
 

 57

Paper III 

Design of Condition Based Maintenance System – 
A Case Study using Sound Analysis and Case-Based Reasoning 

 
Marcus Bengtsson, Erik Olsson, Peter Funk, and Mats Jackson 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

PROCEEDINGS OF THE 8TH CONFERENCE OF 
MAINTENANCE AND RELIABILITY 

MARCON 2004 



 

 58

 
 



 
 
 

Technical Design of Condition Based Maintenance System 
-A Case Study using Sound Analysis and Case-Based Reasoning 

 
Marcus Bengtsson1, Erik Olsson2, Peter Funk2, Mats Jackson1 
1Department of Innovation, Design and Product Development 

2Department of Computer Science and Engineering 
Mälardalen University 

Box 325, SE-631 05 Eskilstuna, Sweden 
{marcus.bengtsson; erik.olsson; peter.funk; mats.jackson}@mdh.se 

1phone +46 16 153 486, fax +46 16 153 610 
 

Abstract 
Productivity is a key weapon for manufacturing companies to stay competitive in a continuous 
growing global market. Increased productivity can be achieved through increased availability. This has 
directed focus on different maintenance types and maintenance strategies. Increased availability 
through efficient maintenance can be achieved through less corrective maintenance actions and more 
accurate preventive maintenance intervals. Condition Based Maintenance (CBM) is a technology that 
strives to identify incipient faults before they become critical which enables more accurate planning of 
the preventive maintenance. CBM can be achieved by utilizing complex technical systems or by 
humans manually monitoring the condition by using their experience, normally a mixture of both is 
used. Although CBM holds a lot of benefits compared to other maintenance types it is not yet 
commonly utilized in industry. One reason for this might be that the maturity level in complex 
technical CBM system is too low. This paper will acknowledge this possible reason, although not 
trying to resolve it, but focusing on system technology with component strategy and an open approach 
to condition parameters as the objective is fulfilled. This paper will theoretically discuss the technical 
components of a complete CBM system approach and by a case study illustrate how a CBM system 
for industrial robot fault detection/diagnosis can be designed using the Artificial Intelligence method 
Case-Based Reasoning and sound analysis. 
 

Introduction 
Industrial competition today is truly global with fragmented markets and customers expecting to get 
the best product at the best price with immediate availability. Success in manufacturing, and indeed 
survival, is increasingly more difficult to ensure and it requires continuous development and 
improvement of the way products are produced. Meeting customer demands require a high degree of 
flexibility, low-cost/low-volume manufacturing skills, and short delivery times. These demands make 
manufacturing performance a strategic weapon for competition and future success. This view is 
supported by Rolstadås who state that many managers believe that the greatest potential for 
improvement of competitiveness lies in better production management (Rolstadås, 1995). 
 
One important weapon in securing the productivity is to have a well functioning maintenance 
organization. The maintenance organization in a company probably has one of the most important 
functions, looking after assets and keeping track of equipment in order to secure productivity. With no 
or a poor maintenance organization a company will loose a lot of money due to lost production 
capacity, cost of keeping spare parts, quality deficiencies, damages for absent or late deliveries etc.  
 
Today, most maintenance actions are carried out by either the predetermined preventive- or the 
corrective approach. The predetermined preventive approach has fixed maintenance intervals in order 
to prevent components, sub-systems or systems to degrade. Corrective maintenance is performed after 



an obvious fault or breakdown has occurred. Both approaches have shown to be costly in many 
applications due to e.g. lost production, cost of keeping spare parts, quality deficiencies etc. Since a 
few decades some industries have started to perform maintenance action in a predictive manner, where 
the assets condition is the key parameter to set the maintenance intervals and appropriate maintenance 
tasks. The condition can be assessed through different levels of automation, from human visual 
inspection, to condition monitoring of e.g. vibration-levels (with human diagnosis and prognosis) all 
the way to completely automated Condition Based Maintenance (CBM) systems.  
 
On-line, semi- or fully automated CBM systems has not been widely accepted within Swedish 
industry. The reason for this can come from many different sources. The maturity level within 
complex technical systems might be too low. The fear of investing a lot of money without knowing 
exactly what will come out of it might be yet another reason. The methods and techniques to diagnose 
faults might also be on a too abstract level. This paper will not try to resolve the issue of what reason 
might be the biggest, although taking the aspect of condition parameters and system architecture into 
context as the objective is fulfilled. The objective of this paper is to describe and (by a case study) 
illustrate the necessary technical components of a CBM system. The paper contains a short theoretical 
frame of reference (covering maintenance and Condition Based Maintenance in particular); a 
theoretical discussion of technical components within a CBM system; a case study illustrating the 
technical design and components of a CBM system for industrial robot fault detection, using Case-
Based Reasoning and sound analysis; and conclusions. 
 

Theoretical frame of reference 
Maintenance is traditionally performed in either time based (or distance based) fixed intervals, so 
called preventive maintenance, or by corrective maintenance. With the preventive approach, 
maintenance is performed in order to prevent equipment breakdown and do this by performing repair, 
service or components exchange. With the corrective approach, maintenance is performed after a 
breakdown or when an obvious fault has occurred, for some equipment the maintenance action must 
be performed immediately, for others the maintenance action can be deferred in time, all depending on 
the equipments function. In the Swedish standard SS-EN 13306 (2001) one can see that also the 
preventive maintenance have been divided into two categories (see Fig. 1), Condition Based 
Maintenance and predetermined maintenance. The predetermined is scheduled in time were as the 
condition based can have dynamic or on request intervals. The Condition Based Maintenance is 
sometimes referred to as predictive maintenance, see figure 2 for strengths and weaknesses of the 
different maintenance types. 
 

 
Figure 1. Overview of the different maintenance types (SS-EN 13306, 2001). 
 



 
Figure 2. Strengths and weaknesses of different maintenance types. 
 
As early as 1978, Nowlan and Heap (1978) presented a study of conditional-probability curves of 
United Airlines aircraft components. The study showed that the conditional-probability curves fell into 
six different patterns (see Fig. 3) were only 4% of the components fell into the commonly known 
bathtub curve. Further, it showed that only a total of 6% of the components showed a well-defined 
wear out region, another 5% had no well-defined wear out region but it was visible that the probability 
of failure was higher as age increased. This means that 89% of the tested components had no wear out 
region; therefore the performance of the components can not be improved by introduction of an age 
limit. Nowlan and Heap also concludes that the failure rate of a component is not a very important 
characteristic within maintenance programs; although a good figure for setting up maintenance 
intervals it tells nothing of “…what tasks are appropriate or the consequences that dictate their 
objective.” (p 48). Corresponding conditional-probability curves for the manufacturing industry is 
presented by (www.wmeng.co.uk) and it is estimated that 30% of all components have well-defined 
wear out regions, consequently 70% does not. Evidently, the ageing feature of a component is not the 
best approach of deciding appropriate maintenance tasks, introducing Condition Based Maintenance is 
one solution to the issue. 
 

 
Figure 3. The six different conditional-probability curves generated by the United Airlines aircraft 
study. 



 
Condition Based Maintenance (CBM) has been defined as “Maintenance actions based on actual 
condition (objective evidence of need) obtained from in-situ, non-invasive tests, operating and 
condition measurement.” (Mitchell, 1998). Butcher (2000), defines the maintenance technology as 
“CBM is a set of maintenance actions based on real-time or near-real time assessment of equipment 
condition which is obtained from embedded sensors and/or external tests & measurements taken by 
portable equipment.”. Moya and Vera (2003) defines that the purpose of a CBM Program is to 
“…improve system reliability and availability, product quality, security, best programming of 
maintenance actions, reduction of direct maintenance costs, reduction of energy consumption, 
facilitates certification and ensures the verification of the requisites of the standard ISO 9000.”. The 
Swedish maintenance terminology standard SS-EN 13306 (2001) defines CBM as “Preventive 
maintenance based on performance and/or parameter monitoring and the subsequent actions.”. More 
similar quotes can be found in literature and on the internet, the common point being that maintenance 
actions are not considered until there is an obvious need, which will increase the availability of an 
asset as well as lower maintenance cost (labour and spare parts). CBM systems (programs) will also 
increase quality and improve environmental aspects.  
 

Condition Based Maintenance System Architecture 
In order for a system to achieve full potential as a Condition Based Maintenance system, it needs to be 
constructed of a number of different functional capabilities. The Open System Architecture for 
Condition Based Maintenance organization (OSA-CBM) has specified an open standard proposal how 
a CBM system should be designed technically. The OSA-CBM is an industry consortium that includes 
industrial, commercial, and military participants, the Applied Research Laboratory at Penn State, and 
the MIMOSA (Machinery Information Management Open System Alliances) are two of the team 
participants. The open, non-proprietary, standard proposal was developed in order to create a free 
market for CBM components, where users of CBM technology will be able to choose CBM 
components from different manufactures. The organization has divided a CBM system into seven 
different technical modules (Thurston, 2001) (see Fig. 4). The standard proposal covers more than the 
technical design of CBM systems, e.g. means of communication within the system etc., this paper 
though, will solely focus on the architecture design. 
 
Layer 1 Sensor Module: The sensor module provides the CBM system with digitized sensor or 
transducer data.  
 
Layer 2 Signal Processing: The signal processing module receives signals and data from the sensor 
module or other signal processing modules. The output from the signal processing module includes 
digitally filtered sensor data, frequency spectra, virtual sensor signals and other CBM features.  
 
Layer 3 Condition Monitor: The condition monitor receives data from the sensor modules, the signal 
processing modules and other condition monitors. Its primary focus is to compare data with expected 
values. The condition monitor should also be able to generate alerts based on preset operational limits.  
 
Layer 4 Health Assessment: The health assessment module receives data from different condition 
monitors or from other health assessment modules. The primary focus of the health assessment 
module is to prescribe if the health of the monitored component, sub-system or system has degraded. 
The health assessment module should be able to generate diagnostic records and propose fault 
possibilities. The diagnosing should be based upon trends in the health history, operational status and 
loading and maintenance history. 
 
Layer 5 Prognostics: The prognostic module should have the possibility to take account data from all 
the prior layers. The primary focus of the prognostic module is to calculate the future health of an 
asset, with account taken to the future usage profiles. The module should report the future health status 
of a specified time or the remaining useful life (RUL).  
 



Layer 6 Decision Support: The decision support module receives data from the health assessment 
module and the prognostic module. Its primary focus is to generate recommended actions and 
alternatives. The actions can be related to maintenance or how to run the asset until the current mission 
is completed without occurrence of breakdown.  
 
Layer 7 Presentation: The presentation module should present data from all previous modules. The 
most important layers to present would be the data from the health assessment, prognostic and 
decision support modules as well as alerts generated from the condition monitors. The ability to look 
even further down in the layer should be a possibility. The presentation module could be built into a 
regular machine interface. 
 
When studying scientific reports and papers one can see that several developments within CBM 
systems more or less have followed the OSA-CBM architecture, giving the proposal positive 
feedback. Garga et.al (2001) has used a CBM system approach with sensors, data processing, fault 
classification techniques, and for some features prognostic models. Discenzo et.al (1999) presents a 
nine step hierarchy of intelligent machines with data acquisition, monitor, detect, diagnose, prognosis, 
prognostics & control, system-level prognosis & control, dynamic optimization/multi-objective 
control, and adaptive/reconfigurable.  
 

 
Figure 4. The seven modules in the OSA-CBM architecture standard proposal as presented in Lebold 
et.al (2003). 
 

Sensors 
Sensors have been defined as a “device that receives and responds to a signal or stimulus.” (Fraden, 
1996, p. 2). The definition is according to Fraden (1996) broad, and that it could contain everything 
from the human eye to the trigger of a gun. He, instead, would like to use the definition “a sensor is a 
device that receives a signal and responds with an electrical signal.”(p. 3). A sensor or other technical 
measurement devices have some advantages to human inspection: they are reliable and precise, they 
can measure in unhealthy and hazardous conditions, they work fast, they work continuously, and they 
can perform measurements to a relatively low cost.  
 
A sensor never functions on its own but is a part of a larger system with other tools, such as signal 
processors. Those tools are in its turn a part of an even bigger system, such as a condition monitor. 
When an engineer chose an appropriate sensor for monitoring she/he needs to ask what the simplest 
way of discovering the stimuli is without constitute any degradation of the comprehensive function of 
the system (Fraden, 1996).  
 
The rapid technology developments within the sensor industry have pressured both the prices and sizes 
of sensors. MEMS (micro electromechanical systems) and smart sensors have made it into the market 
of CBM as the lowest level of system health management (Lewis and Edwards, 1997). Sensors that 



have decreased in size can perform more tasks than conventional sensors. Takeda (2001) classifies 
industrial inspections in four categories: 
• Inspection of infrastructure or facility, 
• Inspection of equipment, 
• Monitoring of products, and 
• Monitoring of the environment 
 
Lewis and Edwards (1997) means that MEMS devices are more reliable and produce more accurate 
sensor data than conventional sensors due to: 
• Sensor redundancy, 
• Low drift and increased temperature stability, 
• Sensor self-test, 
• Multi-parameter output, 
• Operation in harsh environment, and 
• All-optical versions for operation in hazardous environments 
 

Signal Processing 
The purpose of signal processing in diagnostic applications and CBM is: (1) remove distortions and 
restore the signal to its original shape, (2) remove sensor data that is not relevant for diagnostics or 
predictions, and (3) transform the signal to make relevant features more explicit (may be hidden in the 
signal, FFT analysis is an example of such a transformation). Distortions in sensor data may be caused 
by an imperfect: 
• Sensor, 
• Media (metal, water, air etc.) in which the signal travels before reaching the sensor, and 
• Media from the sensor to an analogue/digital converter 
 
Signal processing may also manipulate the signal that some characteristics enabling prognosis are 
more visible (for an analysis program or a human). Creating a feature vector from a signal is an 
abstraction of the signal, preserving the features used in diagnosis and prognosis. 
 

Condition Monitoring 
Condition monitoring has been defined as “A means to prevent catastrophic failure of critical rotating 
machinery.” and as “A maintenance scheduling tool that uses vibration, infrared or lubricating oil 
analysis data to determine the need for corrective maintenance actions.” (Davies, 1998). The 
parameters to monitor should be characteristics that will indicate an assets condition. The parameters 
to monitor should be selected by the ones that in normal mode remain stable but in abnormal or 
unhealthy mode will indicate some sort of a trend, e.g. increased vibration levels, increased noise, or 
decreased pressure etc. (Yam et.al, 2001).  
 
According to Johansson (1993), condition monitoring has been divided into two separate techniques: 
a) Subjective condition monitoring: 

- Sight, 
- Hearing, 
- Sense, and 
- Smell 

b) Objective condition monitoring: 
- Sensors and other measuring equipment give data for either immediate condition 
assessment or as basis for trend analysis. 

 
 
 



The subjective parameters can of course be used objectively if collected through sensors or other 
measuring equipment. Tsang (1995) divides condition monitoring techniques into six categories: 
• Dynamic effects, such as vibrations and noise levels, 
• Particles released into the environment, 
• Chemicals released into the environment, 
• Physical effects, such as cracks, fractures, wear and deformation, 
• Temperature rise in the equipment, and 
• Electrical effects, such as resistance, conductivity, dielectric strength etc. 
 
Tsang (1995) also shortly presents a few different common condition monitoring techniques such as 
vibration monitoring, process-parameter monitoring, thermography, tribology, and the subjective 
technique visual inspection.  
 

Diagnosis 
Diagnosis has been defined as “…fault recognition and identification” (Lewis and Edwards, 1997, p. 
8.5-5), i.e. a means to find out where something will go wrong and possibly even why. According to 
Yam et.al (2001) condition based fault diagnosis can be divided into three categories: 
• Rule-based diagnostic systems, 
• Case-based diagnostic systems, and 
• Model-based diagnostic systems 
 
Rule-based diagnostic systems comprise of a knowledge-base and a set of rules the system use to 
diagnose or predict a fault. These rules may be derived from experts in their field, and are then 
compiled into a set of rules. Extracting, validating, and verifying the rule base is essential in such 
systems since one faulty rule may wreck the complete result and make the system unreliable. This 
problem is often referred to as the “brittleness” of rule-based systems. The expert becomes the so 
called “knowledge acquisition bottleneck” and the rule-base needs maintenance, updates and 
extensions once circumstances change or new knowledge is developed. A set of rules in a rule-based 
diagnostic system may be translated to a decision tree traversed to determine the fault. This is only 
possible if the rules meet a number of criteria’s (e.g. being deterministic). In some applications the 
rules may be induced automatically. For many applications rule-based diagnostics systems is the most 
appropriate solution. If statistics and fuzzy logic are used, these systems become powerful diagnostic 
tools for industry. 
 
Case-based diagnostic systems are based on Case-Based Reasoning (CBR), a method from artificial 
intelligence, based in a cognitive model of learning from experience. Cases capture both a specific 
situation/problem and the solution to the problem. When a new problem occurs, it is compared with 
the case library and similar cases are retrieved. These cases are adapted, using domain knowledge, to 
fit the current problem. The solution in the case is reused after validation/verification and if necessary 
revised (performed by a human or by the system). The problem and the new solution are added to the 
case library as a new case. Case-based diagnostic is used in situations where the task to create a large 
and consistent rule base is too difficult or where model based diagnosis is inappropriate (example of 
these is given in the following section). If statistics and feedback (automatic, semi automatic or 
manually) is included in the cases, the system will not only improve performance with the addition of 
new cases, but also with experience derived from feedback. 
 
Model-based diagnostic system is a powerful solution if a complete model of the equipment to 
monitor can be created. The model is used to detect any deviations and if a deviation is detected the 
model is used to identify what the problem is. The abstraction level of the model is the limiting factor 
for what faults are detectable. If it is possible to build a model based diagnostic systems, this is the 
most desirable diagnostic system. Unfortunately it is a manual process to build a model and it is 
difficult to build a model detailed enough for a majority of industrial applications where diagnostic 



systems are desirable. If a model can be built, real-time simulation is to computationally costly or 
impossible with available computers. 
 
To build intelligent diagnostic systems, combination of the above mentioned methods is often 
necessary. Also other techniques and methods from artificial intelligence are needed, e.g. 
reinforcement learning to learn and adapt to normal conditions, reducing diagnostic mistakes. Genetic 
algorithms may be used to find the cause of multiple faults, avoiding the “state space explosion” when 
using traditional search strategies. 
 

Prognosis 
Prognosis has been defined as “…prediction of when a failure may occur” (Lewis and Edwards, 1997, 
p. 8.5-5), i.e. a means to calculate remaining useful life of an asset. In order to make a good (reliable) 
prognosis it must be followed after a good (reliable) diagnosis has been made.  
 
Some diagnostic systems are able to make predictions when a fault may occur and with what 
probability. This information may be used as input by a prognostic system to predict a future health 
profile and calculate remaining useful life of some asset, given a required reliability level and safety 
limits. Further on this calculations may be used to produce a prognosis of the overall reliability of a 
large system. The weakest links in a system may be identified and counter measurements taken to stay 
within some specified reliability and safety limits. These measurements may be different maintenance 
tasks, but also measurements to ensure that certain replacement parts are available or redundant 
production capacity is within access within a certain time frame. 
 
Thurston and Lebold (2001) present a proposal to a generic prognostic module where they present a 
standard set of input and output requirements for an OSA-CBM prognostic module. Input 
requirements cover historic data in form of e.g. prognostics, health, failure, mission, and maintenance 
history, as well as model information and spare assets capacity. Output requirements cover 
information about the current health along with remaining useful life with confidence levels of the 
prediction. The prognostic algorithms can be generic and can range from simple historical failure rate 
models to physical models.  
 

Decision support 
Decision support systems are computer systems aiding in the decision making process. A human 
expert is needed to make the final decision and the system provides the necessary information for 
making the decision. It may also be legal reasons for using decision support systems instead of fully 
automated systems, e.g. if decision making is not time critical, but the consequences of a faulty 
decision is large. Computer systems can be reliable up to certain level, but are often so complex that it 
is known that there are faults in them. The price of finding and removing all faults in a system may be 
too expensive, and even software sold in very large quantities contain large number of faults, e.g. 
Windows based systems. 
 
A decision support system may have a number of diagnostic and prognostic tools, human experience 
and statistical data, all accessible by the human to aid in the decision making process. In intelligent 
human computer collaboration both humans and computers takes initiative and action. The computer 
system may notice, based on previous experience that a human operator tries to do something that may 
damage the equipment and intertwine. A dialogue between the system and the operator may result in a 
modified procedure, acceptable for both parts. Hence the step beyond decision support systems is 
human computer collaboration system. 
 



Case Study 
This chapter presents a case study of a Case-based fault diagnosis system implemented as a part of a 
master thesis in computer science at Mälardalen University (Olsson, 2003). The system was 
implemented to show how sound comparison and Case-Based Reasoning (CBR) can be used to detect 
faults in the gearboxes of industrial robots. In this paper it will serve as an illustration of how a 
technical CBM system can be designed.  
 
Mechanical faults in industrial robots (and other machines) often show their presence as audible 
deviations compared to a normal sound profile. As a part of the end-test of industrial robots, a 
subjective condition monitoring based on hearing is used in order to detect audible deviations. Correct 
classification of those deviations is a critical part of the end-test. An incorrect classification of the 
sound can result in the delivery of a faulty robot to the customer. An operator needs long experience in 
order to make a correct classification. Artificial Intelligence (AI) methods, such as Case-Based 
Reasoning, have some advantages in this category of applications. The fundamental idea of CBR – 
applying old knowledge of problem solving to solve new problems is very feasible for this type of 
industrial applications. The method preserves experience that is often lost if personnel leave their 
employment.  
 
The proposed fault diagnosis system uses a hybrid Case-Based Reasoning method using a nearest 
neighbour approach for a light weight solution of recognizing and diagnosing audible faults on 
industrial robots. Sound is recorded with a microphone and compared with previous recordings. 
Similar cases are then shown to the user corresponding diagnosis and actions based on previous 
experience. The system aids engineers in making a correct objective diagnosis of the industrial robot 
based on earlier classifications of similar sounds. The system is able to successfully diagnose faults in 
an industrial robot based on sound recordings (6 recordings from faulty robots and 30 recordings from 
normal robots are used in the evaluation).  
 
The Case-based fault diagnosis system uses three different steps in its classification process; pre-
processing, feature identification and classification. Sound is obtained from the robot to be diagnosed 
via a microphone as shown at the left in Fig. 5. The sound is recorded to a computer and the recording 
is taken as input to the pre-processing step. The pre-processing process is responsible for filtering and 
removal of unwanted noise. It also extracts period information from the sound. In the feature 
identification process, the system uses a two-pass model, first identifying features and then creating a 
vector with features. Once the features are identified, the system classifies the feature vector. The 
classification is based on previously classified measurements (case library). When a new sound has 
been classified, the new case is added to the case library. 
 

 
Figure 5. Schematic picture of the Case-based fault diagnosis system with its three steps to condition 
diagnosis. 
 



Condition Monitor and Diagnostics 
Sound from 24 healthy robots and 6 faulty robots were recorded during the case study. All recordings 
where made during the end-test of the robots. Among other tests, the end-test includes a separate axis 
test. In the separate axis test, all axes of the robot are individually tested. A microphone is mounted 
close to the axis of the industrial robot being measured (in this case axis 4). The robot is set to separate 
axis test and axis 4 is chosen. Two types of faults were recorded; fault 1 is caused by a notch on the 
big gear wheel in the gearbox of axis 4. The fault is hearable and it is characterized by a low frequency 
impulse sound in the middle of the rotation of the axis. Fault 2 is caused due to a slack between the 
gear wheels in the gearbox. The fault can be heard as bumps at the end of each rotation of the robot 
arm. 
 
In the time/frequency plot in figure 4 the sound of the notch is seen as two repeating prominent peaks 
(see Fig. 6). The frequency of the plot is sound intensity for the frequency 180-220 Hz during 12 
seconds. The normalised sound intensity level is a value indicating the peak intensity at a specific 
time. The plot shows four successive rotations of the robot arm. The peak is only visible in one 
direction of the rotation of the arm. 
 

 
Figure 6. Illustration of X+1 recording sample with time/frequency plot from axis 4 on a faulty robot. 
 
A feature vector is assembled from the sound and matched with the vectors in the case library. Table 1 
displays a list with the five best matching cases in the case library ordered according to similarity in 
present. The similarity measurement is based on a straight forward nearest neighbour algorithm. The 
matching could be significantly improved using domain knowledge (Zhao et.al, 1991), but is already 
giving good results and classifying sound recordings correctly in 91% of all tests. As can be seen in 
table 1; a previously diagnosed notch faults is ranked close to a current recording verified to be a notch 
fault. The case ranked as second candidate (case #12) and third candidate (case #4) comes from 
normal recordings in the case library.  
 

Case name Similarity Case ranking 
Notch fault #2 98% 1. 
Normal case #12 84% 2. 
Normal case #4 83% 3. 

Table 1. The three best-ranked classifications of cases in the case library 
 

Case Study Results 
CBR was found to be a feasible method to use to identify faults based on sound recordings in 
industrial robot fault diagnosis. Sound recordings where made under realistic industrial conditions. 
The CBR system has a number of benefits as an industrial diagnostic tool: 

• New cases are easy to add to the library, one sound recording is sufficient, 
• The method is easily accepted by engineers and is seen as a tool enabling them to perform 

better, 
• It transfers experience; engineers are able to listen to different sounds and make manual 

comparisons, 



• The system does not need to be “complete” from the start, a list of similar sounds and their 
classification are shown to the engineer, and 

• Performance increases continuously, if a new “not normal” sound is recorded that cannot be 
classified, the engineer contributes to the systems experience by classifying the sound after the 
fault has been identified and corrected. 

 
It has been shown in the validation that one recording is sufficient for identification of a similar sound 
in the case library. Also producing a straight forward feature vector from the original sound recording 
is sufficient for good results in the matching based on nearest neighbour. The feature vector and 
matching has potential for improvement. Potential users have been interviewed and their reaction to 
the research prototype tool is positive and they all judge it would improve their performance and 
productivity. 
 
After analyzing the architecture of the developed Case-based fault diagnosis system, some similarities 
to the OSA-CBM standard proposal can be visualized. The microphone can be regarded as the sensor 
module. The pre-processing and the feature extraction process can be deduced to the signal processing 
module. The classification (with the case-library) performs both the condition monitoring and the 
diagnosis as it both detects deviations in the sound profiles and can classify different sound profiles to 
different fault modes.  
 

Conclusions 
This paper has presented a theoretical discussion of the components necessary for a complete CBM 
system approach and illustrated the first four of them through a case study. The OSA-CBM approach 
of seven modules has proven to be an appropriate way of developing CBM system technology. 
Although the development in the case study of this paper does not have complete modular design, the 
modules as they have been described has been a good template for development. The modules can also 
be seen as a template as technical aspects of CBM implementation. All of them are necessary to 
uphold a CBM strategy, level of automation can be seen as secondary importance. Although, for 
logistic reasons, the more complex, critical, and big sized processes to monitor the more automation 
will be necessary, but for smaller companies with less critical machines it might be enough just to 
have specified the way to think within the different modules. It might also be enough to take the level 
of automation to e.g. the condition monitor and leave the diagnosis, prognosis, and decision to the 
human intellect, thus making CBM a strategy not to complex for small companies to handle, but as a 
tool used by the maintenance personnel to plan more accurate maintenance intervals.  
 
The case study did not only show that the modules specified by OSA-CBM were a good template for 
development, it also showed how a CBM system can be developed using maintenance personnel’s 
tacit knowledge as condition parameters. End-testing of the industrial robots had previously been done 
manually by listening and recognizing audible deviations in the sound profile as the test program was 
launched, an experience taken long to acquire. With the development of the system the tacit 
knowledge of the testing personnel was recorded, secured to be used as a condition based quality 
assurance tool and possibly as a training tool for new employees. The system can also be further 
developed to involve condition diagnosis while the robots are used in actual production, as a tool to 
assess maintenance need, thus making it more necessary to include prognosis ability and possibly a 
more enhanced decision support function.  
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