FASTHARD - A Fast Time Deterministic HARDware Based Real-Time Kernel

Lennart Lindh
University of Eskilstuna/Vister8s
Department of Real Time Computer Systems
P.O Box 11, S-721 03 Viisterds, Sweden
Tel xx46 21 101300
Fax xx46 21 142017

Abstract

Real-time systems handle increasing complexities of
functions and require better determinism and higher
speed. One way to make it easier to meet those require-
ments is to implement the real-time kernel in a separate
unit working concurrently with the CPU, called RTU
(Real-Time Unit).

This paper describes an RTU we call FASTHARD as a
model in VHDL (hardware description language). It is
planned to be implemented in a special hardware archi-
tecture. All standard CPU’s can be used together with
FASTHARD. FASTHARD can handle rendezvous,
interrupts, periodic start of tasks, delay tasks and activate/
terminate tasks without any contact with the CPU.

1 Introduction

In many of today’s real-time systems the CPU has to
execute both the RTK (Real-Time Kemel) and the task
code ([Transputer88] and [Tinno]). In such systems the
RTK decreases the execution time available in the CPU
for the tasks. Another problem is that the execution time
for the RTK often is a function of many variables such as
number of tasks, clocktickperiod, task scheduling algo-
rithm and communication protocol. For example, the
real-time kernel VRTX needs 144 (is execution time
from the CPU (Motorola 68000) to create a task, about
100 us for task switching and the clocktick interrupts
require (14+7*n) us, where n is the number of tasks
[Tinno82). This variable execution time for the RTK
often leads to non-determinism for the real-time system.

One solution of the problem is to implement the real-time
kernel in a separate hardware unit. We define this unit as
RTU (Real Time Unit, [Stanischewski&Lindh91]).

0-8186-2815-4/92 $3.00 © 1992 IEEE

21

We get the following benefits in using a separate hardwa-

re unit for the Real-Time kernel;

. the CPU has nearly 100 % execution time for the
tasks,

e simple software system, because the program code
for the Real-Time kernel is not needed in the CPU
memory,

. easier to debug the real-time software, because
interrupts and different protection modes are not
needed (only one interrupt require),

. possible to build a deterministic system (the
theory of real-time scheduling require
deterministic Real-Time kernel),

. possible to have complex task scheduling
algorithm (the scheduling algorithm is
implemented in FASTHART and doesn ‘t take any
execution time from the CPU).

Instead of the traditional ways to implement aReal-Time
kernel ([transputer88], [Tino82], [Roos89] and
{Juntunen88}), RTU contains the wholereal-time kernel
in specialized hardware. That means there are no micro-
coded or ROM-based operating system instructions like
in TRON [Sakamura89], Transputer [transputer88] or
EPROM [Tino82]. The difference between FAST-
CHART [Stanischewski&Lindh91] and FASTHARD
is that a standard processor is used instead of a speciali-
zed processor.

2 Overview

FASTHARD can handle 256 tasks and 8 priorities. From
figure 1 man can infer that we have followed real-time
service calls for each task in FASTHARD.
. Activate Task: activates another task.

- Terminate Task: terminates itself, afterwards it can
only be activated by another task.
. Delay Task: deactivates task for a constant time.

IRG_CPU

SYSTEM BUS y

A ;

FASTHARD

RTU MAIN MEMORY
Task Code
Task Data

Task Control Block

IN AND OUT
PORTS

8 170
PORTS

IRQ_EXTERNAL

Figure 1: State diagram

. Periodic start of Task: starts a task with-a defined
period time.
. Rendezvous handler: call, accept and complete.
. Interrupt handler: task waits for interrupts
(hardware interrupt).

In FASTHARD there is a RTK implemented as descri-
bed in figure 1. This runs automatically and concurrently
to the CPU.

A simple Real-Time system (see figure 2) consist of a
CPU, main memory, I/O ports and FASTHARD (RTU).
The system bus and an interrupt line connect CPU and
FASTHARD. Eight external interrupts are connected to
FASTHARD.

3 Functionality, performance and determinism
in FASTHARD

A brief functionality description of the SVC (Service

Calls) handled by FASTHARD follows in C:

« RELATIVE_ DELAY/(time); RETURNY(); (suspends

the executing task for given time)

» ACTIVATE(task_id, priority, start_address);
RETURNQ(); (activates task)

« TERMINATE(); (terminates the running task)

« INIT_PERIOD_TIME(period_time); RETURN();
(initiates the period time for the executing task)

» WAIT_FOR_NEXT_PERIOD();
RETURN_TSW(missing_dcadlincs); (task waiting
for a periodic start)

» OFF_PERIOD _START(); :
RETURN(return_already_off); (no periodic starts
for the executing task)

» CALL(entry, msg_pointer,task_id, time_out)
RETURN_TSW(time_out); (calls an entry of a
task)

» ACCEPT (entry, msg_pointer,time_out);

22

Figure 2: Hardware architecture

RETURN_TSW(time_out, call_task_id)
(accepts a call to the specified entry)
*« COMPLETE(); (completes a rendezvous)
¢ OFF_TASK_SWITCH();
RETURN(ALREADY_OFF); (no taskswitch
allowed)
» ON_TASK_SWITCH(); RETURN(ALREADY_ON);
(taskswitch allowed)
*« WAIT_IRQ_EXTERNAL(irq_nr, time_out_time);
(task waiting for an interrupt)
Eight external interrupts are provided, the priority level
of the external interrupts are the same as the waiting tasks
priority. If an external interrupt occurrs the task is moved
to ready queue.

FASTHARD function model (see figure 3) has similari-
ty to other Real-Time kernels (pSOS-68k,. O'Tool).
Example queues, timeout functions and scheduling algo-
rithms are the same as in other RTKs. The difference is

pe)

ADR |

t

2|11 9=

HS_TSW olojdo

NEXT_TASK_ID 0lof 11
BLOCK_T3W Ql1] O 1|70

CALL_SVC ol1] 10

HS_SVC 1]o[o1

RETURN_DATA 1ol 11

PARAMETER_DATA 1]1] 00

Figure 4: Register select bits address bit 2-0 and R/
W-N bit

TIME OUT ﬁ
W TASK [
, WAITING
7
READY READY @ > 735 —
QUEUE QUEUE nr: 7-0
Priority O Priority 7 IRGEXTERNAL
8 Ready queue
| TIME OUT |
\/ Ww <« | TAxX
\ DELAY
SCHEDULER WAITING
RELATIVE DEALY
<P | T
WAITING
PERIODIC START H
RENDEVOUS
EQ“CPU RU N TIME QUT TIME QUT
e 0
30 1
TASK 2 TASK
ACCEPT V\ CALL
QUEUE QUEUE
BUS - INTERFACE
CPU BUS

Figure 3: Functional model of FASTHARD

the implementation. The commercial RTK is implemen-
ted in software and FASTHARD is implemented in about
60 concurrent statemachines.

Most SVCs are handled in less than 10 assembler instruc-
tions. Tist includes the overhead of blocking for task
switch, error check and parameter transfer to and from
FASTHARD.

4 FASTHARD Interface

The FASTHARD contains seven registers and one inter-
rupt line to the CPU. The registers are: HS_ TSW
(HandShake_TaskSWitch), NEXT_TASK_ID,
BLOCK_TSW, CALL_SVC, HS_SVC,
RETURN_DATA and PARAMETER_DATA

23

register.

IRQ_CPU, HS_TSW and NEXT_TASK ID are task
switch handling registers and interrupt line. The register
HS_TSW is a handshake (HS) register, bit 0 in the regi-
ster is the handshake signal, the others don‘t care (bit 15-
1). After an interrupt (IRQ_CPU) the task switch inter-
ruptroutine starts and HS_TSW sets toone. After having
saved old CPU registers to TCB (Task Control Block),
the address to the new registers are fetch from the
NEXT_TASK_ID register. Next task registers load to
CPU. The last activity to change task is to load the
program counter in the CPU with the new tasks program
counter (from TCB).

9 8 76 5 43 2 10

15
YA A

HEEEEERRE

CALL
COMPLETE
ACCEPT

RENDEZVOUS

PERIODIC

START INIT_PERIOD_TIME

ACTIVATE
TERMINATE

REALATIVE_DELAY

WAIT_IRQ_EXTERNAL

OFF_PERIOD_START
WAITE_FOR_NEXT_PERIOD

Figure 5: CALL_SVC Register

The interrupt routine to the CPU is briefly like this:
SET "HS_TSW?” ; acknowledge interruption.
SAVE old registers to TCB (Task Control Block)
LOAD the next task register from the TCB.
RESET "HS_TSW”;

JMP (NEXT_TASK_ID.PC); (Program Counter)

BLOCK_TSW, CALL_SVC, HS SVC,
RETURN_DATA and PARAMETER_DATA are
used for the SVC, The CALL_SVC register is a control
register for the SVCs (see figure 5). Itis important toblock
taskswitch before parameters are sent to FASTHARD
(BLOCK_TSW = 1), because of the resource sharing of
the register in the FASTHARD.

HS _SVC is the status register and bit 0 is one when
FASTHARD has accepted the SVC call
RETURN_DATA is a 16 bits word and
PARAMETER_DATA contains 16 bits data.

Briefly the code for a SVC call is structured like this:

SET "BLOCK_TSW?”; (No taskswitch allowed)
LOAD "PARAMETER_DATA?”; (Loads parameters to
the RTU)

SET_BIT "CALL_SVC”;

WAIT UNTIL "HS_SVC” = 1; (Handshake signal)
LOAD return_data WITH "RETURN_DATA”; (Re-
turns data to the task)

RESET _BIT "CALL_SVC”; (Task is ready)

WAIT UNTIL "HS_SVC” =0; (FASTHARD is ready)
RESET "BLOCK_TSW?”; (Taskswitch allowed)

24

TCB (Task Control Block) contains register data (when
it’s not running), start address for the task and message
data or pointer for rendezvous.

5 Conclusion

The paper has showed that an useful real-time-kernel can
be implemented in special hardware with better perfor-
mance and determinism than in software or microcode.
Our first model is a simulation model (subset of VHDL)
in a logic synthesis language. In the summer of 1992 we
plan to have a prototype FASTHARD in hardware.
The further work will be to expand the FASTHARD
VHDL model with new functions like deterministic and
high performance Real-Time communications between
CPU’s.

References

[Tinno82] John Tinnon, Real-Time Operating System
Puts the Execution on Silicon, pages 137-140,
April 21, 1982,

[Motorola 68000] Motorola Inc. 16, chemin de la Voie-
Creuse, P.O. Box 8, 1211 Gene ve 20, Switzerland.

[Transputer88] The Transputer Databook, INMOS,
1988

[Juntunen88] T Juntunen, J. Kiveld, A. Reinikka, M,
Sipola, J.-P. Soininen, K. Tiensyrja, T.Tikkanen,
Real-Time Structured Analysis in System Level
design of Embedded ASICs, pages 449-454, Mic
roprocessing and Microprogramming (24), 1988.

[Sakamura89] Ken Sakamura (ed), TRON Project
1989, Springer, 1989, ISBN 0-387-70050-1,

[Stanischewski&Lindh91] Lennart Lindh, Frank
Stanischewski, FASTCHART - A Fast Time De
terministic CPU and Hardware Based Real-Time-
Kernel, IEEE, Euromicro workshop on Real-Time
Systems, 1991. And, FASTCHART - Idea and
Implementation, IEEE International Conference
on Computer Design (ICCD), Boston, USA (14-16
oct,1991),

[pSOS-68k] IRONICS Incorporated, Computer Systems
Division, 798 Cascadilla Street, Ithaca. New York
14850, USA

[O'Tool] O’Tool User’s Manual, ARCTICUS SY
STEMS AB, Saldov 9B, S-175 62 Jarflla, Sweden

25

