reminiscent of ours. However, there are several important di�erences between

this and our proposed approach, among which these are the most important.

{ It requires a language with type classes or some similar mechanism.

{ Overloading in Haskell works on class basis, and an instance declaration has

to be made for each class, for which we want the overloading mechanism.

{ Using Haskell's type classes to resolve this overloading is potentially costly.

It will normally result in dictionaries which are carried around and used in

run-time, while in our approach, all overloading is resolved statically.

The original motivation for this work comes from the second author's work

on abstract modelling of indexed entities as partial functions [9, 15]. Our results

are directly applicable in this context.

3 Elemental Function Overloading

Our type inference and rewrite system resolves elemental intrinsics overloading,

but for functions in general, not just a prede�ned set of operators. Thus, we

call it elemental function overloading. The system also performs promotion of

\scalars". Some examples demonstrate what kinds of transformations the system

performs (in all examples, introduced variables are fresh):

Example 1. Elemental intrinsic overloading: consider the expression

f(a

1

; a

2

)

where the types for f , a

1

and a

2

are

f : �

1

� �

2

! �

a

1

: � ! �

1

a

2

: � ! �

2

The \elemental intrinsics" interpretation is to see this as an elementwise applica-

tion of f to a

1

and a

2

. When a

1

and a

2

are functions, the intended interpretation

is

�x:f(a

1

x; a

2

x) : �! �;

the function which returns f(a

1

x; a

2

x) for each \index" x. Our system will

indeed rewrite f(a

1

; a

2

) in this way, given that f , a

1

and a

2

have the types

above inferred.

In the example above, there are two important things to note. First, the types

of the domains of the two actual parameters are the same, in this case �, while

the type of the range of each actual parameter is the same as the type of the

corresponding formal parameter. Second, the type of the transformed function

application is a function, in this case from �, the type of the domains of the

actual parameters, to � , the type of the range of the function f .



Example 2. Elemental overloading on nested structures: reconsider

f(a

1

; a

2

)

but where the types for f , a

1

and a

2

now are

f : �

1

� �

2

! �

a

1

: �

1

! �

2

! �

1

a

2

: �

1

! �

2

! �

2

:

Our system will now transform f(a

1

; a

2

) into

�x

1

�x

2

:f(a

1

x

1

x

2

; a

2

x

1

x

2

) : �

1

! �

2

! �

The functions a

1

and a

2

, with their curried function types, model nested data

structures such as arrays of arrays or nested lists. A moment of thought shows

that the resulting function models elementwise application on nested data struc-

tures. (For each possible pair of indices, �rst index the \outermost" structure,

then the \innermost", then apply f .)

Example 3. Polymorphism cannot give rise to ambiguities in our system when

combining it with elemental overloading on nested structures. Consider the ex-

pression

reverse f

where f models some nested structure, such as arrays of arrays, and reverse is

a polymorphic function. Assuming that their types are

f : int ! int ! �

reverse : 8�:(int ! �)! int ! �

the expression reverse f has two plausible interpretations. We can either apply

reverse on the outer structure, i.e. we instantiate � above to int ! � . In this case,

no translation of reverse f takes place. This is the natural interpretation with

polymorphic functions. However, by instantiating � to int , the interpretation is

changed. Now reverse will be applied to the inner structure, i.e. the expression

reverse f is translated to

�x:reverse(fx):

In Thatte's system, these kinds of ambiguities are avoided by restricting

the language to a monomorphic one, thereby automatically selecting the latter

interpretation over the former. However, by using polymorphism with explicit

instantiations, we can let the user choose either of these interpretations. In Core-

XML, see Sect. 5, we could write either

reverse[int ! � ] f

which would apply reverse on the outer structure, or we could write

reverse [� ] f



which in our proposed system would be transformed to

�x:reverse [� ] (f x)

i.e. applying reverse on the inner structure of f .

Example 4. Promotion: again, reconsider

f(a

1

; a

2

)

where the types for the subexpressions now are

f : (� ! �

1

)� (� ! �

2

)! �

a

1

: � ! �

1

a

2

: �

2

:

Our system now transforms f(a

1

; a

2

) into

f(a

1

; �x:a

2

) : �

This can be seen as promotion of the \scalar" a

2

into the constant function

�x:a

2

.

4 Types and Notation

Throughout the paper, we let � denote types, � and � type variables, and � type

schemes. In addition we have type constructors!, denoting function types, and

an in�nite set of constructors for creating tuple types. Types and type schemes

are de�ned recursively as

� ::= � ! � function types

j (�; : : : ; �) tuples

j � type variables

j b prede�ned basic types.

� ::= �

j 8�:�

Type variables that are not quanti�ed by a type scheme � are free in �.

For the inference systems in this paper we use the following notation.

A a set containing at most one assumption about each identi�er

x,

x : � an assumption associating the program variable x with type

� ,

FV(A) all free variables in the set of assumptions,

A

x

the result of removing any assumption about x from A,

A

�{

the result of removing the assumptions about the variables

in the sequence �{,



A [ fx : �g a set of assumptions, where the type for x is � ,

A `

HM

e : � from the set of assumptions A, we can infer that e has the

type � in the original Hindley-Milner system,

A ` e; e

0

: � from the set of assumptions A, we are allowed to rewrite e

to e

0

, where e

0

has the type �,

�[� := � ] the result of substituting � for all free occurrences of � in �,

A

B

B can be inferred from A.

5 Core-XML

For the purpose of explaining and formalizing our ideas we use a dialect of

the simple language Core-XML [10], which is an explicitly typed counterpart

to Core-ML, the language used in many other presentations of type inference

systems, e.g. in the works by Damas and Milner [4] and Cardelli [3]. The dialect

we use is slightly less explicitly typed than the original and has construction

and deconstruction of tuples, since we make explicit use of these constructs later

when de�ning the transformation rules of our system.

Expressions in this version of Core-XML are de�ned recursively as

e ::= x variable

j �x : �:e abstraction

j ee application

j let x = e in e de�nition

j (e

1

; : : : ; e

n

) n-ary tuple

j �

i

e projection

j ��:e type abstraction

j e[� ] type application.

As can be seen, Core-XML provides explicit type information for every vari-

able introduced with �-abstractions. A type inference system for Core-XML,

adapted from [10], is given in Fig. 1. The inference system is simple, and in

principle, inferring the type of an expression boils down to type-checking the ex-

pression. In the inference system, recursive function de�nitions are not allowed,

instead the prede�ned polymorphic �xed-point operator �x : 8�:(� ! �) ! �

can be used.

6 Elemental Function Overloading in Core-XML

It is quite straightforward to incorporate and formalize the transformations,

informally described in Sect. 3, into the system for typing Core-XML expressions.

First the rules of the ordinary system are adapted to reect the new syntax of

judgements. As an example, the rule for function application

A `

HM

e : �

a

! � A `

HM

e

a

: �

a

A `

HM

ee

a

: �



A

x

[ fx : �g `

HM

x : �

A

x

[ fx : �

a

g `

HM

e : �

A `

HM

�x : �

a

:e : �

a

! �

A `

HM

e : �

a

! � A `

HM

e

a

: �

a

A `

HM

ee

a

: �

A `

HM

e

x

: � A

x

[ fx : �g `

HM

e : �

A `

HM

let x = e

x

in e : �

A `

HM

e

1

: �

1

� � � A `

HM

e

n

: �

n

A `

HM

(e

1

; : : : ; e

n

) : �

1

� � � � � �

n

A `

HM

e : �

1

� � � � � �

n

A `

HM

�

i

e : �

i

1 � i � n

A `

HM

e : �

A `

HM

��:e : 8�:�

� 62 FV (A)

A `

HM

e : 8�:�

A `

HM

e[� ] : �[� := � ]

Fig. 1. The Core-XML type system without elemental function overloading

is changed to

A `

HM

e; e

0

: �

a

! � A `

HM

e

a

; e

0

a

: �

a

A `

HM

ee

a

; e

0

e

0

a

: �

Then the transformations from Sect. 3 are formalized, see Fig. 2. The trans-

formations rules are described in the form of a schema since the number of

transformation rules is in�nite. Figures 1, with judgements modi�ed according

to the above, and 2 together de�ne our type and rewrite system for elemental

function overloading in Core-XML.

6.1 Informal Description of Transformation Rules

The transformation rule schema in Fig. 2 is quite detailed. Therefore, we give

an intuitive understanding of how it is supposed to work. Let us �rst make the

following de�nition:

De�nition 1. � (\larger or equal than") is a relation on types de�ned by

{ � � �

{ � ! � � �

0

i� � � �

0



Let

A

�x

` e; e

0

: �

1

� � � � � �

n

! �

r

A

�x

` e

a

; e

0

a

: 

1

� � � � � 

n

be the premises in the rule. For i 2 f1; : : : ; ng determine k

i

; I

l

; I

g

and

I

e

such that fI

l

; I

g

; I

e

g is a partition of f1; : : : ; ng and the following

relations between the di�erent 

i

and �

i

all hold.

�

i

� �

i;k

i

! � � � ! �

i;1

! 

i

i 2 I

l



i

� �

k

i

! � � � ! �

1

! �

i

i 2 I

g

�

i

� 

i

i 2 I

e

Then de�ne

k

max

= max

i2I

g

k

i

I

g

6= ;

k

max

= 0 I

g

= ;

y

i

= �

i

e

0

a

i 2 I

e

y

i

= �x

i;k

i

: �

i;k

i

: : : �x

i;1

: �

i;1

:�

i

e

0

a

i 2 I

l

y

i

= (�

i

e

0

a

) x

k

i

� � �x

1

i 2 I

g

where all x

k

and x

i;k

are fresh variables. More speci�cally, they belong

to the sequence �x and do not belong to Dom(A

�x

). The schema for the

transformation rules is now given by

A

�x

` e; e

0

: �

1

� � � � � �

n

! �

r

A

�x

` e

a

; e

0

a

: 

1

� � � � � 

n

A ` ee

a

; �x

k

max

: �

i;k

i

: : : �x

1

: �

i;1

:e

0

(y

1

; : : : ; y

n

) :

[TRANS ]

�

k

max

! � � � ! �

1

! �

r

; when k

max

> 0

�

r

; otherwise

Fig. 2. Schema for transformation rules

Now assume we have an expression f(a

1

; : : : ; a

n

), where the types for the

subexpressions, under the given assumptions, are f : �

1

� � � � � �

n

! � and

a

i

: 

i

. In short, what the transformation rule [TRANS ] does can be explained

with the following two steps.

1. For each argument a

i

: if �

i

� 

i

, then �-abstract over a

i

on fresh variables,

so that the new type for a

i

equals �

i

(promotion). Otherwise, check that



i

� �

i

, and that the 

i

for these i all are comparable using � when the �

i

's

are replaced with a common type � .

2. If the previous step was successful, then �-abstract the whole expression on

fresh variables, and apply each argument a

i

where 

i

� �

i

to su�ciently

many of these variables so the resulting argument has type �

i

.

The actual rule schema for our system (Fig. 2) is of course a bit more com-

plex since it summarizes all possible rules, but in essence it follows the above

procedure.



6.2 A Digression

The de�nition of the rule schema requires some justi�cation. First, the relation

between the types of the formal and actual parameter is de�ned on the basis

that we want to overload homogeneous aggregates of data modelled as functions.

Therefore, we require that an element of the actual argument is of the correct

type, or is a functional value which can be used to get a value of the proper type,

or is a value which can be transformed to a value of the expected functional type.

For instance, a function f of type �

1

! �

2

! �

3

, can through function application

be used to acquire values of types �

2

! �

3

and �

3

. A value of type �

3

can through

�-abstractions be transformed to values of types �

2

! �

3

and �

1

! �

2

! �

3

.

Second, it must be noted that elemental function overloading is de�ned only on

the �rst argument of a function.

6.3 Some properties

For our type system with elemental function overloading, the following two im-

portant properties hold. We call them transparency and soundness, respectively.

Proposition 1 (Transparency). 8A8e8�:A `

HM

e : � ) A ` e ; e : �

holds, i.e. an expression which can be given a type without being subject to any

transformation will not be transformed.

Proof. By induction over derivations. It is easy to see that whenever a typing

rule in the original system is used, we can use the corresponding rule in the

combined system. And if we do this, no transformation of e will take place. ut

Proposition 2 (Soundness). 8A8e8e

0

8�:A ` e ; e

0

: � ) A `

HM

e

0

: �

holds, i.e. the type given to a transformed expression is the same as the original

type system would assign to it.

Proof. By induction over derivations. All cases are quite straightforward, except

when a transformation has taken place. But in that case we notice that the type

given to the transformed expression always is correct according to the types of

the (transformed) subexpressions. ut

6.4 An Algorithm for Resolving Overloading in Core-XML

We now give an algorithm for type assignment and rewriting according to our

type system in Figs. 1 and 2. The algorithm is outlined in Fig. 3, where only the

part actually transforming an expression is given in detail. As input the algorithm

takes a set of assumptions, and a program for which a type should be inferred.

As output it produces a transformation of the input program and a type for the

transformed program. For all cases except when there is a type mismatch, the

algorithm just checks that types are used appropriately. When there is a type

mismatch, the algorithm tries to match one of the transformation rules. If it

succeeds, the transformed expression and its type is returned, otherwise an error

occurs.



Input: A set of assumptions A and a program e.

Output: A pair (e

0

; �), the meaning and type of e under A

Tr(A,x) = : : :

Tr(A, ��:e) = : : :

Tr(A, e[� ]) = : : :

Tr(A, �x : �

a

:e) = : : :

Tr(A, let x = e

x

in e) = : : :

Tr(A, ee

a

) =

let (e

0

; � ) = Tr(A,e); (e

0

a

; �

a

) = Tr(A, e

a

) in

case � of

�

a

! �

r

then (e

0

e

0

a

; �

r

)

�

1

� � � � � �

n

! �

r

then

case �

a

of



1

� � � � � 

n

then

let forall i 2 f1; : : : ; ng y

i

=

(�

i

e

0

a

)x

n

i

: : : x

1

when 

i

� �

n

i

! � � � ! �

1

! �

i

(�

i

e

0

a

) when 

i

� �

i

�x

i;n

i

: : : �x

i;1

:(�

i

e

0

a

) when �

i

� �

i;n

i

! � � � ! �

i;1

! 

i

otherwise unde�ned

I

g

= flj

l

� �

n

l

! � � � ! �

1

! �

l

g

n

max

= if I

g

= ; then 0 else max

i2I

g

n

i

in

if any y

i2f1;:::;ng

= unde�ned then Fail

else if n

max

= 0 then (e

0

(y

1

; : : : ; y

n

); �

r

)

else (�x

n

max

: : : �x

1

:e

0

(y

1

; : : : ; y

n

); �

n

max

! � � � ! �

1

! �

r

)

else Fail

else Fail

Fig. 3. Outline of algorithm for resolving elemental function overloading

The algorithm has the following properties:

Proposition 3 (Soundness). 8A8e8e

0

8�:Tr(A; e) = (e

0

�) ) A ` e ; e

0

: �

holds, i.e if the algorithm rewrites the program e to e

0

and gives a type � for e

0

,

then it is possible to infer that transformation and type for the program.

Proof. By induction over programs. Let the induction hypothesis be Tr(A; e) =

(e

0

; �) ) A ` e ; e

0

: � for all programs of length less than or equal to n. The

base case where e is a variable naturally holds. By considering how programs

are built, it is easy to show that the proposition always holds. ut



Proposition 4 (Completeness). 8A8e8e

0

8�:A ` e ; e

0

: � ) Tr(A; e) =

(e

0

; �) holds, i.e. if a transformation e

0

and type � can be inferred for a program

e then the algorithm will give that transformation and type for the program.

Proof. By induction over derivations. ut

7 Hindley-Milner Type Inference and Elemental Function

Overloading

Our proposed system was originally intended for incorporating elemental func-

tion overloading in a polymorphic, implicitly typed language. The motivation

for this, if any motivation is needed at all, is that elemental function overload-

ing, polymorphism, and type inference have proven to be useful programming

tools. Elemental function overloading makes programs with extensive use of ar-

ray operations easier to read, write and maintain. Polymorphism can be used

to parameterize code, making it both more readable and reusable, while type

inference takes the burden of type annotation from the user. We believe that a

combination of all these features in one language would also be useful.

For the purpose of a preliminary investigation of how well our system can

be adapted to an implicitly typed language, we use Core-ML. To this language

we have added construction and deconstruction of tuples since we make explicit

use of these constructs later. The language is similar to Core-XML, see Sect. 5,

but without explicit type applications and type abstractions. Also, �-abstracted

variables are not annotated.

A \classical" Hindley-Milner type inference system for our Core-ML dialect

is given in Fig. 4. It is derived from the system in [4] by adding the rules for

tuples and projections. We use this system as a reference to our own inference

and rewrite system for Core-ML.

7.1 An Inference System for Elemental Function Overloading

It is quite straightforward to incorporate the transformations, informally de-

scribed in Sect. 3, into a Hindley-Milner type inference system. First we modify

the rules from the ordinary Hindley-Milner type system in Fig. 4, see Sect. 6.

We then formalize the transformations in the same way as before, changing

them slightly to allow for transformed subexpressions, see Fig. 5. The result-

ing transformation rule schema is almost identical to the schema presented in

Fig. 2, except of course that the constructed �-abstractions are not explicitly

typed. Figures 4, with the modi�ed judgements, and 5 together de�ne our type

inference and rewrite system for elemental function overloading in Core-ML.

For our implicitly typed system with elemental function overloading, the

properties transpararency and soundness holds, see Properties 1 and 2. The

proofs of these properties are similar to the corresponding proofs in the explicitly

typed system.

Proposition 5 (Transparency). 8A8e8�:A `
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e : � ) A ` e; e : �

Proposition 6 (Soundness). 8A8e8e
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: �
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Fig. 4. A Hindley-Milner type inference system with rules for tupling and projection

8 Conclusions

We have shown how the syntactical conveniences elemental intrinsic overloading,

vector valued subscripts, and promotion of scalars, common in array- and data

parallel languages such as Fortran 90 and *lisp, can be given a very general

formulation in an abstract setting. Our results give these language constructs

a �rm theoretical basis, in the form of type systems and rewrite systems and

soundness results for these. Our approach is also an improvement over earlier

attempts in that we use a polymorphic language, allow overloading for both

built-in and user-de�ned operations, and handle nested structures in a natural

way.

We �rst developed a type assignment and rewrite system for the explicitly

typed language Core-XML and presented an algorithm for resolving elemental

function overloading in this setting. The algorithm provides a direct way to intro-

duce the general forms of overloading we consider into explicitly typed languages.

We then developed a type inference and rewrite system for the implicitly typed

language Core-ML and showed that the system is sound and transparent with

respect to the original Hindley-Milner system. This is a �rst step in an attempt
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are fresh variables. More speci�cally, they belong

to the sequence �x and do not belong to Dom(A
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). The schema for the

transformation rules is now given by
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Fig. 5. Schema for transformation rules

to incorporate these kinds of overloading into implicitly typed languages with

type inference.

The soundness of our inference systems with respect to the original Hindley-

Milner systems is a pleasant property, since it means that the overloading intro-

duced by our systems always can be resolved statically. This is is bene�cial for

implementations.

It is straightforward to adapt our inference systems to deal with overloading

over data structures such as arrays or lists rather than functions. Only the trans-

formational parts of the systems, given in Fig. 2 and Fig. 5, respectively, need

to be changed as follows. Rather than matching function types for arguments,

one must match the corresponding array or list types (i.e., in Haskell syntax,

Array a b or [b] rather than a -> b). Furthermore, the rewritten expression

must be formed with array- or list-forming primitives rather than through �-

abstraction. The way this is done will specify the semantics of the overloading.

For instance, if the overloading is over arrays, then dynamic checks for the usual

constraint that array arguments to elementwise overloaded operations must be

conformable (have same extents in the corresponding dimensions) can be added.



The generality of the overloading given by our inference systems can be re-

stricted in various ways without sacri�cing our results. For instance, it is very

straightforward to modify the transformational part of the systems so the ele-

mental function overloading is performed only for a restricted set of operations.

More interestingly, one can remove either the promotion, or the elemental func-

tion overloading, and the resulting systems will still be transparent and sound.

9 Future Work

The immediate next step is of course to develop an inference algorithm for the

type inference and rewrite system for Core-ML. This would enable the practical

use of elemental function overloading in implicitly typed languages with type

inference. Such an algorithm should produce a \best" rewriting into a properly

typed term whenever such a term exists. In order to do this, one must come

up with some extended concept of principal type which relates also otherwise

incomparable types which could result from a rewriting. Intuitively, this is easy:

the \best" rewriting should produce an outermost function abstraction with a

minimal number of variables. But the details remain to be worked out. It is also

unclear for the moment what the practical complexity of such an algorithm will

be. We believe that this complexity will be lower if promotion is left out, but

again it remains to be shown that this is indeed the case.

Another topic of interest is how the kind of overloading produced by our sys-

tems can be made to coexist with other kinds of more conventional overloading,

such as the class system in Haskell. A positive result would enable the introduc-

tion of elemental function overloading in Haskell. We think this would turn this

language into a very convenient language for high-level speci�cation and rapid

prototyping of parallel numerical algorithms, and also open the door for the use

of this kind of overloading in symbolic computing.
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