
Citation: Sharifi, A.A.; Zoljodi, A.;

Daneshtalab, M. DAT: Deep

Learning-Based Acceleration-Aware

Trajectory Forecasting. J. Imaging 2024,

10, 321. https://doi.org/10.3390/

jimaging10120321

Academic Editors: Silvia Liberata Ullo

and Li Zhang

Received: 31 October 2024

Revised: 22 November 2024

Accepted: 9 December 2024

Published: 13 December 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

DAT: Deep Learning-Based Acceleration-Aware
Trajectory Forecasting
Ali Asghar Sharifi 1 , Ali Zoljodi 1 and Masoud Daneshtalab 1,2,*

1 School of Innovation, Design and Technology (IDT), Mälardalen University, 72123 Västerås, Sweden;
sharifinjf@gmail.com (A.A.S.); ali.zoljodi@mdu.se (A.Z.)

2 Department of Computer Systems, Tallinn University of Technology, 19086 Tallinn, Estonia
* Correspondence: masoud.daneshtalab@mdu.se

Abstract: As the demand for autonomous driving (AD) systems has increased, the enhancement
of their safety has become critically important. A fundamental capability of AD systems is object
detection and trajectory forecasting of vehicles and pedestrians around the ego-vehicle, which
is essential for preventing potential collisions. This study introduces the Deep learning-based
Acceleration-aware Trajectory forecasting (DAT) model, a deep learning-based approach for object
detection and trajectory forecasting, utilizing raw sensor measurements. DAT is an end-to-end
model that processes sequential sensor data to detect objects and forecasts their future trajectories
at each time step. The core innovation of DAT lies in its novel forecasting module, which leverages
acceleration data to enhance trajectory forecasting, leading to the consideration of a variety of agent
motion models. We propose a robust and innovative method for estimating ground-truth acceleration
for objects, along with an object detector that predicts acceleration attributes for each detected object
and a novel method for trajectory forecasting. DAT is trained and evaluated on the NuScenes dataset,
demonstrating its empirical effectiveness through extensive experiments. The results indicate that
DAT significantly surpasses state-of-the-art methods, particularly in enhancing forecasting accuracy
for objects exhibiting both linear and nonlinear motion patterns, achieving up to a 2× improvement.
This advancement highlights the critical role of incorporating acceleration data into predictive models,
representing a substantial step forward in the development of safer autonomous driving systems.

Keywords: end-to-end trajectory forecasting; deep learning; perception; acceleration prediction

1. Introduction

Accurately forecasting the future movements of objects surrounding autonomous ve-
hicles (AVs) is vital for safe driving and collision avoidance. As driving involves numerous
unpredictable factors, such as other vehicles and pedestrians, AV systems must anticipate
their potential trajectories to ensure safe operation [1–3].

In this paper, we aim to address the inherent limitations present in previous end-to-
end trajectory forecasting methodologies, especially in forecasting agents with nonlinear
motions [4,5]. Existing approaches are effective in estimating the behavior of static agents
and, to a certain degree, agents that follow a linear motion model. However, these methods
are inadequate when it comes to dealing with targets characterized by nonlinear dynamics
because they often depend on a constant speed equation that fails to accurately capture the
nuanced behavior of such objects.

To address this, our proposed model places a specific emphasis on learning param-
eters essential for modeling targets with both constant acceleration and constant speed.
This enhancement not only proves effective for agents with nonlinear motions but also
significantly improves forecasting accuracy for agents with linear motions. It is noteworthy
that the incorporation of object acceleration and velocity goes beyond trajectory forecasting,
extending its utility to applications such as decision-making and collision avoidance.

J. Imaging 2024, 10, 321. https://doi.org/10.3390/jimaging10120321 https://www.mdpi.com/journal/jimaging

https://doi.org/10.3390/jimaging10120321
https://doi.org/10.3390/jimaging10120321
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com
https://orcid.org/0000-0003-1181-6032
https://orcid.org/0000-0001-6889-5005
https://orcid.org/0000-0001-6289-1521
https://doi.org/10.3390/jimaging10120321
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com/article/10.3390/jimaging10120321?type=check_update&version=1

J. Imaging 2024, 10, 321 2 of 16

The absence of acceleration data for objects is a common limitation in existing datasets [6–8].
In response to this challenge, we extend our dataset by adding an acceleration feature
computed using a second-order regression (SOR) [9] method and then train our model to
predict acceleration for all target objects at each time point. Our key contributions can be
succinctly summarized as follows:

• Novel end-to-end solution for advanced motion model acquisition (main contribution):
Our model is designed to learn and estimate the acceleration and velocity of every
detected object, providing a comprehensive understanding of the dynamic nature of
the targets.

• Supervised acceleration prediction: To calculate acceleration, we employ an SOR
method. This choice is motivated by the presence of inherent noise in our sensor data
and labeled ground truth, as highlighted by Xu et al. [10], Gu et al. [11]. This ensures
the robustness, reliability, and accuracy of our model’s forecasting.

2. Related Work

This section offers a concise review of trajectory forecasting techniques that rely
on point cloud data. We commence by exploring traditional methods, which involve a
cascaded approach of object detection, tracking, and trajectory prediction. This sequential
process is illustrated in the top row of Figure 1. Subsequently, we delve into cutting-edge
approaches that unify these tasks into a single, end-to-end framework, as depicted in the
bottom row of Figure 1.

Sensor data in

past M frames
Detects objects

in past M frames
Object trajectories

In past M frames

Object trajectories

In future N frames

TrackTrack ForecastForecastDetectDetect

Sensor data in

past M frames

Detect/Track/Forecast

Object trajectories

In future N frames

Sensor data in

past M frames
Detects objects

in past M frames
Object trajectories

In past M frames

Object trajectories

In future N frames

Track ForecastDetect

Sensor data in

past M frames

Detect/Track/Forecast

Object trajectories

In future N frames

Figure 1. (Top Row) Cascade methods, which handle detection, tracking, and forecasting in a
sequential pipeline, are vulnerable to error propagation. In the diagram, the arrows indicate the
direction of processing for the Lidar data, moving from raw input to the final output. The input data,
represented in blue, is gathered from past observations, while the future output is shown in orange.
This is because each stage assumes error-free input from the previous one, which is often unrealistic in
real-world applications. As a result, errors can accumulate and negatively impact the final predictions.
(Bottom Row) End-to-end methods, on the other hand, directly predict future trajectories from raw
data. This unified approach allows for the joint optimization of detection, tracking, and forecasting,
leading to more accurate and reliable results.

2.1. Cascade Approaches

Conventional self-driving systems address the autonomy challenge by breaking it
down into three primary tasks: object detection, object tracking, and motion prediction.
These tasks are typically handled by separate modules operating in a sequential manner,
with each component being trained independently and uncertainties propagated through
the system [2]. Such approaches assume that the precise trajectories of agents are known.

J. Imaging 2024, 10, 321 3 of 16

By analyzing trajectory data over a limited timeframe, predictions about future movements
can be generated. For example, datasets such as NuScenes [8] and Argoverse [7] provide
annotated trajectory data to support this forecasting process.

Numerous methods discussed in the literature utilize neural networks, particularly,
recurrent neural networks (RNNs), which are designed to explicitly incorporate the histori-
cal states of agents into their analysis [12,13]. RNNs and their extensions, including Long
Short-Term Memory (LSTM) networks and Gated Recurrent Units (GRUs), utilize a single
hidden state vector to store all temporal information. This unified memory representation
makes it possible to access the memory as a whole but limits the ability to retrieve specific
elements of stored knowledge [3]. The Memory-Augmented Neural Trajectory predictor
(MANTRA) [3] introduces an external associative memory mechanism designed to retain
essential and non-redundant trajectory data. Unlike models relying on a single hidden
state for memory representation, MANTRA enables element-wise addressing, allowing the
selective retrieval of specific, relevant information during execution.

Forecasting relies on both spatial and temporal features, as these two components collectively
offer a comprehensive perspective on the potential actions of target objects and the likelihood
of those actions occurring. Studies such as [14–16] employ rasterization techniques to represent
both agents and high-definition map features, converting elements like lanes and crosswalks
into colored lines and polygons. However, this rasterized approach results in a highly intricate
depiction of the environment and agent history, demanding substantial computational resources
and extensive data for both training and deployment. To mitigate this issue, VectorNet [17]
introduces a vector-based representation designed to capture the spatial relationships of individual
road elements using graph neural networks. LaneConv [18] develops a lane graph using
vectorized map data and introduces LaneGCN to model the topological structure and long-
range dependencies between agents and map information. VectorNet [17] and LaneConv [18] can
be seen as adaptations of graph neural networks for prediction, demonstrating a robust ability to
capture spatial locality. To integrate both spatial and temporal learning within a cohesive and
adaptable framework, Ye et al. [19] introduced Temporal Point Cloud Networks (TPCN). TPCN
frames the forecasting task as a combined learning process involving both a spatial module and a
temporal module.

Transformer-based models demonstrate performance that is either comparable to
or surpasses that of other network architectures, such as convolutional and recurrent
neural networks, across various visual benchmark tasks. Due to its notable effectiveness
and reduced requirement for vision-specific inductive bias, transformers are garnering
increased attention within the computer vision community [20]. Yuan et al. [21] propose a
new transformer-based trajectory forecasting model that trains the time and social dimen-
sions. The proposed method facilitates a direct influence of one agent’s state at a specific
time point on the state of another agent at a subsequent time, thereby modeling the dynamic
interdependencies between agents over time. In a separate study, Khandelwal et al. [22]
propose a Recurrent Neural Network (RNN) approach designed for context-sensitive multi-
modal behavior prediction. The input to this model incorporates a road network attention
mechanism alongside a dynamic interaction graph, enabling it to capture both meaningful
geometric and social connections.

Cascade approaches to trajectory forecasting, as mentioned, are developed in isolation
from their upstream perception modules (detection and tracking). They operate under
the assumption of accurate past trajectory information. Therefore, their performance
significantly diminishes when using real-world tracking results, which are often noisy.
This is primarily caused by the propagation of errors, including noisy tracks, fragmented
trajectories, and identity switches, from the tracking to the forecasting stage [23]. A novel
forecasting framework introduced by Weng et al. [23] employs affinity matrices as input,
rather than tracklets. This innovation reduces the likelihood of errors stemming from data
association and facilitates the transfer of more detailed information to the forecasting process.

J. Imaging 2024, 10, 321 4 of 16

2.2. End-to-End Approaches

To mitigate the spread of errors and enhance inference efficiency in conventional ap-
proaches, where learning occurs independently, researchers such as Wang et al. [24,25], Guo
et al. [26], Yin et al. [27], Li and Guivant [28], Simon et al. [29] have explored the integration
of detection and tracking in an end-to-end framework. In a similar vein, Weng et al. [30]
introduced a network that parallelized tracking and forecasting tasks through the use of a
Graph Neural Network.

To the best of our knowledge, Fast and Furious (FaF) [31] represents the pioneer-
ing deep neural network capable of concurrently executing 3D object detection, tracking,
and motion prediction using data derived from 3D sensors. However, the forecasting
horizon of [31] was restricted to a mere 1 s. In comparison, IntentNe [32] extends the
prediction scope to estimate future high-level driver behaviors. Ref. [33] further advances
this approach by integrating detection, forecasting, and motion planning into a single
framework. In addition, Zeng et al. [33] present a novel perception loss that promotes
the generation of precise 3D detections and motion forecasts by the intermediate repre-
sentations. All aforementioned methods disregard the statistical dependencies between
agents, opting instead to independently predict each trajectory based on given features.
Li et al. [1] introduced a novel network architecture that explicitly modeled the interactions
among agents.

Weng et al. [34] propose an alternative approach to the detect-then-forecast pipeline by
reversing its sequence. Instead of adhering to the traditional process of first detecting and
tracking objects before forecasting, their method begins with predicting future states. Object
detection and tracking are subsequently applied to the projected point cloud sequences to
determine future positions. An important strength of that method is its ability to deliver a
detailed representation of forecasting by integrating information about both foreground
and background objects within the scene. In a similar vein, FutureDet [4] focuses on
directly predicting future object locations rather than modeling the evolution of point
cloud sequences over time. This approach incorporates backcasting to determine the initial
position of each trajectory. By aligning backcasted future predictions with current detections
in a many-to-one way, FutureDet effectively captures a distribution of multiple potential
future states. In a different approach, TrajectoryNAS [35] utilizes Neural Architecture
Search (NAS) to systematically optimize the architecture, significantly improving both
accuracy and efficiency compared to traditional approaches. That method achieves higher
accuracy and lower latency.

End-to-end approaches often assume a constant velocity over the time elapsed between
frames in a LiDAR sequence. This assumption increases the error in predicting the next
location of target objects, especially for those with nonlinear motions. In this work, we
propose DAT, an end-to-end trajectory forecasting model that predicts acceleration values,
thereby reducing potential errors in predicting the objects’ next position and providing
more accurate forecasting of their trajectories.

3. Methodology

Various factors need to be addressed to forecast the trajectories of vehicles and pedes-
trians surrounding the autonomous vehicle. One of the key factors is the speed and accel-
eration of surrounding objects. State-of-the-art trajectory forecasting models [1,4,31,33]
assume that objects do not experience acceleration between frames and utilize the constant
speed motion model for different tasks. However, vehicles adjust their speeds dynamically
based on the environment and interactions with other agents, employing acceleration or
deceleration mechanisms. Consequently, real-world situations often differ from the conven-
tional assumption of constant speed, with acceleration being a predominant factor. These
assumptions can lead to significant inaccuracies in the predicted locations of objects. To ad-
dress this issue, we continuously predict objects’ acceleration between captured frames
and employ a constant acceleration model, resulting in much more accurate predictions of
object locations.

J. Imaging 2024, 10, 321 5 of 16

In the available datasets for self-driving cars, such as NuScenes [8] and ArgoVerse [7],
the acceleration feature is not present as the ground truth. To supervise the training of DAT
to predict the acceleration of target objects, which can be used in trajectory forecasting,
we need to extend these datasets with the acceleration ground truth. We compute the
acceleration of each target object using the SOR elaborated in Section 3.1.

y =
1
2

at
2
+ v0t + y0 (1)

a =
2(y2 − y0)

(t2 − t1)(t2 − t0)
− 2(y1 − y0)

(t1 − t0)(t2 − t1)
(2)

v0 =
2(y1 − y0)(t2 − t0)

(t2 − t1)(t1 − t0)
− 2(y2 − y0)(t1 − t0)

(t2 − t1)(t2 − t0)
(3)

σ2
a =

8σ2
y

(t2 − t1)2(t2 − t0)2 +
8σ2

y

(t1 − t0)2(t2 − t1)2 (4)

σ2
V0

=
8σ2

y (t2 − t0)
2

(t2 − t1)2(t1 − t0)2 +
8σ2

y (t1 − t0)
2

(t2 − t1)2(t2 − t0)2 (5)

3.1. Deriving Acceleration Features

Acceleration is calculated by analyzing the coordinates of points. This process is
employed to estimate acceleration under the assumption that objects maintain constant
acceleration during short time intervals. Equation (1) represents the mathematical formula-
tion of the constant acceleration motion model. By utilizing the positions of an agent at
three designated points (t1, y1), (t2, y2), and (t3, y3), we can extract the values of accelera-
tion and velocity according to Equation (2) and Equation (3), respectively. These derived
values effectively model the motion behavior of agents experiencing constant acceleration.

Using Equations (2) and (3) to calculate a and v0 yields accurate results if the position
and time values are highly precise and free from noise. However, due to the short time
intervals between samples (0.1 s, 0.2 s), even minor errors in measuring positions can lead to
significant variations in the calculated acceleration and initial velocity. Equations (4) and (5)
express the variances σ2

a and σ2
V0

in terms of the position error variance σ2
y (see Appendix A),

illustrating that small errors in position measurements result in substantial inaccuracies
in acceleration and initial velocity. In practice, factors such as sensor intrinsic noise and
labeling errors contribute to measurement inaccuracies [10,11]. Consequently, an object’s
calculated speed and acceleration can vary significantly between different frames, contra-
dicting the laws of physics and the inherent nature of physical bodies.

For instance, in the conducted simulation, a car was modeled with constant accelera-
tion motion and initial motion parameters set as acceleration a = 1.5 m/s2, initial velocity
v0 = 5 m/s, and initial position x0 = 10 m, representing a typical CAN Bus scenario [8].
The car was assumed to be accelerating, and Gaussian noise with a mean of zero and a
variance of 0.01 m2 was added to the position data. The NuScenes dataset specifies the
LiDAR range accuracy as 2 cm, and the accuracy of the Inertial Navigation System (INS)
and Global Positioning System (GPS) positions is 20 mm [8]. It was further assumed that
10 position samples were recorded per second, with a window length of 10 samples used
for acceleration calculation.

Speed and acceleration were computed using the specified equations, and their errors
relative to the ground truth are depicted in Figures 2 and 3. The mean and variance of these
errors compared to the ground truth are presented in Table 1, highlighting the deviation
from the actual values.

To address this issue, we utilized two fundamental baselines: the Extended Kalman
Filter (EKF) [36] and SOR [9], both of which are robust against noise.

J. Imaging 2024, 10, 321 6 of 16

0 1 2 3 4 5 6 7 8 9 10
10-4

10-3

10-2

10-1

100

101

Solving Constant Acceleration Equation

Extended Kalman Filter

Regression

Figure 2. Acceleration error comparison across different methods.

0 1 2 3 4 5 6 7 8 9 10

10-4

10-3

10-2

10-1

100

Solving Constant Acceleration Equation

Extended Kalman Filter

Regression

Figure 3. Initial velocity error comparison across different methods.

Table 1. Comparison of velocity and acceleration error. The cyan color specified the best errors gathered.

V0 A
µv σ2

v µa σ2
a

SOR 0.02 0.032 0.04 0.062

EKF 0.12 0.172 0.30 0.792

Equation 0.30 0.192 1.57 1.842

3.1.1. EKF

Acceleration estimation can be achieved using the Extended Kalman Filter (EKF) [36].
The state vector, encompassing position, velocity, and acceleration, is defined in Equation (6).
The state transition matrix F and control input matrix G are specified in subsequent equations.

x =
[
y v a

]T (6)

F =

 1 ∆t ∆t2

2
0 1 ∆t
0 0 1

 (7)

G =
[

∆t2

2 ∆t 1
]T

(8)

J. Imaging 2024, 10, 321 7 of 16

The acceleration and velocity were calculated using EKF based on the simulation
settings defined in Section 3.1. The errors resulting from these calculations are illustrated in
Figures 2 and 3. The mean and variance of these errors, when compared to the ground truth,
are presented in Table 1. It is evident that the errors were erratically reduced compared to
when the acceleration equations were used.

The initial conditions for the EKF were set as the state vector x = [y1, 0, 0], covariance
matrix P = diag([σ2

y σ2
y σ2

y]), measurement noise covariance R = [σy], and process
noise covariance Q, where σ2

a is the variance of the acceleration.
To derive the process noise covariance matrix Q, we started by considering that the

process noise wk predominantly affected the acceleration component of the state vector. We
modeled wk as follows:

wk =

 1
2 ∆t2

∆t
1

wa (9)

where wa represents Gaussian noise with variance σ2
a . The process noise covariance matrix

Q was computed as:

Q = E[wkwT
k] = σ2

a

 1
4 ∆t4 1

2 ∆t3 1
2 ∆t2

1
2 ∆t3 ∆t2 ∆t
1
2 ∆t2 ∆t 1

 (10)

We set σy = 0.01 as the noise variance added to position points. We swept σ2
a from 1 to

200 and selected the value that minimized error values, which was found to be σ2
a = 28.

3.1.2. Second-Order Regression (SOR)

To analyze the motion under constant acceleration, the SOR model can be employed to
extract motion parameters. Given a set of k data points {(t1, y1), (t2, y2), . . . , (tk, yk)}, where
ti represents the time at which a measurement is taken, and yi represents the position of
the object at time ti, an SOR model can be employed to extract the motion parameters of an
object under constant acceleration. The SOR model is formally represented by the equation:

y = β0 + β1t + β2t2 (11)

Here, y denotes the position of the object, t denotes time, β0 is the intercept term corre-
sponding to the initial position of the object (y(0)), β1 is the coefficient of the linear term
corresponding to the initial velocity of the object (v(0)), and β2 is the coefficient of the
quadratic term, representing half the acceleration

(
1
2 a
)

.
To determine the values of β0, β1 and β2 that best fit the observed data, we employed

least squares. That approach minimized the sum of the squared differences between the
observed positions (yi) and the positions predicted by the model (ŷi) over all k data points.
The optimization problem can be formally stated as:

min
β0,β1,β2

k

∑
i=1

(
yi −

(
β0 + β1ti + β2t2

i

))2
(12)

Solving this optimization problem allowed us to estimate β̂0, β̂1, and β̂2, from the
initial position, initial velocity, and acceleration of the object, which could be directly
inferred as follows: the initial position y(0) was given by β̂0, the initial velocity by β̂1,
and the acceleration a by 2β̂2.

The acceleration and velocity were calculated using SOR, following the simulation
settings defined in Section 3.1. The resulting errors from these calculations are depicted in
Figures 2 and 3. Additionally, the mean and variance of these errors, when compared to
the ground truth, are presented in Table 1. Notably, the errors in this case were significantly

J. Imaging 2024, 10, 321 8 of 16

reduced and exhibited greater accuracy compared to the previously mentioned method,
bringing them much closer to the actual values.

Based on the experimental results provided, it is evident that the SOR outperforms
other methods. Although the performance of the Extended Kalman Filter (EKF) and the
SOR were comparable, the SOR method was selected for calculating acceleration due to the
following reasons:

• The EKF requires a sufficient number of samples to initialize, converge, and provide
accurate estimates. In datasets where some objects are only available in a limited
number of frames, accurate acceleration estimation becomes challenging.

• The performance of the EKF is highly sensitive to the tuning of process and mea-
surement noise covariance matrices [36]. Identifying optimal values can be time-
consuming and necessitates domain expertise. Moreover, the optimal values may
differ across various datasets because of variations in setup and sensors.

• The Extended Kalman Filter (EKF) assumes that the noise follows a Gaussian distribu-
tion [36], as its estimation framework is optimized for such conditions. In contrast,
the Second-Order Regression (SOR) method is not limited by specific noise distribu-
tion assumptions. This flexibility makes SOR more robust and effective in scenarios
where the noise is non-Gaussian or has an unknown distribution, which is common in
real-world applications.

3.2. DAT

We present DAT, an end-to-end model appropriate for efficient and precise joint
perception and forecasting within the realm of autonomous driving. Departing from the
conventional approach of crafting separate models for individual subtasks, we embrace
recent advancements in joint modeling through shared feature computation (end-to-end
task). However, a primary drawback of such paradigms lies in their limitation when
forecasting agents with both linear and nonlinear motion models, as noted by Peri et al. [4].
These limitations impede the efficacy of these approaches in motion forecasting tasks.
In contrast, DAT tackles this challenge through a key enhancement: by incorporating
the ability to learn the acceleration component of different agents, assuming a constant
acceleration model between consecutive frames, it enhances the association between objects
in future frames and their present counterparts, thereby enhancing trajectory forecasting
accuracy. In the following, we first present DAT, which detects objects in present and N
future frames, and then show how we built trajectories.

3.2.1. Object Detection Module

We introduce significant innovations to the existing 3D object detector, CenterPoint [27].
The original detector employs a LiDAR-based backbone network, like VoxelNet or Point-
Pillars [37,38], to generate a structured representation of the input point cloud. This repre-
sentation is subsequently transformed into a top-down map view, where an image-based
keypoint detector is utilized to locate object centers. For each detected center, the framework
predicts supplementary object properties, including 3D size, orientation, and velocity.

Our detector further incorporates innovative acceleration (a) and initial velocity (v0)
heads, allowing the network to learn essential parameters for modeling objects using
kinematic motion equations. This enhancement enables CenterPoint to effectively manage
both constant velocity and constant acceleration scenarios, greatly extending its ability to
accurately model and predict real-world object movements with improved precision.

The existing object detection model is tailored to detect objects within the present
frame. While this approach efficiently captures an object’s location, it struggles to represent
features that change over time. In our case, we want to detect cars and their future locations.
These temporally distinct classes likely require different features for accurate detection.
To address this challenge, our model incorporates a shallow network [39] that specifically
transforms current object features into predicted future features (see Figure 4).

J. Imaging 2024, 10, 321 9 of 16

Preprocessing

Detection

Detection

Detection

Detection

Feature
Transform

Feature
Transform

Feature
Transform

T+2

T+1

T

T+N

Transform
Networks

Detection
 Modules Backcasting Lidar

Sequences

3D Backbone Network

Voxel - Wise
Feature Extractor

3D Sparse
Convolution

1

2

3

4

Velo
cit

y

Reg
res

sio
n

Acc
elr

ati
on

Rotat
ion

Dim
en

sio
n

Hea
tm

pa

Heig
ht

Current Map

Future Map

Figure 4. DAT: based on a LiDAR sequence, DAT detects objects in both the present frame (t) and
future frames (up to t + T). These future detections are projected back to the current frame allowing
for alignment with detections in the present moment.

3.2.2. Loss Function

Center heatmap loss: For each of the T object detection modules, let Ŷ(t) ∈ RW×H×K

represent the predicted heatmap for the tth module, and Y ∈ RW×H×K be the ground truth
heatmap. We employ the focal loss [40,41] for heatmap supervision. The total heatmap loss
across all T modules is defined as:

Lheatmap =
T

∑
t=1

FocalLoss(Ŷ(t), Y) (13)

Shared regression loss: The regression heads are shared across all T detection modules.
The shared regression loss is used to supervise sub-voxel location refinement, object size,
height-above-ground, rotation, acceleration, and initial velocity predictions. All outputs are
trained using an L1 loss centered at the ground-truth location. To more effectively manage
objects of diverse shapes, size regression is performed using a logarithmic scale. During the
inference phase, object properties are retrieved by mapping them to the dense regression
head outputs at the peak position of each object. The regression loss is defined as follows:

Lregression =
1
N

N

∑
i=1

|r̂i − ri| (14)

where r̂i represents the predicted values for the various regression targets, and ri represents
the corresponding ground-truth values.

Overall loss function: Since we assign equal weights for the heatmap and regression
losses, the total loss function is formulated as follows:

Ltotal = Lheatmap + Lregression (15)

3.3. From Detection to Trajectory Forecasting

DAT addresses the challenge of object forecasting by estimating the future positions
of objects based on their observations at the initial time step (tobs). We utilized adapted

J. Imaging 2024, 10, 321 10 of 16

LiDAR detectors to estimate object positions over T future, unobserved LiDAR scans,
using ground-truth data for training purposes. To estimate future object trajectories, our
network was trained to additionally predict acceleration vectors for each detection in every
future frame.

For linking objects across different frames, FaF [31] proposed an architecture that
directly forecasted velocity into the future based on current-frame detections. FutureDet [4],
however, adopts an inverse approach. It simultaneously detects objects at both present and
subsequent timestamps and estimates velocity to associate them with their corresponding
positions in the past. This essentially links objects from the future to the present frame,
assuming constant velocity between frames. DAT follows a similar linking strategy (future
to present) but incorporates a constant acceleration motion model for improved accuracy.

Trajectory construction involves aligning all trajectories with the object detected in the
present LiDAR scan. To achieve this, each detected object in the subsequent frame (n) is
connected with the preceding frame (m) by employing the constant acceleration model.
Subsequently, the spatial distance between the detected object at time n and all other
detected objects is computed, and the nearest object is then selected.

4. Experimental Results

We validated the effectiveness of our method using the NuScenes dataset [8], which is a
comprehensive, real-world driving dataset.

4.1. Dataset

Our experimental evaluation was conducted using the NuScenes dataset [8], which
consists of 1000 log segments, each with a duration of 20 s. Each snippet is equipped with
32-beam LiDAR sweeps operating at a frequency of 20 Hz, along with corresponding 3D
object annotations. We used the Trainval split, which includes 700 scenes for training and
150 scenes for validation. We adhered to the official protocol and assessed forecasting for the
car class, predicting up to 3 s into the future.

4.2. Implementation Details

DAT was trained to detect objects in both current and future frames by encoding the
aggregated point cloud sequences using the VoxelNet and PointPillars backbones [37,38].
We employed ground-truth sampling (also known as copy–paste) augmentation [42] to
enhance the diversity of training trajectories, leading to significant improvements in both
linear and nonlinear forecasting performance. All models were trained using the PyTorch
toolbox for 20 epochs with the Adam optimizer, utilizing a learning rate of 1 × 10−4 and a
weight decay of 0.01. The models were trained on two A4000 GPUs.

4.3. Evaluation Metrics

We adopted the detection and forecasting metrics proposed by Peri et al. [4] to ensure
a fair comparison with state-of-the-art methods. Mean Average Precision (AP) [43] was uti-
lized for object detection, while Forecasting Mean Average Precision (mAP f) was employed
for trajectory prediction. AP is defined as the area under the IoU-based Precision–Recall
curve. Note that AP measures the performance of the object detection task alone. mAP f is
a metric used to evaluate the accuracy of forecasting in the context of joint detection and
forecasting tasks. It considers both the detection of objects in the current frame and the fore-
casting of their future positions. We further categorized the dataset into three subclasses:
static cars, cars with linear motion, and cars with nonlinear motion [4]. For these categories,
we report AP f and APdet. Additionally, we computed the mean Average Precision for
forecasting (mAP f) as mAP f = 1

3 × (APlin.
f + APnon−lin.

f + APstat.
f). Similarly, the mean

Average Precision for detection (mAPdet) was calculated as the average APdet across the
three subclasses [4].

J. Imaging 2024, 10, 321 11 of 16

4.4. Comparison with State of the Art

In this section, we provide a comparison between our proposed forecasting approach
and cutting-edge methods, using two evaluation metrics, APf and APdet, and classes were
further divided into three sub-classes: static, linear, and nonlinear [4]. These comparisons
were made under the evaluation settings of top-K forecasting, specifically for K = 1
and K = 5. Our network was trained using two feature extraction techniques, VoxelNet
and PointPillars. Additionally, we developed a variant of our model that incorporated
road masks as an extra input layer into the Bird’s Eye View (BEV) feature representation,
following the sparse voxel backbone processing. As illustrated in Table 2, DAT surpassed
all previous state-of-the-art methods in terms of both forecasting and detection capabilities.
Specifically, our method achieved a 4% improvement in mAPdet and a significant increase
in mAPf of 13% for K = 1 and 27% for K = 5.

Table 2. Evaluation of the car object detection and trajectory forecasting pipeline on the
NuScenes datasets. Rows with cyan color are our model’s results.

K = 1 K = 5
APstat. APlin. APnon−lin. mAP APstat. APlin. APnon−lin. mAP

APdet. AP f APdet. AP f APdet. AP f APdet. AP f APdet. AP f APdet. AP f APdet. AP f APdet. AP f

Detection + Constant Velocity 70.3 66.0 65.8 21.2 90.0 6.5 75.4 31.12 70.3 66.0 65.8 21.2 90.0 6.5 75.4 31.2
Detection + Forecast (Luo et al. [31]) 69.1 64.7 66.1 22.2 86.3 7.5 73.8 31.5 69.1 64.7 66.1 22.2 86.3 7.5 73.8 31.5
FutureDet (Peri et al. [4]) 70.0 65.5 62.9 24.9 91.8 10.1 74.9 33.5 70.1 67.3 62.9 27.7 91.7 11.7 74.9 35.6
FutureDet–PointPillars (Peri et al. [4]) 70.1 64.1 63.4 24.8 92.4 9.6 75.4 32.8 70.7 67.5 63.4 28.8 92.0 11.9 75.4 36.1
FutureDet + Map (Peri et al. [4]) 70.2 65.5 62.7 24.3 91.7 9.4 74.9 33.1 70.2 67.5 62.7 27.1 91.7 11.0 74.9 35.2
TrajectoryNAS (Sharifi et al. [35]) 71.2 65.6 63.8 26 91.2 10.3 75 34 71 67.4 63.8 29.2 91.1 12.1 75.3 36.2
Ours 72.1 66.2 70.8 30.1 91.3 18.7 78.0 38.3 72.1 69.4 70.8 36.3 91.3 23.5 78.0 43.0
Ours + PointPillars 70.0 62.7 65.5 27.1 89.3 17.5 75.0 35.8 70.0 66.5 65.5 33.9 89.3 24.0 75.0 41.1
Ours + MAP 72.3 66.0 70.2 29.6 91.5 18.1 78.0 37.9 72.3 69.3 70.2 35.5 91.5 22.8 78.0 42.5

For linear moving objects under the K = 1 setting, our method achieved a remarkable
APf of 30.1%, which was a significant improvement over the best previous result reported
by TrajectoryNAS [35] at 26%, marking an improvement of approximately 15.8%. Similarly,
under the K = 5 setting, our method extended its lead with an APf of 36.3%, compared to
the highest APf of 29.2% from TrajectoryNAS, translating into a substantial improvement
of 24.3%.

When focusing on nonlinear moving objects, our approach demonstrated even more
pronounced advancements. For K = 1, our method recorded an APf of 18.7%, surpassing
the nearest competitor, TrajectoryNAS [35], which achieved a APf of 10.3%, equating to
an 82.0% improvement. For K = 5, our method showcased an APf of 24%, significantly
outperforming TrajectoryNAS, which had an earlier best of 12.1%.

DAT performed well because it was specifically designed to learn acceleration. This
enabled it to model object movements more accurately (in backcasting). Integrating road
masks as an additional input channel into our model did not significantly affect the results.
This can be attributed to two main factors: first, the map information does not offer
substantial new insights, as it can be effectively inferred from the raw LiDAR data; second,
certain map data suffer from significant alignment inaccuracies with the LiDAR data [1,2].

4.5. Ablation Study

To investigate the influence of windowing length on our model’s performance, utilized
for acceleration calculation in the ground truth, we conducted an ablation study, the results
of which are presented in Table 3. Our results indicate that while detection accuracy
remained consistent across different window lengths, forecasting accuracy varied. Notably,
a window length of five resulted in inferior forecasting compared to other lengths.

The choice of window length significantly impacted the model’s ability to capture
motion dynamics accurately. A suitable window length balanced noise reduction and
preserved essential motion patterns. Our analysis revealed that the model’s overall accu-
racy was relatively unaffected by changes in window length, suggesting its robustness in
capturing diverse motion characteristics.

J. Imaging 2024, 10, 321 12 of 16

The insensitivity of our model to variations in window length underscores its potential
for generalization across different datasets and sensor configurations. This is crucial as
different datasets have varying update rates, requiring adjustments in window length for
consistent acceleration calculations. Our results demonstrate the model’s adaptability and
reliability in handling diverse data conditions.

Table 3. Ablation study on the impact of varying the windowing length, employed in calculating
acceleration within the ground truth, on the accuracy of both forecasting and detection.

Window Length

K = 1 K = 5

APstat. APlin. APnon−lin. mAP APstat. APlin. APnon−lin. mAP

APdet. AP f APdet. AP f APdet. AP f APdet. AP f APdet. AP f APdet. AP f APdet. AP f APdet. AP f

5 72.0 65.7 69.8 29.5 91.0 18.5 77.6 37.9 72.0 69.2 69.8 35.0 91.0 23.0 77.6 42.4
10 72.0 65.8 71.1 29.9 91.1 18.8 78.0 38.1 72.0 69.2 71.1 35.7 91.1 23.2 78.0 42.7
15 72.1 66.2 70.8 30.1 91.3 18.7 78.0 38.3 72.1 69.4 70.8 36.3 91.3 23.5 78.0 43.0

4.6. Qualitative Results

The qualitative results of our proposed model are presented in the Figure 5. These
results demonstrate that by integrating acceleration representations, DAT effectively de-
picts a wide range of potential future scenarios. The model successfully captured the
motion of static, linear, and nonlinear objects. In the first row, various scenes are depicted,
including ground-truth trajectories, the forecasted trajectory with the highest confidence,
and additional predicted trajectories. The second row compares our DAT model and Trajec-
toryNAS [35], highlighting that our model’s predicted trajectories closely align with the
ground truth.

Figure 5. Qualitative evaluation of trajectory forecasts using DAT. In the first row, ground-truth
trajectories are depicted in green, the highest confidence forecast in blue, and other potential future
trajectories in cyan. The second row compares the highest confidence forecasts of DAT (blue) with
those of TrajectoryNAS (magenta), alongside the ground-truth trajectories (green). The results
illustrate that DAT predictions are closer to the ground truth.

5. Conclusions

In this paper, we introduced the Deep learning-based Acceleration-aware Trajectory
forecasting (DAT) model, a novel end-to-end framework for trajectory forecasting that
directly utilizes LiDAR sensor data. Our primary contribution is the development of a
forecasting method that incorporates the acceleration of surrounding agents, a key factor
in improving the accuracy of trajectory predictions, particularly for objects exhibiting
nonlinear motion. Unlike existing methods, which struggle with agents displaying complex

J. Imaging 2024, 10, 321 13 of 16

dynamics, DAT’s integration of acceleration significantly enhances its predictive capability,
especially in dynamic and unpredictable traffic environments.

The practical advantages of DAT extend to real-world autonomous driving appli-
cations. Its ability to model and predict complex, nonlinear motion patterns allows for
faster and more accurate responses to sudden changes in the environment, such as abrupt
lane changes or unexpected stops. This can significantly reduce the risk of collisions and
improve the overall safety of autonomous vehicles. Furthermore, DAT’s robust approach
to estimating ground-truth acceleration using the Second-Order Regression (SOR) method
ensures the reliability and adaptability of the model in diverse driving conditions.

By conducting comprehensive experiments on the NuScenes dataset, we demon-
strated that DAT outperformed state-of-the-art methods, particularly in handling diverse
motion patterns. This positions DAT as a promising solution for real-world deployment
in autonomous driving systems, where both accuracy and the ability to react to complex,
real-time traffic scenarios are critical. By improving trajectory forecasting, DAT has the
potential to enhance decision-making, contributing to safer and more efficient autonomous
driving in dynamic environments.

Author Contributions: Conceptualization, A.A.S.; methodology, A.A.S.; software, A.A.S.; valida-
tion, A.A.S.; formal analysis, A.A.S.; investigation, A.A.S.; resources, M.D.; data curation, A.A.S.;
writing—original draft preparation, A.A.S.; writing—review and editing, A.Z.; visualization, A.A.S.;
supervision, M.D. and A.Z.; project administration, M.D.; funding acquisition, M.D. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the European Union and Estonian Research Council via project
TEM-TA138, and the Swedish Innovation Agency VINNOVA projects AutoDeep and FASTER-AI.
The computations were enabled by resources provided by the National Academic Infrastructure for
Supercomputing in Sweden (NAISS), partially funded by the Swedish Research Council through
grant agreement no. 2022-06725.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Data available on request due to restrictions (e.g., privacy, legal or
ethical reasons).

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A. Velocity and Acceleration Variance

Appendix A.1. Acceleration Variance

Proof. Given the equation for acceleration a:

a =
2(y2 − y0)

(t2 − t1)(t2 − t0)
− 2(y1 − y0)

(t1 − t0)(t2 − t1)
(A1)

where y0, y1, and y2 are noisy observations, perturbed by Gaussian noise with mean zero
and variance σ2, let the noisy y values be expressed as yi = ytrue

i + ϵi, where ϵi ∼ N (0, σ2).
The goal is to derive the variance of a under these noise conditions.

Rewriting a in terms of the noisy y values, we obtain:

a =
2((ytrue

2 + ϵ2)− (ytrue
0 + ϵ0))

(t2 − t1)(t2 − t0)
−

2((ytrue
1 + ϵ1)− (ytrue

0 + ϵ0))

(t1 − t0)(t2 − t1)
(A2)

which simplifies to:

a = atrue +

(
2(ϵ2 − ϵ0)

(t2 − t1)(t2 − t0)
− 2(ϵ1 − ϵ0)

(t1 − t0)(t2 − t1)

)
(A3)

J. Imaging 2024, 10, 321 14 of 16

Since atrue is constant, the variance of a is determined by the noise terms. Thus,
the variance of a is:

Var(a) = Var
(

2(ϵ2 − ϵ0)

(t2 − t1)(t2 − t0)
− 2(ϵ1 − ϵ0)

(t1 − t0)(t2 − t1)

)
(A4)

Using the property that ϵ0, ϵ1, and ϵ2 are independent Gaussian variables with variance
σ2, we obtain:

Var(a) =
8σ2

((t2 − t1)(t2 − t0))2 +
8σ2

((t1 − t0)(t2 − t1))2 (A5)

Thus, the variance of a is:

Var(a) =
8σ2

(t2 − t1)2(t2 − t0)2 +
8σ2

(t1 − t0)2(t2 − t1)2 (A6)

Appendix A.2. Velocity Variance

Proof. Given the equation for velocity v0:

v0 =
2(y1 − y0)(t2 − t0)

(t2 − t1)(t1 − t0)
− 2(y2 − y0)(t1 − t0)

(t2 − t1)(t2 − t0)
(A7)

where, again, y0, y1, and y2 are noisy with Gaussian noise, we express the noisy y values as
yi = ytrue

i + ϵi, where ϵi ∼ N (0, σ2), and proceed to derive the variance of v0.
Rewriting v0 in terms of the noisy y values yields:

v0 =
2((ytrue

1 + ϵ1)− (ytrue
0 + ϵ0))(t2 − t0)

(t2 − t1)(t1 − t0)
−

2((ytrue
2 + ϵ2)− (ytrue

0 + ϵ0))(t1 − t0)

(t2 − t1)(t2 − t0)
(A8)

Simplifying, we obtain:

v0 = vtrue
0 +

(
2(ϵ1 − ϵ0)(t2 − t0)

(t2 − t1)(t1 − t0)
− 2(ϵ2 − ϵ0)(t1 − t0)

(t2 − t1)(t2 − t0)

)
(A9)

Thus, the variance of v0 is:

Var(v0) = Var
(

2(ϵ1 − ϵ0)(t2 − t0)

(t2 − t1)(t1 − t0)
− 2(ϵ2 − ϵ0)(t1 − t0)

(t2 − t1)(t2 − t0)

)
(A10)

Using the same variance properties as before, we have:

Var(v0) =
8σ2(t2 − t0)

2

((t2 − t1)(t1 − t0))2 +
8σ2(t1 − t0)

2

((t2 − t1)(t2 − t0))2 (A11)

Thus, the variance of v0 is:

Var(v0) =
8σ2(t2 − t0)

2

(t2 − t1)2(t1 − t0)2 +
8σ2(t1 − t0)

2

(t2 − t1)2(t2 − t0)2 (A12)

J. Imaging 2024, 10, 321 15 of 16

References
1. Li, L.L.; Yang, B.; Liang, M.; Zeng, W.; Ren, M.; Segal, S.; Urtasun, R. End-to-end contextual perception and prediction with

interaction transformer. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Las Vegas, NV, USA, 24 October–24 January 2021; IEEE: Piscataway, NJ, USA, 2020; pp. 5784–5791.

2. Liang, M.; Yang, B.; Zeng, W.; Chen, Y.; Hu, R.; Casas, S.; Urtasun, R. Pnpnet: End-to-end perception and prediction with
tracking in the loop. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA,
USA, 14–19 June 2020; pp. 11553–11562.

3. Marchetti, F.; Becattini, F.; Seidenari, L.; Del Bimbo, A. Multiple trajectory prediction of moving agents with memory augmented
networks. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 45, 6688–6702. [CrossRef]

4. Peri, N.; Luiten, J.; Li, M.; Ošep, A.; Leal-Taixé, L.; Ramanan, D. Forecasting from lidar via future object detection. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022;
pp. 17202–17211.

5. Moshayedi, A.J.; Roy, A.S.; Kolahdooz, A.; Shuxin, Y. Deep learning application pros and cons over algorithm deep learning
application pros and cons over algorithm. EAI Endorsed Trans. AI Robot. 2022, 1, e7.

6. Geiger, A.; Lenz, P.; Urtasun, R. Are we ready for autonomous driving? the kitti vision benchmark suite. In Proceedings of the
2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; IEEE: Piscataway, NJ,
USA, 2012; pp. 3354–3361.

7. Chang, M.F.; Lambert, J.; Sangkloy, P.; Singh, J.; Bak, S.; Hartnett, A.; Wang, D.; Carr, P.; Lucey, S.; Ramanan, D.; et al. Argoverse:
3d tracking and forecasting with rich maps. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 8748–8757.

8. Caesar, H.; Bankiti, V.; Lang, A.H.; Vora, S.; Liong, V.E.; Xu, Q.; Krishnan, A.; Pan, Y.; Baldan, G.; Beijbom, O. nuscenes:
A multimodal dataset for autonomous driving. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 11621–11631.

9. Draper, N.R.; Smith, H. Applied Regression Analysis; John Wiley & Sons: Hoboken, NJ, USA, 1998; Volume 326.
10. Xu, Y.; Lin, J.; Shi, J.; Zhang, G.; Wang, X.; Li, H. Robust self-supervised lidar odometry via representative structure discovery

and 3d inherent error modeling. IEEE Robot. Autom. Lett. 2022, 7, 1651–1658. [CrossRef]
11. Gu, C.; Shokry, A.; Youssef, M. The effect of ground truth accuracy on the evaluation of localization systems. In Proceedings

of the IEEE INFOCOM 2021-IEEE Conference on Computer Communications, Vancouver, BC, Canada, 10–13 May 2021; IEEE:
Piscataway, NJ, USA, 2021; pp. 1–10.

12. Leon, F.; Gavrilescu, M. A review of tracking and trajectory prediction methods for autonomous driving. Mathematics 2021, 9, 660.
[CrossRef]

13. Moshayedi, A.J.; Roy, A.S.; Liao, L.; Khan, A.S.; Kolahdooz, A.; Eftekhari, A. Design and Development of FOODIEBOT Robot:
From Simulation to Design. IEEE Access 2024, 12, 36148–36172. [CrossRef]

14. Chai, Y.; Sapp, B.; Bansal, M.; Anguelov, D. MultiPath: Multiple Probabilistic Anchor Trajectory Hypotheses for Behavior
Prediction. In Proceedings of the Conference on Robot Learning, PMLR, Cambridge, MA, USA, 16–18 November 2020; pp. 86–99.

15. Cui, H.; Radosavljevic, V.; Chou, F.C.; Lin, T.H.; Nguyen, T.; Huang, T.K.; Schneider, J.; Djuric, N. Multimodal trajectory
predictions for autonomous driving using deep convolutional networks. In Proceedings of the 2019 International Conference on
Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 2090–2096.

16. Phan-Minh, T.; Grigore, E.C.; Boulton, F.A.; Beijbom, O.; Wolff, E.M. Covernet: Multimodal behavior prediction using tra-
jectory sets. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA,
13–19 June 2020; pp. 14074–14083.

17. Gao, J.; Sun, C.; Zhao, H.; Shen, Y.; Anguelov, D.; Li, C.; Schmid, C. Vectornet: Encoding hd maps and agent dynamics from
vectorized representation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle,
WA, USA, 13–19 June 2020; pp. 11525–11533.

18. Liang, M.; Yang, B.; Hu, R.; Chen, Y.; Liao, R.; Feng, S.; Urtasun, R. Learning lane graph representations for motion forecasting. In
Proceedings of the Computer Vision—ECCV 2020: 16th European Conference, Proceedings, Glasgow, UK, 23–28 August 2020;
Part II 16; Springer: Berlin/Heidelberg, Germany, 2020; pp. 541–556.

19. Ye, M.; Cao, T.; Chen, Q. Tpcn: Temporal point cloud networks for motion forecasting. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 11318–11327.

20. Han, K.; Wang, Y.; Chen, H.; Chen, X.; Guo, J.; Liu, Z.; Tang, Y.; Xiao, A.; Xu, C.; Xu, Y.; et al. A survey on vision transformer.
IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 87–110. [CrossRef] [PubMed]

21. Yuan, Y.; Weng, X.; Ou, Y.; Kitani, K.M. Agentformer: Agent-aware transformers for socio-temporal multi-agent forecasting.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021;
pp. 9813–9823.

22. Khandelwal, S.; Qi, W.; Singh, J.; Hartnett, A.; Ramanan, D. What-if motion prediction for autonomous driving. arXiv 2020,
arXiv:2008.10587.

23. Weng, X.; Ivanovic, B.; Kitani, K.; Pavone, M. Whose track is it anyway? Improving robustness to tracking errors with
affinity-based trajectory prediction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
New Orleans, LA, USA, 18–24 June 2022; pp. 6573–6582.

http://doi.org/10.1109/TPAMI.2020.3008558
http://dx.doi.org/10.1109/LRA.2022.3140794
http://dx.doi.org/10.3390/math9060660
http://dx.doi.org/10.1109/ACCESS.2024.3355278
http://dx.doi.org/10.1109/TPAMI.2022.3152247
http://www.ncbi.nlm.nih.gov/pubmed/35180075

J. Imaging 2024, 10, 321 16 of 16

24. Wang, W.; Chang, X.; Yang, J.; Xu, G. LiDAR-based dense pedestrian detection and tracking. Appl. Sci. 2022, 12, 1799. [CrossRef]
25. Wang, S.; Sun, Y.; Liu, C.; Liu, M. Pointtracknet: An end-to-end network for 3-d object detection and tracking from point clouds.

IEEE Robot. Autom. Lett. 2020, 5, 3206–3212. [CrossRef]
26. Guo, X.; Gu, J.; Guo, S.; Xu, Z.; Yang, C.; Liu, S.; Cheng, L.; Huang, K. 3D object detection and tracking based on streaming data. In

Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020;
IEEE: Piscataway, NJ, USA, 2020; pp. 8376–8382.

27. Yin, T.; Zhou, X.; Krahenbuhl, P. Center-based 3d object detection and tracking. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 11784–11793.

28. Li, X.; Guivant, J.E. Efficient and Accurate Object Detection With Simultaneous Classification and Tracking Under Limited
Computing Power. IEEE Trans. Intell. Transp. Syst. 2023, 24, 5740–5751. [CrossRef]

29. Simon, M.; Amende, K.; Kraus, A.; Honer, J.; Samann, T.; Kaulbersch, H.; Milz, S.; Michael Gross, H. Complexer-yolo: Real-time
3d object detection and tracking on semantic point clouds. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops, Long Beach, CA, USA, 15–20 June 2019.

30. Weng, X.; Yuan, Y.; Kitani, K. PTP: Parallelized tracking and prediction with graph neural networks and diversity sampling.
IEEE Robot. Autom. Lett. 2021, 6, 4640–4647. [CrossRef]

31. Luo, W.; Yang, B.; Urtasun, R. Fast and furious: Real time end-to-end 3d detection, tracking and motion forecasting with a single
convolutional net. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA,
18–23 June 2018; pp. 3569–3577.

32. Casas, S.; Luo, W.; Urtasun, R. Intentnet: Learning to predict intention from raw sensor data. In Proceedings of the Conference
on Robot Learning, PMLR, Zurich, Switzerland, 29–31 October 2018; pp. 947–956.

33. Zeng, W.; Luo, W.; Suo, S.; Sadat, A.; Yang, B.; Casas, S.; Urtasun, R. End-to-end interpretable neural motion planner. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019;
pp. 8660–8669.

34. Weng, X.; Wang, J.; Levine, S.; Kitani, K.; Rhinehart, N. Inverting the pose forecasting pipeline with SPF2: Sequential point-
cloud forecasting for sequential pose forecasting. In Proceedings of the Conference on Robot Learning, PMLR, London, UK,
8–11 November 2021; pp. 11–20.

35. Sharifi, A.A.; Zoljodi, A.; Daneshtalab, M. TrajectoryNAS: A Neural Architecture Search for Trajectory Prediction. Sensors 2024,
24, 5696. [CrossRef] [PubMed]

36. Simon, D. Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches; John Wiley & Sons: Hoboken, NJ, USA, 2006.
37. Lang, A.H.; Vora, S.; Caesar, H.; Zhou, L.; Yang, J.; Beijbom, O. Pointpillars: Fast encoders for object detection from point clouds.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June
2019; pp. 12697–12705.

38. Zhou, Y.; Tuzel, O. Voxelnet: End-to-end learning for point cloud based 3d object detection. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4490–4499.

39. Luc, P.; Couprie, C.; Lecun, Y.; Verbeek, J. Predicting future instance segmentation by forecasting convolutional features. In
Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 584–599.

40. Zhou, X.; Wang, D.; Krähenbühl, P. Objects as points. arXiv 2019, arXiv:1904.07850.
41. Law, H.; Deng, J. Cornernet: Detecting objects as paired keypoints. In Proceedings of the European Conference on Computer

Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 734–750.
42. Zhu, B.; Jiang, Z.; Zhou, X.; Li, Z.; Yu, G. Class-balanced grouping and sampling for point cloud 3d object detection. arXiv 2019,

arXiv:1908.09492.
43. Everingham, M.; Van Gool, L.; Williams, C.K.; Winn, J.; Zisserman, A. The pascal visual object classes (voc) challenge. Int. J.

Comput. Vis. 2010, 88, 303–338. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/app12041799
http://dx.doi.org/10.1109/LRA.2020.2974392
http://dx.doi.org/10.1109/TITS.2023.3248083
http://dx.doi.org/10.1109/LRA.2021.3068925
http://dx.doi.org/10.3390/s24175696
http://www.ncbi.nlm.nih.gov/pubmed/39275608
http://dx.doi.org/10.1007/s11263-009-0275-4

	Introduction
	Related Work
	Cascade Approaches
	End-to-End Approaches

	Methodology
	Deriving Acceleration Features
	EKF
	Second-Order Regression (SOR)

	DAT
	Object Detection Module
	Loss Function

	From Detection to Trajectory Forecasting

	Experimental Results
	Dataset
	Implementation Details
	Evaluation Metrics
	Comparison with State of the Art
	Ablation Study
	Qualitative Results

	Conclusions
	Appendix A
	Appendix A.1
	Appendix A.2

	References

