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Abstract: Autonomous driving systems are a rapidly evolving technology. Trajectory prediction is a
critical component of autonomous driving systems that enables safe navigation by anticipating the
movement of surrounding objects. Lidar point-cloud data provide a 3D view of solid objects sur-
rounding the ego-vehicle. Hence, trajectory prediction using Lidar point-cloud data performs better
than 2D RGB cameras due to providing the distance between the target object and the ego-vehicle.
However, processing point-cloud data is a costly and complicated process, and state-of-the-art 3D
trajectory predictions using point-cloud data suffer from slow and erroneous predictions. State-of-the-
art trajectory prediction approaches suffer from handcrafted and inefficient architectures, which can
lead to low accuracy and suboptimal inference times. Neural architecture search (NAS) is a method
proposed to optimize neural network models by using search algorithms to redesign architectures
based on their performance and runtime. This paper introduces TrajectoryNAS, a novel neural
architecture search (NAS) method designed to develop an efficient and more accurate LIDAR-based
trajectory prediction model for predicting the trajectories of objects surrounding the ego vehicle.
TrajectoryNAS systematically optimizes the architecture of an end-to-end trajectory prediction algo-
rithm, incorporating all stacked components that are prerequisites for trajectory prediction, including
object detection and object tracking, using metaheuristic algorithms. This approach addresses the
neural architecture designs in each component of trajectory prediction, considering accuracy loss and
the associated overhead latency. Our method introduces a novel multi-objective energy function that
integrates accuracy and efficiency metrics, enabling the creation of a model that significantly outper-
forms existing approaches. Through empirical studies, TrajectoryNAS demonstrates its effectiveness
in enhancing the performance of autonomous driving systems, marking a significant advancement in
the field. Experimental results reveal that TrajcetoryNAS yields a minimum of 4.8 higger accuracy
and 1.1* lower latency over competing methods on the NuScenes dataset.

Keywords: autonomous driving; neural architecture search; trajectory prediction; 3D point cloud

1. Introduction

Predicting future actions or states of objects around an intelligent system, such as an
autonomous driving (AD) vehicle, is crucial in preventing disasters or crashes. Driving in
the real world is a stochastic process due to the presence of other vehicles and pedestrians
that can take their next step, resulting in accidents or congestion. AD systems require the
crucial ability to predict the trajectory of surrounding objects [1-3]. Predicting accurately the
trajectory of surrounding objects is important in simultaneous localization and mapping
(SLAM) because it provides crucial information about static and dynamic objects and
allows for the refinement of object locations based on these predicted trajectories [4]. To
perform the task of predicting in self-driving vehicles, 2D and 3D data can be utilized.
3D data can usually be represented in different formats, including depth images, point
clouds, meshes, and volumetric grids. The optical camera is usually good for classification
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tasks such as distinguishing the type of surrounding objects or detecting lane markers
or traffic signs. While the performance of measuring distances and velocities is rather
weak, this information can be retrieved well from radars. LIDARs are complementary
to the other two sensors, showing competitive results. Distances and velocities can be
estimated with very high accuracy. Therefore, it is the preferred representation for many
scene-understanding-related applications such as autonomous driving and robotics.

Our paper presents TrajectoryNAS, an application-specific Neural Architecture Search
(NAS) that aims to create a trajectory model with high accuracy and minimum displacement
errors, both final and average (FDE and ADE (Section 4.2)). Our empirical studies reveal that
accurate object detection is crucial to achieving precise trajectory predictions. Therefore,
TrajectoryNAS is designed to localize objects with a minimum error and improve the
accuracy of final trajectory predictions. Additionally, to minimize the time required for
inference, the final objective of TrajectoryNAS is to reduce the model latency.

In conclusion, our contributions to this challenge can be summarized as follows:

* Trajectory Prediction NAS: TrajectoryNAS is a novel trajectory prediction for au-
tonomous driving, being the first to implement neural architecture search (NAS) in an
end-to-end manner. It integrates object detection, tracking, and predicting, addressing
the complex interdependencies among these tasks and the challenges of point-cloud
processing.

*  Hybrid Exploration and Exploitation: We introduce a two-step process to efficiently
handle the computational demands of NAS on large datasets. This approach first
explores architectures using a mini dataset, which is 10x faster than the complete
dataset, and then trains the selected architecture on the full dataset (exploitation),
ensuring both scalability and accuracy.

*  Multi-Objective Architecture Search: We introduce a multi-objective energy function
to assess the proposed architecture in both an accuracy and latency manner.

2. Related Works
2.1. Trajectory Prediction

In this section, we provide a brief overview of the literature focused on predicting
trajectories using point-cloud data. We begin by exploring cascade approaches (traditional
approaches). In these approaches, the output of a detector serves as input to a tracker.
The tracker’s output is then used by a trajectory-predicting algorithm to estimate the
anticipated movements of traffic participants in the upcoming seconds as in Figure 1 (top
row). Following that, the state-of-the-art approaches that do detection, tracking, and
predicting in an end-to-end manner are reviewed, depicted in Figure 1 (bottom row).

e

S Forecast

; o] ey

’ / < V (f\
Sensor data in Detects objects Object trajectories  Object trajectories
past M frames in past M frames In past M frames In future N frames

Detect/Track/Forecast _ Y
(»
Sensor data in Object trajectories
past M frames In future N frames

Figure 1. (Top Row) Cascade methods that independently address detection, tracking, and predicting,
they inherently carry the risk of compounding errors throughout the pipeline. This originates from—
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each sub-module’s assumption of receiving perfect input, which rarely holds true in real-world
applications. Consequently, errors introduced in earlier stages propagate and magnify downstream,
potentially leading to inaccurate final outcomes. (Bottom Row) End-to-end methods that predict
future movement directly from raw data, enabling end-to-end training and benefiting from the joint
optimization of object detection, tracking, and prediction tasks.

2.1.1. Cascade Approaches

Traditional self-driving autonomy decomposes the problem into three subtasks (object
detection, object tracking, and motion prediction) and relies on independent components
that perform these subtasks sequentially. These modules are usually learned independently,
and uncertainty is usually propagated [1]. In these methods, it is assumed that the exact
paths taken by the agents are known. By examining the trajectory data over a short period
of time, predictions can be made for future moments. For instance, the NuScenes [5] and
Argoverse [6] datasets provide trajectories and their corresponding labels for this purpose.

Many of the approaches presented in the literature are based on neural networks
that use recurrent neural networks (RNNs), which explicitly take into account a history
composed of the past states of the agents [7]. In RNNSs and their variants, memory is a
single hidden state vector that encodes all the temporal information. Thus, memory is
addressable as a whole, and it lacks the ability to address individual elements of knowl-
edge [3]. Ref. [3] presents the memory-augmented neural trajectory predictor (MANTRA).
In this model, an external, associative memory is trained to store useful and non-redundant
trajectories. Instead of a single hidden representation addressable as a whole, the memory is
element-wise addressable, permitting selective access to only relevant pieces of information
at runtime.

Spatial and temporal learning will be two key components in prediction learning.
Ignoring either information will lead to information loss and reduce the model’s capability
of context learning. Consequently, researchers are focusing on jointly learning RNN spatial
and temporal information. Ref. [8] utilize rasterization to encode both the agents and
high-definition map details, transforming corresponding elements such as lanes and cross-
walks into lines and polygons of diverse colors. However, the rasterized image is an overly
complex representation of environment and agent history and requires significantly more
computation and data to train and deploy. In an effort to address this, VectorNet [9] pro-
poses a vector representation to exploit the spatial locality of individual road components
with graph neural networks. LaneConv [10] constructs a lane graph from vectorized map
data and proposes LaneGCN to capture the topology and long dependency of the agents
and map information. Both VectorNet [9] and LaneConv [10] can be viewed as extensions
of graph neural networks in prediction with a strong capability to extract spatial locality.
Nevertheless, both works fail to fully utilize the temporal information of agents with less
focus on temporal feature extraction. In order to combine spatial and temporal learning in a
flexible and unified framework, Ref. [11] proposes temporal point-cloud networks (TPCN).
TPCN models the prediction learning task as joint learning between a spatial module and a
temporal module.

Across a range of visual benchmarks, transformer-based models exhibit comparable
or superior performance when compared to other network types like convolutional and
recurrent neural networks [12]. This trend extends to trajectory prediction as well. Ref. [13]
proposes a new transformer that simultaneously models the time and social dimensions.
Their method allows an agent’s state at one time to directly affect another agent’s state
in the future. In parallel, Ref. [14] develops an RNN-based approach for context-aware
multi-modal behavior forecasting. The model input includes both a road network at-
tention module and a dynamic interaction graph to capture interpretable geometric and
social relationships.

As mentioned, cascade approaches in order to trajectory prediction are developed
separately from their upstream perception. As a result, their performance degrades signifi-
cantly when using real-world noisy tracking results as inputs. Ref. [15] presents a novel
prediction framework that uses affinity matrices rather than tracklets as inputs, thereby
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completely removing the chances of errors occurring in data association and passing more
information to prediction. To consider this propagation of errors, Ref. [15] applies three
types of data augmentation to increase the robustness of prediction with respect to tracking
errors. They inject identity switches (IDS), fragments (FRAG), and noise.

2.1.2. End-to-End Approaches

To prevent the propagation of errors and reduce inference time in traditional methods,
as they learn independently, researchers [16-19] attempted to perform detection and track-
ing in an end-to-end manner. With the same purpose, Ref. [20] proposed a network that
parallelized tracking and prediction using a graph neural network (GNN).

To our best knowledge, Fast and Furious (FaF) [21] proposes the first deep neural
network capable of jointly performing 3D detection, tracking, and motion prediction us-
ing data captured by a 3D sensor. However, Ref. [21] limited its predictions to a mere
1 s duration. In contrast, IntentNet [22] enlarges the prediction horizon and estimates
future high-level driver behavior. Ref. [23] moved a step further and performed detection,
predicting, and motion planning jointly. Furthermore, Ref. [23] introduces an additional
perception loss that encourages the intermediate representations to generate accurate 3D
detections and motion prediction. This ensures the interoperability of these intermediate
representations and enables significantly accelerated learning. The statistical interconnec-
tions among actors are overlooked by all the previously mentioned methods, and instead,
they individually predict each trajectory using the provided features. Ref. [2] designed a
novel network that explicitly takes into account the interactions among actors. To capture
their spatial-temporal dependencies, Ref. [2] proposes a recurrent neural network with a
transformer architecture.

Ref. [24] suggests a reversing of the detect-then-forecast pipeline rather than following
the conventional sequence of detecting, tracking, and subsequently forecasting objects.
Afterward, object detection and tracking are performed on the projected point-cloud
sequences to obtain future poses. A notable advantage of this methodology lies in the
comprehensive representation of predictions, incorporating details about RNNs and the
background and foreground objects existing within the scene. Similarly, in a comparable
fashion, FutureDet [25] directly predicts the future locations of objects observed at a specific
time instead of predicting point-cloud sequences over time and then backcasting them to
determine their origin in the current frame. This allows the model to reason about multiple
possible futures by linking future and current locations in a many-to-one manner. This
approach leverages existing LIDAR detectors to predict object positions in unseen future
scans. Building upon the recently proposed CenterPoint LiDAR detector [17], FutureDet
predicts not only future locations but also velocity vectors for each object in every frame
between the current and final predicted future frame. This enables the model to estimate
consistent object trajectories throughout the entire forecasting horizon. In the process of
forecasting, it is essential to link all trajectories to the collection of object detections in
the current (observed) LiDAR scan. For each future detection i, FutureDet computes the
distance to every detection j from the previous timestep. Subsequently, for each i, FutureDet
selects the most suitable j (permitting multiple-to-one matching).

Additionally, it is argued that current evaluation metrics for predicting directly from
raw LiDAR data are inadequate as they can be manipulated by simplistic predictors,
leading to inflated performance. These metrics, originally designed for trajectory-based
prediction, do not effectively address the interconnected tasks of detection and forecasting.
To overcome these limitations, a novel evaluation procedure is proposed by FutureDet.
The new metric integrates both detection and forecasting tasks. Notably, this approach
surpasses state-of-the-art methods without the necessity of object tracks or high definition
(HD) maps as model inputs.
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2.2. Neural Architecture Search

Optimizing model hyperparameters is an effective way to improve intelligent systems
using automated machine learning (AutoML) [26]. Neural architecture search (NAS) is
a subset of AutoML that aims to create efficient neural networks for complex learning
tasks [27]. Early NAS methods used reinforcement learning (RL) [28,29] or evolutionary
algorithms [30,31]. However, evaluating 20,000 neural architectures over four days requires
remarkable computing capacity, such as 500 NVIDIA® GPUs used in this study were
sourced from NVIDIA Corporation, which is headquartered in Santa Clara, CA, USA [28].
Recently, methods for differentiable neural architecture search (NAS) have been proven
to achieve state-of-the-art results across various learning tasks [32-34]. DARTS [33] is a
differentiable NAS method that uses the gradient descent algorithm to search and train
neural architecture cells jointly. Despite the success of differentiable NAS methods in
various domains [34], they suffer from inefficient training due to interfering with the
training of different sub-networks each other [35]. Moreover, it has been proven that with
equal search spaces and training setups, differentiable NAS methods converge to similar
results [36].

Meta-heuristic-based NAS methods [37-39] benefit from fast and flexible algorithms to
search a discrete search space. FastStereoNet [39] is a state-of-the-art meta-heuristic method
that designs an accurate depth estimation pipeline. TrajectoryNAS is a fast multi-objective
meta-heuristic NAS designed to optimize trajectory prediction approaches by searching a
wider design space compared to differentiable methods or evolutionary NAS approaches.

3. TrajectoryNAS

Current trajectory prediction techniques rely on handcrafted neural network architec-
tures. These models, while effective for tasks like 3D object detection, are suboptimal for
trajectory prediction. Building on the success of neural architecture search (NAS), Trajec-
toryNAS offers an interactive approach to designing neural networks specifically for 3D
trajectory prediction. However, it is important to note that training a trajectory prediction
model is both costly and time-consuming, requiring approximately 12 GPU hours for a
single model.

As a result, the NAS procedure becomes significantly slow, requiring approximately
1200 GPU hours. To expedite the training process, we leverage state-of-the-art techniques
(e.g., [40—42]) that utilize a miniaturized NuScenes dataset to reduce the computational
demand for communication rescores. As an example, Blanch et al. [42] demonstrates the
use of a mini-dataset for hyperparameter optimization. Similarly, each model generated
by neural architecture search (NAS) is trained on a standard mini-subset of the NuScenes
dataset [5]. This technique reduces the evaluation time for each model to nearly 1 h, making
the process approximately 12 times faster.

Figure 2 elaborates the TrajectoryNAS state diagram. The TrajectoryNAS workflow
consists of three phases: Phase 1, exploration, where the metaheuristic algorithm suggests
new architectures, and each architecture is trained using a mini dataset to compare with
other suggested architectures. In Phase 2, the architecture with the highest accuracy on the
mini dataset is retrained using the full-size dataset. Finally, in Phase 3, the fully trained
model is deployed on hardware and tested with the test dataset to report the final results.

TrajectoryNAS is a one-stage trajectory prediction [21,25]. The model takes a sequence
of Lidar data captured from the scene, which integrates a robust 3D backbone with cutting-
edge neural architecture search (NAS) to refine map-view feature extraction from LiDAR
point clouds. This innovative architecture further evolves by automating the design of multi-
2D CNN detection heads, specifically tailored for future object detection and trajectory
prediction. By detecting objects across multiple future timesteps and accurately projecting
their movements back to the current moment, TrajectoryNAS stands out for its precision in
trajectory prediction. This system not only anticipates the dynamic positioning of objects
but also adjusts its computational strategies in real-time, ensuring a high degree of accuracy
and efficiency in processing. The inclusion of NAS allows for continuous improvement of
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the detection and prediction heads, making TrajectoryNAS a highly adaptive and forward-
thinking solution in the realm of autonomous navigation and surveillance technologies.
TrajectoryNAS employs a hybrid optimization strategy to minimize optimization costs.
The process is divided into two phases. The first phase, called exploration, involves the
algorithm exploring various neural architecture designs to identify the optimal design.
This phase is time-consuming as the algorithm must evaluate a wide range of parameters
within the search space elaborated in Section 3.1. During the exploration phase, it is crucial
to establish a comparative accuracy metric that can evaluate different architectures and
determine the relative optimal design. To reduce processing time, the exploration phase
utilizes a subset of the Nuscenes dataset [5], which contains significantly less data but
maintains a distribution similar to the full dataset. To ensure that the selected model
performs efficiently on the complete dataset, we use the full dataset in the second phase,
known as exploitation, where we report the final accuracy of the designed model.

Phase 1
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Figure 2. TrajectoryNAS state diagram. A model generated from the search space. The generated
model trains using the mini dataset. The results are sent back to search space to generate a new
model. The best final model is fully trained using the original dataset.

3.1. Search Space

TrajectoryNAS search space is demonstrated in Figure 3.

The TrajectryNAS architecture stands out as a solution for object detection and trajec-
tory prediction, particularly in scenarios like autonomous driving, where understanding
dynamic environments is paramount. It skillfully merges spatial and temporal object
analyses, predicting not only the present state but also future trajectories.

Point-cloud input VoxelNet RPN  Sparse FPN Detection Heads

Figure 3. The overview of TrajcetoryNAS process.

3.1.1. 3D Object Detection with VoxelNet

Modern 3D object detection methods [17,43,44] utilize a 3D encoder that converts
the point cloud into regular bins. A point-based network [45] then extracts features from
all the points within each bin. The 3D encoder subsequently pools these features to
form its primary feature representation. Most of the computational workload is handled
by the backbone network, which operates exclusively on these quantized and pooled
feature representations. The output of the backbone network is a map-view feature map
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M € RWXLXF with width W, length L, and F channels in a map-view reference frame. The
width and height are directly related to the resolution of the individual voxel bins and the
stride of the backbone network. Common backbone architectures include VoxelNet [46,47]
and PointPillars [43]. This work employs VoxelNet as the backbone network.

VoxelNet is a novel approach for 3D object detection from LiDAR data and comprises
three functional blocks:

Feature Learning Network: This network processes raw LiDAR data by dividing the
point cloud into 3D voxels. A crucial component is the voxel feature encoding (VFE) layer,
which transforms each group of points within a voxel into a unified feature representation.
By stacking multiple VFE layers, the network learns complex features that capture local 3D
shape information within the point cloud.

Convolutional Middle Layers: After the feature learning network generates a vol-
umetric representation with encoded features, these features are further processed by
3D convolutional layers. These layers aggregate local voxel features, transforming the
point-cloud data into a richer and more informative high-dimensional representation.

Region Proposal Network (RPN): The final stage utilizes an RPN [48] to generate 3D
object detections. The input to the RPN is the feature map provided by the convolutional
middle layers. The network consists of three blocks of fully convolutional layers, with
batch normalization (BN) and ReLU operations applied after each layer. The output of
each block is up-sampled to a fixed size and concatenated to construct a high-resolution
feature map.

3.1.2. Trajectory Prediction

TrajectoryNAS detects objects in both the current and future frames, projecting future
detections back to the reference frame. We hypothesize that detecting objects in future
frames requires the network to learn forecasted feature representations, as suggested by
Peri et al. [25]. The network uses features extracted from the feature extraction module
(VoxelNet) to predict features for the next timestep (f + 1). After each prediction, a detection
module refines the results. Initially, the extracted features are used for object detection
in the current frame. Simultaneously, a copy of these features is passed to the prediction
network to forecast features for the next timestep. This process is repeated iteratively, with
predicted features being used for subsequent detection modules, until both the features
and object detections are obtained for the final timestep.

Each detection module contains five parallel prediction heads, each responsible for
a specific aspect of the object’s state: velocity, rotation, dimension, regression (bounding
box refinement), and height. These heads work in concert to provide a comprehensive
description of an object’s current position and orientation at time ¢.

To link objects across different frames, our network detects objects in both the current
and future frames and predicts offsets to associate them back in time, assuming constant
velocity between frames. Trajectory construction involves aligning all trajectories with the
objects detected in the current LiDAR scan. Each detected object in the future frame (i)
is matched to the previous frame (j) using the constant velocity equation. The distance
between the detected object at time j and all other detected objects is calculated, and the
closest object is then selected.

Such an approach allows TrajectryNAS to not only navigate but also anticipate com-
plex dynamic behaviors, making it an invaluable asset in fields where predicting future
states is crucial for proactive decision-making. This architecture’s ability to foresee the
direction and movement of objects enriches scene understanding and enhances planning
for autonomous systems, offering a comprehensive and forward-looking perspective on
environmental dynamics.

The TrajectoryNAS system automatically designs the region proposal network (RPN)
and the prediction heads using the aforementioned layers. It explores an expansive space
of 23% potential architectures to identify an optimal balance between speed and accuracy.
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This approach enables the selection of a highly efficient and accurate architecture tailored
for specific applications.

3.2. Search Algorithm

To improve the accuracy of trajectory prediction while reducing network inference
time, we employ the multi-objective simulated annealing (MOSA) algorithm, as described
in [49]. The search algorithm optimizes the trajectory prediction in the design time and
before training the model. The reason for using MOSA is its simplicity and its superior
ability to explore a wide range of candidates compared to gradient-based algorithms.
MOSA is also capable of finding global optima due to its effective exploration-exploitation
balance. These attributes make MOSA a robust choice for optimizing complex, multi-
objective problems such as trajectory prediction. MOSA selects candidates based on the
probability of min(1,exp(—A/T)), where A is the energy difference between present and
newly generated candidates, and T is the regulating parameter for annealing temperature.
Initially, T starts from a large value (Tjs,,) and gradually decreases to a small value (T, ).
Setting T,y to a large value allows for exploration of non-optimal choices, while Ty,
being small gives the maximum selection chance to optimal candidates (exploitation).

To achieve this optimization, we use a multi-objective energy function (Equation (1)).

The energy function (E) is the product of the network latency (t) and the weighted
mean average precision of the predicted future place of the object and its actual place (mAP),
weighted average displacement (ADE) error, and weighted final displacement error (FDE).

E = Latency x mAP* x ADEP x FDE" 1)

where «, B, and «y are weights of mAP, ADE, and FDE, respectively. We do not use any
proxy, such as Floating-Point-Operations-per-Second (FLOPs), for inference time estima-
tion. Instead, we run the network directly on the target hardware (NVIDIA® RTX A4000
were sourced from NVIDIA Corporation, which is headquartered in Santa Clara, CA,
USA) to measure the exact inference time. Algorithm 1 is a complete description of the
TrajectoryNAS flow.

Algorithm 1 TrajecoryNAS

: procedure EXPLORATION
: M <+ Mini-Dataset
: Ainit < Initial Architecture

1

2

3

4: TMax < MaximumTemperature
5: Tmin < MinimumTemperature
6 Tractor < —L0g(TpMax, Tmin)

7 Abpest < Amit

8 Acurrent — AInit

9

: train(Acurrent/ M )
10: for each iteration i from 1 to MaxlIterations do
11: Anew  GenerateNeighbor(Acyrrent)
12: train(Anew, M)
13: AE « E(Anew) - E(Acurrent)
14: if AE < 0 then
15: Acurrent < Anew
16: else
17: r <— Random number in [0, 1]
18: if r <min(1,exp(—A/T)) then
19: Acurrent — Anew
20: end if

21: end if
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Algorithm 1 Cont.

22: if E(Acurrent) < E(Apest) then

23: Abest — Acurrent

24: end if

25: T < Tamax X Exp(Tractor X (i/ MaxIterations))
26: end for

27: return Apegt

28: end procedure

29: procedure EXPLOITATION(Apest)
30: C < Complete-Dataset

31: train(Apest, C)

32: accuracy < vaidate(Apest, C)
33: return accuracy

34: end procedure

4. Experimental Setup

We demonstrate the effectiveness of our approach on a large-scale real-world driving
dataset. We focus on modular metrics for detection and prediction, as well as system
metrics for end-to-end perception and prediction.

4.1. Dataset

Our experimental analysis was performed on the nuScenes [5] dataset, which contains
1000 log snippets, each lasting 20 s. We utilized two officially released divisions of the
dataset: the Mini and Trainval splits. The Mini split, which consists of 10 scenes, is a
subset of the Trainval split. The Trainval split contains 700 scenes for training purposes and
150 scenes for validation. Additionally, the test split, containing 150 scenes, is designated
for challenges and lacks object annotations.

4.2. Evaluation Metrics

We follow the detection and prediction metrics defined by [25] to have a fair compari-
son with other state-of-the-art. Specifically, we use average precision (AP,;) for detection
and future average precision (APy) for trajectory prediction.

Detection Average Precision (APy,;): APy, is defined as the area under the precision-
recall curve [50], commonly averaged over multiple spatial overlap thresholds [51]. To
compute AP, we first determine the set of true positives (TP) and false positives (FP) to
evaluate precision and recall.

Future Average Precision (APy): future Average Precision (APy) is a metric used
to evaluate the accuracy of future trajectory predictions anchored to detected objects in
the current frame (t,;;). It penalizes incorrect future predictions (false predictions) and
missed detection (missed predictions). A true positive (TP) requires a positive match both
at the current timestamp (f,5s) and the final timestep (¢,5s + T), Otherwise, a prediction is
considered to be a false positive (FP). A successful match in the current frame is determined
based on distance thresholds of 0.5, 1, 2, 4 m for the current frame and 1, 2, 4, 8 m for the
final timestep [25]. APy considers all detections and penalizes missed predictions, typically
measured by the miss rate.

We have defined three subclasses: static cars, linearly moving cars, and non-linearly
moving cars [25], and we report APy and AP, for these three classes. Subsequently,
we evaluate the mean average precision for the future (mAPy) as follows: mAPy = 1/3
X (AP?"' + AP?””_””' + Aij“t'). Similarly, mAP,,; is evaluated as the average AP,
over the three subclasses. Subclass labels are determined based on the trajectory (whether
ground truth or predicted). First, we calculate the intersection over union (IoU) between
the bounding boxes at the first and last timestep. If the IoU is greater than 0, the trajectory
is labeled as static. Next, we use the velocity from the first timestep to project a target box.
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If the IoU between this target box and the last timestep box is greater than 0, the trajectory
is labeled as linear. Trajectories that do not fit either category are labeled as non-linear.

mAPy and mAP 4, provide a more realistic evaluation by jointly assessing detection
and prediction accuracy. They penalize both missed predictions and false predictions,
ensuring that only predictions correctly matched to detected objects are considered true
positives [25]. This joint evaluation embraces the inherent multi-future nature of prediction
and is robust against imbalanced data scenarios, such as the high proportion of stationary
cars in the nuScenes dataset.

4.3. Configuration Setup
For this study, Table 1 provides a brief overview of the configuration setup.

Table 1. Summarizing hardware specification, train, and search parameters.

Train/Test Hardware Device Specification
GPU NVIDIA® RTX A4000
GPU Compiler CUDA v11.7 & cuDNN v8.2.0
DL Framework PyTorch v1.9.1
Training and Search Parameters Value
Full-Training Epochs 20
Batch Size 1
Learning Rate 5x 1074
Optimizer Adam
Trmax/ Timin 2500/2.5
5. Results

5.1. Trajectory Prediction Performance

As presented in Tables 2 and 3, the comparison of car and pedestrian trajectory
prediction results demonstrates that TrajectoryNAS outperforms other state-of-the-art
trajectory prediction methods in numerous parameters for car trajectory prediction and
the majority of parameters for pedestrian trajectory prediction. Notably, the latency of
TrajectoryNAS is comparable to that of Fast and Furious [21] and better than FutureDet [25],
while TrajectoryNAS provides superior future average precision (APy) across all conditions
for both linear and non-linear trajectories of cars and pedestrians. Future average precision
(APy) is a novel trajectory prediction performance metric proposed by FutureDet [25]
and proved to be more precise in demonstrating trajectory performance in comparison to
previous metrics.

For cars, while Fast and Furious and FutureDet offer a marginal improvement in
specific aspects when compared with TrajectoryNAS, TrajectoryNAS significantly surpasses
the state-of-the-art in most parameters. This is evidenced by its top performance in average
precision for static, linear, and non-linear trajectories, as well as its mean average precision
(mAP), both for single (K = 1) and multiple (K = 5) predictions. Specifically, TrajectoryNAS
achieves the highest detection accuracy and future average precision in almost all scenarios,
highlighting its robustness and efficacy in car trajectory prediction.

Similarly, for pedestrian trajectory prediction, TrajectoryNAS demonstrates outstand-
ing performance, particularly in accurately predicting linear and non-linear movements.
It not only achieves the highest average precision scores across various scenarios but also
maintains competitive latency, underscoring its effectiveness in real-time applications.

In conclusion, TrajectoryNAS advances the field of trajectory prediction by offering a
highly accurate and efficient model. Its ability to provide better future average precision
under different conditions for both cars and pedestrians, coupled with its comparable
latency to leading models, positions TrajectoryNAS as a superior choice for trajectory
prediction in dynamic environments.
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Table 2. Comparison TrajcetoryNAS and state-of-the-art trajectory prediction model on cars according
to accuracy and latency metrics.

K=1 K=5
> &
e‘x@ e\ Apstat. Aplin- Apron—lin. mAP Apstat. Aplin- Apron—lin. mAP
A 5
APg. AP; APy, AP; APgy, AP; APsy. AP; APy AP; APsy. APy APy AP; APy APy
Detection + Constant Velocity 21 70.3 66.0 65.8 21.2 90.0 6.5 754 3112 703 66.0 65.8 21.2 90.0 6.5 75.4 312
Detection + Forecast [21] 20 69.1 64.7 66.1 222 86.3 7.5 73.8 315 69.1 64.7 66.1 222 86.3 7.5 73.8 31.5
FutureDet [25] 24 70.0 65.5 629 249 91.8 10.1 74.9 335 70.1 67.3 62.9 27.7 91.7 11.7 74.9 35.6
TrajectoryNAS (ours) 22 71.0 65.6 63.8 26 91.2 10.3 75 34 71 67.4 63.8 29.2 91.1 12.1 75.3 36.2

Table 3. Comparison TrajcetoryNAS and state-of-the-art trajectory prediction model on pedestrian
according to accuracy and latency metrics.

K=1 K=5
‘0& \&3\ I I 1 I
N stat. in. non—lin. stat. in. non—lin.
ﬁ\z (\6& AP AP’ AP mAP AP AP AP’ mAP

APgy. AP; APgy APy APy APy APgy. APy APgy APy APgy APy APgy APy APy APy
Detection + Constant Velocity 21 55.1 333 73.5 278  96.9 12.4 752 255 55.1 333 73.5 278 969 12.4 752 245
Detection + Forecast [21] 20 53.7 35.0 73.9 30.8 972 133 749 264 53.7 35.0 73.9 30.8 97.2 133 749 26.4
FutureDet [25] 24 53.1 33.3 724 32.6 95.2 14.7 73.6 269 53.1 35.1 72.4 34.0 95.2 15.0 73.6 28.0
TrajectoryNAS (ours) 22 55.8 37.1 77.9 39.9 95.2 17.7 76.3 313 55.8 38.6 77.9 40.9 95.2 17.9 76.3 32.5

5.2. Analysing Search Methods

Figure 4 presents a detailed comparison of the energy function reduction (as defined
in Equation (1)) during the search process employed by the TrajectoryNAS algorithm
against those of random search and local search methods. This comparative analysis
clearly demonstrates the limitations of both local search and random search techniques in
effectively identifying the most optimal solution. Specifically, the best outcome identified
through Random Search, characterized by an energy value of e = 0.19 as per Equation (1),
was achieved in iteration 52. Similarly, Local Search’s most effective solution registered an
energy value of e = 0.186, and this result was obtained in iteration 50.

Despite these efforts, both methods fall significantly short when compared to the
capabilities of the TrajectoryNAS algorithm. TrajectoryNAS not only surpasses these
traditional search methodologies in efficiently navigating towards more optimal solutions
but also showcases its superiority by discovering an exceptionally lower energy value of
0.113. This landmark achievement was realized in iteration 108, underlining the algorithm’s
advanced optimization prowess. Notably, the energy value associated with the best solution
found by TrajectoryNAS is nearly half that of the best solutions unearthed by both random
search and local search. This stark contrast underscores the advanced and sophisticated
nature of TrajectoryNAS in exploring and exploiting the search space to find significantly
more efficient solutions, thereby establishing a new benchmark in the quest for optimization
within this context.

TrajectoryNAS overcomes Latent Acceptance Hill-Climbing (LAHC), a high-performance
meta-heuristic algorithm as described by [52]. Figure 4 illustrates that LAHC becomes trapped
in a local minimum and fails to escape to locate the global minimum. Consequently, the
performance of LAHC is inferior to both local search and random search algorithms.
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Figure 4. TrajectoryNAS optimization curve.

5.3. Visual Demonstration

The visual results of TrajectoryNAS are shown in Figure 5. As is evident, the results
for both linear and non-linear activities for both cars and pedestrians closely match what
occurs in the future. TrajectoryNAS is highly accurate in determining static and dynamic
objects, and it rarely draws dynamic lines for static objects.
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Figure 5. The visual demonstration of TrajectoryNAS; the first row is the trajectory prediction for
cars, and the second row is the trajectory prediction for the pedestrian. Green lines are ground-truth.
Blue lines are trajectory prediction with highest probability. Cyan lines are trajectory predictions with
the highest probability.

6. Conclusions

Trajectory prediction is one of the most important components of autonomous driving
systems. A well-designed trajectory prediction model can accurately predict the trajectories
of surrounding objects near the ego vehicle within an acceptable inference time, helping
to prevent collisions by ensuring the ego vehicle avoids crossing their paths. State-of-
the-art trajectory prediction models suffer from their handcrafted design, which leads to
suboptimal accuracy and latency.

To resolve this problem, we propose TrajectoryNAS, a neural architecture search
approach tailored for trajectory prediction applications, which designs accurate and low-
latency trajectory prediction models using metaheuristic algorithms. Our empirical studies
demonstrate that TrajectoryNAS achieves a minimum of 4.8% higher accuracy in predicting
the trajectories of objects with non-linear paths. This highlights its effectiveness in predict-
ing the trajectories of objects with more freedom of movement than vehicles, such as pedes-



Sensors 2024, 24, 5696 13 of 15

trians. Our future work involves enhancing TrajectoryNAS to support novel deep learning
approaches, such as vision transformers (ViTs), which have been well-demonstrated in
meeting autonomous driving requirements, such as long-range perception.
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