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Abstract

In this paper we present work toward using our previ-
ously proposed method RapidRT to perform response-time
analysis of periodic real-time systems, where the execution
time of the adhering tasks is a random variable from a
known distribution. In effect, we not only aim at validating
the potential of considering the results given by RapidRT as
upper bounds on tasks’ worst-case response time estimates,
but also investigate the possibility of using RapidRT as a
good substitute for the referenced exact stochastic analysis
method which is generally intractable for large systems.

1 Introduction

Traditional schedulability analysis methods for hard
real-time systems are often based on a periodic task model,
where the assumption on tasks’ Worst-Case Execution Time
(WCET) is made, in order to provide a deterministic and
stringent guarantee that all the tasks in the system can meet
their deadlines. If deadlines of all tasks are met, then the
system is deemed schedulable. However, in the context of
timing analysis for soft real-time systems where a failure
in meeting timing requirements will not result in failure of
system that potentially results in catastrophic human conse-
quences, such a stringent guarantee is not required. More-
over, it is often better off providing a probabilistic guaran-
tee that the deadline miss ratio of a task is below a certain
threshold. Consequently, the assumption on tasks’ WCET
has to be relaxed.

A stochastic analysis framework is presented in [1],
which does not introduce any worst-case or restrictive
assumptions into the analysis, and is applicable to gen-
eral priority-based real-time systems including both fixed-
priority scheduling systems and dynamic-priority schedul-
ing systems. The analysis method can handle any periodic
task set consisting of tasks, each of which the execution

time of the adhering jobs is specified as a random variable
with a known discrete distribution. Furthermore, the analy-
sis can give the exact Probability Mass Function (PMF) of
response time of the tasks in the system, and a probability
of deadline miss of tasks.

In [2], we present the timing analysis method
namely RapidRT, which combines Extreme Value Theory
(EVT) [3] with other statistical methods in order to produce
a Worst-Case Response Time (WCRT) estimate of tasks,
under a certain statistic constraint, i.e., a certain probability
of being exceeded. Furthermore, RapidRT performs WCRT
analysis of the target system based on a number of traces1

containing Response Time (RT) data of tasks. In this work,
we are interested in validating RapidRT, by examining if
the results given by RapidRT can be considered as safe up-
per bounds on the WCRT estimates of tasks in the priority-
driven periodic real-time systems [1]. In such systems, the
exact WCRT values can be obtained through the stochastic
analysis framework in [1]. Moreover, such work is mean-
ingful and valuable in the sense that it can also help us to
determine that, if RapidRT can be a substitute for the ref-
erenced stochastic analysis framework which is generally
intractable for large systems.

2 System Model and Notations

The system model S consists of a set of n indepen-
dent periodic tasks running on a uniprocessor, i.e., S ←
τ1, ..., τn, where n ∈ N. A task τi is characterized by a
set of parameters 〈Ti,Φi, ei, Di,Mi〉, where Ti is the task
period, Φi is the initial phase, ei is execution time, Di

is the relative deadline or the temporal constraint, Mi is
the maximum allowed probability of missing the deadline.
The execution time ei is a discrete random variable with a
known distribution. The PMF is denoted by fei(·), where
fei(e) = P{ei = e}. Each periodic task results in an infi-

1Such traces are either from simulation models or the execution of the
real system.



nite number of jobs. Γi,j denotes the jth job of the task τi.
Each job Γi,j is released at a deterministic time λi,j , which
is computed via Equation 1.

λi,j = φi + (j − 1)Ti (1)
The response time of a job Γi,j is a discrete random vari-

able denoted by Ri,j , whereas the response time of a task
Ri is computed by averaging the response time of its jobs
as shown in Equation 2:

fRi
(r) =

1
mi

mi∑

j=1

fRi,j
(r) (2)

where mi = T/Ti, which is the number of jobs from τi

released in a hyper-period of length T . In addition, a task τi

is said to be schedulable if P{Ri > Di} ≤ Mi.

3 The Stochastic Analysis Framework

The referenced stochastic analysis framework in this
work, is proposed in [1], which will be summarized briefly
as follows. For the sake of simplicity, the task to which a
job belongs is not tracked, thus a job has a single index, e.g.,
Γj . The index of a job refers to its order in the infinite se-
quence of jobs, i.e., Γk is released before Γk+1, that is ∀k,
λk ≤ λk+1. The response time of a job Γj is computed as
follows:

Rj = W (λj) + ej + Jj (3)

where Rj denotes the response time distribution of an ar-
bitrary job Γj ; W (λj) denotes the backlog at time λj , i.e.,
the sum of the remaining execution times of all the jobs that
do not finish up to time λj while having higher priorities
than the job under analysis; Jj denotes the interference of
all higher priority jobs released after job Γj .

The backlog at the release time of any job Γj , denoted
by Wλj , can be computed by using the following iterative
procedure [1]:

W (λk0) = 0 (4)

W (λk) = shrink(W (λk−1) + ek−1, λk − λk−1) (5)

where λk0 denotes the release time of the first job released
before Γj and has a higher priority. The shrink function is
given by:

fshrink(W,∆)(x) =





0 if x < 0,
0∑

z=−∞
fW (z + ∆) if x = 0,

fW (x + ∆) if x > 0.
(6)

Iterations start with a zero backlog as shown by Equa-
tion 4 and iterates on all higher priority jobs released be-
fore Γj . After computing the backlog at the release time
of Γj , the backlog distribution is convolved with the execu-
tion time distribution. Such convolution results in a partial
response time which is valid only if no interference with
subsequent higher priority jobs takes place. In case of the
existence of higher priority jobs released after λj , this par-
tial response time will be valid only from λj to λj+1. A
validity range is indicated as a super index for the response
time R[0,λj+1−λj ], which is computed as follows:

R[0,λj+1−λj ] = W (λj) + ej (7)

In order to increase the range of validity, the following
equation is used [1]:

R[0,λk+1−λj ] = AF (R[0,λk−λj ], λk − λj , ek), k > j (8)

where the job Γk has a higher priority than Γj , and AF is a
stochastic function given by:

fAF (R,∆,e)(x) =





fR(x) if x ≤ ∆,
∞∑

i=∆+1

fR(i) · fe(x− i) if x > ∆.

(9)
Each iteration using Equation 8 increases the interval of

validity of the partial response time. The iteration stops
when the deadline is included in the validity range. Con-
sequently, the probability of missing the deadline for a cer-
tain job can be computed by summing the probabilities of
the response time values lying before the deadline and sub-
tracting this sum from one:

P (Rj > Dj) = 1−
k=Dj∑

k=0

P (R[0,∆]
j = k) (10)

After completing the analysis, the probability of miss-
ing the deadline of a certain task is computed by averaging
the probabilities of missing the deadlines of all its jobs, as
shown by Equation 2.

4 RapidRT Using Extreme Value Theory

Our proposed method RapidRT is based on Extreme
Value Thoery (EVT) [3], which is a separate branch of
statistics for dealing with the tail behavior of a distribution.
EVT is used to model the risk of the extreme, rare events,
without the vast amount of sample data required by a brute-
force approach. Example applications of EVT include risk
management, insurance, telecommunications and so on.



Figure 1. The point, at which the bold dash line intersects
with the Gumbel Max curve, is the WCRT estimate given by
RapidRT for each reference data set. The EVT distribution
is constructed on these points for all reference data sets.

RapidRT is a recursive procedure which, as the first two
arguments, takes n reference data sets each of which con-
tains m simulation traces containing tasks’ response times.
For each reference data set, the algorithm returns the WCRT
estimate of the task under analysis with a probability of
being exceeded, e.g., 10−9, which is the third algorithm
argument. For instance, Airbus uses such the value 10−9

which is at the highest development assurance level in the
safety-critical system domain. Next, RapidRT will verify if
the sampling distribution consisting of n WCRT estimates
given by EVT for all n reference data sets (we refer to such
a sampling distribution as the EVT distribution hereafter)
conforms to a normal distribution or not, according to the
result given by the non-parametric Kolmogorov-Smirnov
test (the KS test hereafter). If it is, then RapidRT will
calculate the confidence interval (i.e., CI hereafter) of the
EVT distribution, at the given confidence level 99.7%, and
choose the upper bound on the CI as the final WCRT esti-
mate, as shown in Figure 1. This invents a new hard statis-
tic constraint, i.e., from the statistical perspective, given the
modeled system, the possibility of the existence of a higher
WCRT estimate (i.e., the actual WCRT of the task on focus)
than the WCRT estimate given by RapidRT is no more than
1.5× 10−12 (i.e., (100%− 99.7%)/2× 10−9). Otherwise,
if the EVT distribution cannot be fitted to a normal distri-
bution, a resampling statistic bootstrap will be adopted to
obtain the upper bound on the CI of the EVT distribution.

RapidRT consists of the following three steps: 1) con-
struction of the referenced data sets, 2) WCRT estimation
of each referenced data set using EVT, and 3) derivation of
a final WCRT estimate that is given by the algorithm. For
more details and thorough explanations about each step in
RapidRT, the interested readers can refer to [2]. In addition,

the outline of the algorithm is as follows:
1. Construct n reference data sets for the WCRT esti-

mates by running m Monte Carlo simulations for each
reference data at first, and then choosing the highest
maximum value of response time of the task under
analysis in each simulation. Consequently, the sam-
pling distribution of RT data per reference data set con-
sists of the m highest maximum RT data of m simula-
tions.

2. Perform the WCRT estimates on the task under analy-
sis per each reference data set, i.e., esti where 1 ≤ i ≤
n.

3. After verifying if the EVT distribution (i.e., EST ←
est1, ..., esti, ..., estn) can successfully be fitted to a
normal distribution by using the KS test, RapidRT will
return a result, i.e., EST + 3σEST (the sum of the
mean value and 3 standard deviation of EST at the
confidence level 99.7%). Otherwise, the bootstrap test
will be used in the context.

5 Evaluation

The target priority-based periodic real-time systems (in-
troduced in Section 2) will be modeled and analyzed by us-
ing our RTSSim simulation framework [4]. RTSSim is quite
similar to ARTISST [5] and VirtualTime [6], and allows for
simulating job-level system models on a single processor.
Further, RTSSim provides typical RTOS services to simu-
lation model, such as Fixed-Priority Preemptive Scheduling
(FPPS), intricate task execution dependencies on job-level
including Inter-Process Communication (IPC) via message
queues and synchronization (semaphores). The execution
time of jobs can be modeled as a random variable with a
specific type of distribution. All time-related operations in
RTSSim, such as timeouts and activation of time-triggered
tasks, are driven by the simulation clock, which makes the
simulation result independent of process scheduling and
performance of the analysis PC. The response time and ex-
ecution time of tasks or jobs are measured whenever the
scheduler is invoked, which happens for example at IPC,
task or job switches, EXECUTE statements, operations on
semaphores, task or job activations and when tasks or jobs
end. This, together with the simulation clock behavior,
guarantees that the measured response time and execution
time are exact. In RTSSim, a task may not be released for
execution until a certain non-negative time (i.e., the offset)
has elapsed after the arrival of the activating event. Each
task also has a period, a maximum arrival jitter, and a prior-
ity. Tasks with equal priorities are served on the first come
first serve basis.

In addition, we will propose a number of evaluation
frameworks from the following perspectives:



1. Different statistical constraints in RapidRT: In our
evaluation, the probabilities of being exceeded in
RapidRT can be relatively either low or high, when
compared to the one that we used in the previous re-
search, i.e., 10−9. For example, such probabilities
can be 10−3, 10−6, 10−12, 10−20 etc. The intention is
to evaluate that if the results given by RapidRT can
successfully cover the exact value of WCRT of tasks,
when different levels of statistical constraints are ap-
plied.

2. Different confidence levels of the EVT distribution:
We also consider using different confidence levels in
the EVT distribution in RapidRT, such as 95%, which
is a typical value and based on preliminary assess-
ments provides appropriate results.

3. Scalability of RapidRT: This can be done by creating
independent “subsystems” where each subsystem is a
complete model, i.e., a priority-driven periodic real-
time systems (as introduced in Section 2). For more
details of using “subsystems” for scalability evaluation
can be found in [7].

4. Optimization on the number of samples in
RapidRT: The KS test will be used in this context with
the purpose of optimizing the number of samples in
RapidRT, while keeping the accuracy of results. This
will reduce the computation time required by RapidRT,
which is especially meaningful and necessary for the
cases about timing analysis of large systems.

6 Related Work

As introduced in [1], the exact stochastic analysis of
most real-time systems under preemptive priority driven
scheduling is not affordable in practice currently. Some ap-
proaches about performing stochastic analysis with a spe-
cific scheduling model that isolates tasks so that each task
can be analyzed independently are proposed [8, 9]. In addi-
tion, in order to simply the stochastic analysis in such con-
text, the worst-case assumptions are introduced. Manolache
presents the way of restricting tasks preemption, and some
others [10, 11] introduce the assumption on the critical in-
stance. In [12], Dı́az furthers their previous study by in-
troducing an approximate analysis, in order to decrease the
memory demand on the computation of backlog and re-
sponse time distributions. Recently, Refaat [13] proposes
a method for efficient stochastic analysis by simplifying the
exact distributions of jobs through random sampling.

7 Future Work

This work-in-progress paper has presented ongoing work
on using our previously proposed method RapidRT in
response-time analysis of priority-driven periodic real-time

systems. We are also interested in using RapidRT as a
good substitute for the referenced exact stochastic analy-
sis method which is generally intractable for large systems.
In particular, we have expressed the idea of comparing the
results given by RapidRT to the ones obtained through the
referenced stochastic analysis framework, which provides
us with exact PMFs for task response times. Future work
will mainly lie in implementation and evaluation.
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