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A B S T R A C T

Detecting lane markings in road scenes poses a significant challenge due to their intricate nature, which is
susceptible to unfavorable conditions. While lane markings have strong shape priors, their visibility is easily
compromised by varying lighting conditions, adverse weather, occlusions by other vehicles or pedestrians, road
plane changes, and fading of colors over time. The detection process is further complicated by the presence
of several lane shapes and natural variations, necessitating large amounts of high-quality and diverse data to
train a robust lane detection model capable of handling various real-world scenarios.

In this paper, we present a novel self-supervised learning method termed Contrastive Learning for Lane
Detection via Cross-Similarity (CLLD) to enhance the resilience and effectiveness of lane detection models in
real-world scenarios, particularly when the visibility of lane markings are compromised. CLLD introduces a
novel contrastive learning (CL) method that assesses the similarity of local features within the global context of
the input image. It uses the surrounding information to predict lane markings. This is achieved by integrating
local feature contrastive learning with our newly proposed operation, dubbed cross-similarity.

The local feature CL concentrates on extracting features from small patches, a necessity for accurately
localizing lane segments. Meanwhile, cross-similarity captures global features, enabling the detection of
obscured lane segments based on their surroundings. We enhance cross-similarity by randomly masking
portions of input images in the process of augmentation. Extensive experiments on TuSimple and CuLane
benchmark datasets demonstrate that CLLD consistently outperforms state-of-the-art contrastive learning
methods, particularly in visibility-impairing conditions like shadows, while it also delivers comparable results
under normal conditions. When compared to supervised learning, CLLD still excels in challenging scenarios
such as shadows and crowded scenes, which are common in real-world driving.
1. Introduction

Lane detection is a crucial task in computer vision, particularly
for autonomous vehicles and advanced driver assistance systems. This
process becomes even more challenging in diverse real-world scenarios,
primarily because lane markings are inherently long, thin structures
characterized by strong shape priors but limited appearance clues [1].
The visibility of these markings is frequently compromised by adverse
factors such as poor lighting conditions, occlusions, and the fading
of their color, all of which contribute to making lane detection a
highly demanding task [2]. Feature extraction is a crucial component
of computer vision algorithms [3,4], especially for lane detection.
However, it is not only important to extract features but also to capture
the long-range dependencies between these features. This is essen-
tial for predicting lanes in segments where visibility is low. Many
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novel lane detection approaches adopt pixel-level image segmentation
techniques [1,5] to enhance the precision of lane detection. In these
methods, pixels are labeled either as part of the lane or background.

To develop a robust lane detection method capable of handling
natural variations, a significant amount of training data is required.
Large-scale labeling of lane markings in road scenes is costly and re-
quires a lot of human labor. However, an abundance of unlabeled data
is available, which can simply be used to boost the performance of the
model. Furthermore, the appearance of lanes varies across the globe.
Unsupervised and self-supervised contrastive learning (CL) methods have
been proposed for training deep neural networks (DNNs) with minimal
labeled data and a vast amount of unlabeled data [7,8].

CL methods can be divided into two categories based on the type
of representations or features they focus on in an image: local feature
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Fig. 1. Comparison of the state-of-the-art segmentation-based lane detection RESA [5]
with three different pretraining strategies. (a) Input image (b) RESA output with CLLD
(ours) and (c) RESA output with supervised and (d) RESA output with PixPro [6]
pretraining. Yellow boxes represent accuracy drops in the detection of lanes that are
occluded by cars.

methods and global feature methods. Global feature CL methods are not
considered the most effective strategy for lane detection, considering
they compare the entirety of an input image with other images. How-
ever, for lane detection, it is crucial to localize specific lane segments
within the same input image by contrasting different parts of it. On
the other hand, local feature CL methods are designed to learn features
that classify smaller portions of the input image. These methods can
be effectively employed in object localization tasks like lane detection
since they focus on specific areas within the input image, enabling more
precise detection and localization of objects like lane lines [8].

Existing local CLs are not adequate for lane detection. They are
designed to detect completely visible objects and do not have any
mechanism to predict the existence of objects that are obscured due
to natural variations or occluding by vehicles and pedestrians. To
effectively detect and pinpoint lane markings, even in low visibility
areas, we propose contrastive learning for lane detection via cross-similarity
(CLLD), a self-supervised learning method for lane detection. CLLD is a
multi-task contrastive learning approach. It trains convolutional neural
networks (CNNs) to segment an input image and predict masked parts of
an image using their surrounding parts. To train the model, we provide
both an input image and its augmented version to an encoder. We then
measure the consistency between the original image’s feature map and
the feature map generated from the augmented version that warped to
its original shape.

The utilization of masking to self-supervised learning models is
referenced in notable works [9], which propose the masking models
for training robust image classification models. However, a noteworthy
challenge arises when the masked area is sufficiently large, leading to
the CNN’s inability to perform effectively, as CNNs inherently possess
strong inductive bias. In addressing this issue, we introduce a novel
operation named cross-similarity, a lightweight operation designed to
leverage the similarities between the feature maps surrounding the
masked area and their corresponding feature map in the original image.
This innovative approach mitigates the loss of important features,
thereby enhancing the CNN’s capability to effectively detect and recon-
struct objects even in scenarios characterized by significant occlusion.
We compute the cross-similarity of every patch of the feature map in
the masked image with all parts of the feature map in the original
image and contrast it with the cross-similarity of each patch in the
original image feature maps, and the entire masked image features
maps. Differing from [10,11], which mask data to reduce size and focus
attention, CLLD uses masking to augment data and train a model to
predict missing parts, to improve resiliency against occlusion and data
loss.

We assess CLLD on U-Net [12], a popular encoder–decoder that
is widely utilized for lane detection tasks. In addition to U-Net, we
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evaluate the proposed method on RESA [5] and CLRNet [13] as SOTA
segmentation-based and anchor-based lane detection methods, respec-
tively. CLLD yields an average 1% improvement in all evaluation
metrics over state-of-the-art CL methods on two of the most well-
known lane detection datasets, CuLane [1] and TuSimple [14]. To
demonstrate its efficacy, we have tested CLLD on the shadow subset of
CuLane, which is known to be a challenging set due to its varying light
conditions. Our findings show an impressive over 4% improvement
in detecting lanes in shadow situations. From the qualitative results
shown in Fig. 1, we can see that CLLD outperforms SOTA local CL and
supervised learning. Specifically, CLLD is more effective at dealing with
occluded parts of a lane.

The main contributions of this work are as follows: (I) We demon-
strate that previous self-supervised learning approaches may not be
the most effective approach for the lane detection task. We highlight
some reasons that may contribute to this performance reduction. (II)
We present the cross-similarity approach, a lightweight operation that
computes the correlation between spatial parts of a picture that may
contain lane markings and connects them together. (III) We propose
a novel approach to self-supervised learning for lane detection. Our
approach leverages cross-similarity to pretrain lane detection to bet-
ter detect occluded or worn-out lane segments. (IV) We show that
our method surpasses supervised learning in detecting lanes under
challenging conditions, like shadow-covered markings, by comparing
CLLD’s performance with that of supervised learning. (V) We demon-
strate how our method can outperform supervised learning for lane
detection in challenging scenarios, such as lane markings concealed by
shadows, by comparing CLLD performance with supervised learning.

2. Related work

2.1. Lane detection

Lane detection is a critical module for autonomous driving. The
safety of autonomous vehicles is greatly affected by the accuracy and
latency of lane detection methods. Lane detection methods are classi-
fied as conventional [15] or based on CNN [1,5,13]. Conventional lane
detection [15] relies on manual features to identify lanes, limiting their
accuracy in different road scenarios. To detect lane segments, Kang and
Jung [16] combines local line extraction with dynamic programming to
enhance the performance of Hough Transforms, which often struggle in
complex scenes. Babu et al. [17] utilizes advanced feature extraction
methods, such as LGBPHS and MTP, and optimizes the classification
process with a BI-GRU, enhanced by Self-Improved Honey Badger
Optimization, to accurately identify lane lines under various conditions,
a technique that parallels our focus on robust lane detection.

CNN technology has enabled new solutions for lane detection, such
as U-Net [18]. However, challenges arise when detecting occluded
lanes due to biases and spatial information capture limitations. Spatial
CNN [1] and Recurrent Feature-Shift Aggregator [5] address these
challenges by using message-passing to propagate spatial information.
Anchor-based [13] lane detection options are also some lane detection
methods that behave lanes as a chain of anchors. 3D lane detection
offers an alternative approach to solving lane detection challenges by
using road curvature patterns and aligning lane markings to these
patterns. Janakiraman et al. [19] propose a novel 3D lane detection
method that utilizes improved feature extraction techniques and opti-
mized BI-GRU classifiers. This paper discusses how CLLD can enhance
the accuracy and robustness of segmentation-based and anchor-based
lane detection.
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2.2. Contrastive learning

2.2.1. Global features
Global feature methods can aid in image classification by comparing

positive and negative samples. Studies such as [20], SimCLR [7], and
MoCo [21] use different techniques to train the network to produce
similar representations for all views of a sample. However, these meth-
ods may not work well for identifying specific parts of an image, as
noted by Xie et al. [6]. To improve the quality of self-supervised
learned feature representation, Li and Ralescu [22] integrates Bregman
divergence into contrastive learning to enhance the learning of distance
features between the latent features in the embedding space.

2.2.2. Local features
Local features are proposed to overcome pixel-level and region-

level classifications. Different levels of local feature methods can be
utilized, such as at the feature-level [8,23], pixel-level [6,24], or region-
level [25]. DenseCL [23] is a method that discriminates at the feature-
level, inspired by MoCo-V2 [21]. PixPro [6] is a method that discrimi-
nates at the pixel-level, inspired by BYOL [26]. The positive samples are
identified by pixels with Euclidean distance smaller than a threshold.
VICRegL [8] is a trade-off of global and local features that aims to
achieve a balance in representation learning. Detecting obscured lanes
can be difficult with local feature CLs as they only extract visible seg-
ments. However, our method, CLLD, is capable of not only extracting
visible parts of lanes but also predicting the existence of obscured lanes
based on their surrounding visible parts.

3. Methodology

CLLD is a self-supervised approach that enhances lane detection.
It focuses on understanding relationships between different image
patches, enabling the detection of occluded or low-visibility lane seg-
ments by analyzing their surroundings. This method effectively im-
proves lane detection accuracy when lane markings are poorly visible.
Utilizing the concept of CLLD, lane detection encoders are pretrained
to reconstruct less visible lane segments by solving Eq. (1).

∗ = argmin


∑

𝑝∈𝑃
𝑐𝑙𝑙𝑑 ( (𝑝), ((𝑝))) (1)

The variable ∗ denotes the optimized weights for the lane de-
tection encoder, and  is the training input. The optimization prob-
lem involves extracting local features by dividing the input  into 𝑃
patches. The contrastive loss (.) is applied to each patch 𝑝 ∈ 𝑃 , which
undergoes two passes through the CNN backbone  . One pass is in
the original shape  (𝑝), and the other pass is in the masked shape
 ((𝑝)). The objective of the optimization problem is to minimize
the summation of loss values for all patches, denoted as ∑

𝑝∈𝑃 (.).
We consider lanes as objects with strong shape priors, adhering to

a consistent pattern, yet occasionally exhibiting invisibility in random
sections. Empirical studies have shown that masking specific areas of
the input image and training the encoder to predict those parts can
be a beneficial method for teaching the lane detection backbone to
predict occluded or missing lane segments. Consequently, we adopt
this technique by masking the input image to generate a second view,
which is then employed by the contrastive learning method. Below, we
provide a comprehensive explanation of the masking that we employed.

In local feature CL, after extracting features, the method wraps
back augmentations to position the features in their original location
on the image. This technique enables a direct comparison between
the extracted local features and their original counterparts. Such a
comparison is essential for learning the variations among features from
different segments of the same image, thereby enhancing the method’s
efficacy in feature analysis and interpretation. When using masking, it
is not possible to warp areas that have been masked, as no features

are extracted from those sections. Our proposal method involves a
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Fig. 2. The CLLD framework.

crucial step to overcome the aforementioned difficulty — enhancing the
extracted feature maps with cross-similarity information. This
module calculates the similarity between each patch of the feature map
from the original image, denoted as  (𝑃 ), and all patches from the
feature map of the masked image, denoted as {∀𝑝 ∈ 𝑃 ∶  ((𝑝))}. It
also compares each patch of the feature map from the masked image,
{ ((𝑝))}, to all patches from the feature map of the original image,
denoted as {∀𝑝 ∈ 𝑃 ∶  (𝑝)}.

Through cross-similarity, each patch  (𝑃 ) has the ability to
interact with all the patches in the cross-view, thereby maintaining the
positional information of the patches. cross-similarity allows
for the use of the local feature CL on masked images. This is done
by sharing information from each patch with all the other patches in
the cross-view, particularly the corresponding patch. In Section 3.3, we
provide a comprehensive explanation of the cross-similarity.

3.1. Contrastive Learning for Lane Detection

Our method (CLLD) employs momentum contrastive learning [6]
(Fig. 2). Given the input image , the masking function masks some
patches with the size 𝜌 × 𝜌 producing a masked view of the input,
denoted as ().

We input  and () into two different encoders. The first en-
coder updates its weights using gradient descent, while the second
one updates its weights using the momentum of the first encoder.
The output of () is a feature map  ()() that may not contain
valid information for the masked areas. To enhance the masked areas
with comparable information, we compute the cross-similarity
of each patch from  (()) and the entire feature map of the input
 (). We perform the inverse operation on each patch within  () and
the entirety of  (()), as discussed above.

3.2. Masking

In this study, similar to masked image modeling approach [9],
we mask random portions of inputs and train the model to predict
masked parts. This approach trains lane detection backbones to predict
hidden objects based on their surroundings an essential application
for lane detection algorithms when dealing with occluded or vanished
lane markings. The random locations are square patches (see Fig. 3)
(with size 𝜌 × 𝜌) of input images. For a given input  ∈ [0, 1]𝐻×𝑊 ×𝐶

and portions to mask  = {[0, 1]𝑖×𝑗 , 𝑤ℎ𝑒𝑟𝑒 𝑖 ⊂ {0,𝐻∕𝑃 } 𝑎𝑛𝑑 𝑗 ⊂
{0,𝑊 ∕𝑃 }}, the masked image is generated using Eq. (2).

() =

{

 (0, 1) if 
 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2)

where () is the masking image. To replace the pixel in a patch, we
select a value from the normal distribution  (0, 1) .
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Fig. 3. Masking input image; The given input with size 𝐻 × 𝑊 is divided into 𝜌 × 𝜌 patches. Each pixel of the masked patch got a random value from a zero-mean normal
distribution  (0, 1).
Fig. 4. The cross-similarity operation.

3.3. Cross-similarity

To uncover the local features of masked patches, we utilize the
similarity between their surrounding features and their correspond-
ing features in the original image by applying cross-similarity
operation (Fig. 4).

Assume that the output obtained from feeding the original input
image 𝐼 is 𝑦 and the output obtained from feeding masked image (𝐼)
is 𝑦′. In order to extract local features, the contrastive loss needs to be
applied to the small patches of 𝑦 and 𝑦′. These patches are denoted by
{𝑦𝑝 𝑎𝑛𝑑 𝑦′𝑝,∀𝑝 ∈ 𝑃 }, where 𝑃 represents all patches within a feature
map. The cross-similarity between the full feature map of the
first view and a patch of the feature map of the second view 𝑦′𝑝 is
calculated through the use of Eq. (3).

𝐶𝑆(𝑦, 𝑦′𝑝)[𝑖, 𝑗] =

𝛼
2
∑

𝑢=− 𝛼
2

𝛼
2
∑

𝑣=− 𝛼
2

𝑦′𝑝[𝑢, 𝑣]𝑦[𝑖 + 𝑢, 𝑗 + 𝑣]

∀𝑖 ∈ [0, ℎ∕∕𝛼] 𝑎𝑛𝑑 ∀𝑗 ∈ [0, 𝑤∕∕𝛼]

(3)

The variable 𝛼 represents the measurement of the sides of each
patch. Additionally, ℎ and 𝑤 denote the height and width of feature
maps, respectively. To generate the complete cross-similarity
between 𝑦 and 𝑦′, we compute the cross-similarity between 𝑦
and every patch of 𝑦′ (∀𝑝 ∈ 𝑦′) and then concatenate them all together
(Eq. (4)).

𝐶𝑆(𝑦, (∀𝑝 ∈ 𝑦′)) =[𝐶𝑆(𝑝0, 𝑦), 𝐶𝑆(𝑝1, 𝑦),… , 𝐶𝑆(𝑝𝑧, 𝑦)] (4)

𝑤ℎ𝑒𝑟𝑒 𝑧 = (𝑤 × ℎ)∕∕𝛼
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In order to calculate the cross-similarity of 𝑦 with 𝑦′, denoted
as 𝐶𝑆(𝑦′, (∀𝑝 ∈ 𝑦)), we perform the same operation as before but with
𝑦 and 𝑦′ swapped.

As shown in Fig. 4, the cross-similarity of each patch 𝑦′𝑝
with the feature map 𝑦 generates a tensor. These tensors are then
concatenated in their respective order. By using this mechanism, one
can not only discover the similarity between each patch from one
feature map and all patches from the other but also retain their location
information. Therefore, the contrastive loss can reflect the patterns
between the location and the similarity value to the neural network.
Furthermore, the contrastive loss between the feature maps of the
original view and the masked portions in the second view is higher
than that of the other sections. Consequently, as the loss value for
the masked sections increases, there is a corresponding increase in
attention toward predicting these areas.

3.4. Loss function

Three key tasks are considered to design loss function.

3.4.1. Consistency loss
The first objective of CLLD is to extract visible segments from the

input. To train the CNN backbone to extract accurate features, we
utilize a 𝑐𝑜𝑛𝑠𝑡 (Eq. (5)), which contrasts the consistency of the feature
maps produced by CNNs for two views (original and masked).

𝑐𝑜𝑛𝑠 = − 1
ℎ ×𝑤

×
ℎ
∑

𝑖=1

𝑤
∑

𝑗=1

𝑦𝑖𝑗 .𝑦′𝑖𝑗
∥ 𝑦𝑖𝑗 ∥2 × ∥ 𝑦′𝑖𝑗 ∥2

(5)

To evaluate their consistency, we compute the cosine similarity
between each pixel on feature map 𝑦 and its corresponding pixel on
feature map 𝑦′. A positive cosine similarity value indicates that the
features are consistent, implying a similar orientation in the feature
space. Conversely, a negative value signifies inconsistency, suggesting
that the features are oriented in opposite directions in the feature
space. Therefore, to ensure a positive loss value for inconsistencies, we
multiply the cosine similarity value by a negative sign. This approach
ensures that a higher loss corresponds to greater inconsistency. Finally,
we compute the average of the cosine similarities across all pixels
in the feature maps. This average represents the overall consistency
between the feature maps, providing a single metric that encapsulates
the similarity of the entire feature space.
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3.4.2. Similarity loss
Another key objective of CLLD approach is to train CNNs to accu-

rately predict features for masked areas. To achieve this objective, we
introduce a similarity loss mechanism 𝑠𝑖𝑚. This mechanism is designed
to quantify the difference between the predicted features of the masked
areas and their actual features, thereby guiding the CNN to make more
accurate predictions.

The similarity loss (Eq. (6)) computes the consistency between two
sets of cross-similarities 𝐶𝑆(𝑦, (∀𝑝 ∈ 𝑦′)) and 𝐶𝑆(𝑦′, (∀𝑝 ∈ 𝑦)).

𝑠𝑖𝑚 = −
𝐶𝑆(𝑦, (∀𝑝 ∈ 𝑦′)) . 𝐶𝑆(𝑦′, (∀𝑝 ∈ 𝑦))

∥ 𝐶𝑆(𝑦, (∀𝑝 ∈ 𝑦′)) ∥2 × ∥ 𝐶𝑆(𝑦′, (∀𝑝 ∈ 𝑦)) ∥2
(6)

𝑠𝑖𝑚 is the cosine similarity between two cross similarities. Differences
in results for 𝐶𝑆(𝑦, (∀𝑝 ∈ 𝑦′)) and 𝐶𝑆(𝑦′, (∀𝑝 ∈ 𝑦)) may arise due to the
presence of masked areas on the feature map 𝑦′. By leveraging cosine
similarity, we can detect variations between different patches (Fig. 4).
This detection enables us to train our model with 𝑆𝑖𝑚, focusing on
predicting the masked areas by detecting sources of inconsistency.

3.4.3. Classification loss
To learn the categorization representation, we employ an instance-

level cosine similarity loss 𝑖𝑛𝑠𝑡 (Eq. (7)).

𝑖𝑛𝑠𝑡 = 2 − 2
�̂� . 𝑦′

∥ �̂� ∥2 × ∥ 𝑦′ ∥2
(7)

here the �̂� and 𝑦′ are normalized vectors of 𝑦 and 𝑦′, respectively. The
oss function we used in this study is the summation of all aforemen-
ioned loss functions (Eq. (8)).

𝑐𝑙𝑙𝑑 = 𝑐𝑜𝑛𝑠 + 𝑠𝑖𝑚 + 𝑖𝑛𝑠𝑡 (8)

. Experimental setup

For a fair comparison, all backbones in our study are pretrained
n unlabeled ImageNet-1K [27]. The backbone is ResNet50. We eval-
ate the performance of CLLD approach on pretraining backbones
or three lane detection algorithms: U-Net [12] (≈28𝑀𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠),
ESA [5](≈25𝑀𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠), and CLRNet [13] (≈25𝑀𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠). All
yperparameters for the lane detection methods remain unchanged in
ur study. We employ the LARS optimizer, configured with a cosine
earning rate schedule. The initial learning rate is set at 1.0. Addition-
lly, we use a batch size of 1024 and a weight decay parameter set
o 1e−5. For the masking process, we set 𝜌 to 14. In the momentum
ncoder, the momentum value starts at 0.99 and increases to 1. We
rain ResNet50 on six Nvidia® A100-40 GB GPUs for 100 epochs. To
tudy the effect of 𝛼, we train ResNet50 with three different 𝛼 values:
, 2, and 3. We mask 30% of the original image to generate the masked
ersion. We fine-tune all lane detection algorithms on two Nvidia® RTX
6000 GPUs.

.1. Benchmarks

We evaluate CLLD on two lane detection benchmarks: CuLane [1]
nd TuSimple [14].

.1.1. CuLane
The CuLane includes 55 h of video data, featuring both highways

nd urban scenarios. CuLane includes nine validation subsets: Normal,
rowd, Night, Noline, Shadow, Arrow, Hlight, and Curve. Lane marking
redictions are represented by 30-pixel wide lines. A prediction is
onsidered a true positive if it has an Intersection over Union (IoU)
reater than 0.5; values lower than 0.5 are classified as false positives.
n lane detection, a false positive refers to the incorrect identification
f a lane where none exists, while a true negative indicates the correct
ecognition of the absence of a lane. The absence of a prediction for

lane that is labeled in the ground truth is categorized as a False
egative (FP) while predicting lanes that do not exist is classified as a
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alse Positive (FP). Predictions categorized as FP and FN are considered
nsuccessful. The common metrics used for benchmarking [1,5,13]
n CuLane are 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃

𝑇𝑃+𝐹𝑃 and 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃+𝐹𝑁 , and 𝐹1 −

𝑒𝑎𝑠𝑢𝑟𝑒 = 2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙 .

4.1.2. TuSimple
The dataset comprises 3626 videos, each with a resolution of

1280 × 720 pixels and an approximate length of 20 s.
These videos are captured from a camera mounted on the wind-

shield of a vehicle driving on highways under various weather and
lighting conditions. The accuracy metric used for benchmarking on
TuSimple is defined as 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝛴𝑐𝑙𝑖𝑝𝐶𝑐𝑙𝑖𝑝

𝛴𝑐𝑙𝑖𝑝𝑆𝑐𝑙𝑖𝑝
. Here, the correctly pre-

dicted points are denoted by 𝐶𝑐𝑙𝑖𝑝, and the total number of lane points
in ground truth is represented by 𝑆𝑐𝑙𝑖𝑝.

5. Results

We specifically chose to evaluate CLLD with U-Net because it is a
common encoder–decoder architecture used in various methods that
treat lane detection as a semantic segmentation problem [28]. Addi-
tionally, we tested our method using RESA [5], which is currently the
SOTA semantic segmentation lane detection and not based on the U-
Net. Such independent validation is crucial to confirm the accuracy
of our model. Finally, we conduct an evaluation of CLLD using CLR-
Net [13], which is recognized as a leading anchor-based method for
lane detection.

5.1. Comparison with prior works

5.1.1. U-Net
The results of the lane detection using U-Net with CLLD pretrain-

ing, along with comparisons with other CL methods, are presented
in Table 1. More comprehensive results are available in Table 7 in
the supplementary material. The results indicate that CLLD with (𝛼 =
3) outperforms all other methods on the TuSimple benchmark. Fur-
thermore, according to most evaluation metrics, all CLLD versions
outperform other methods on CuLane. PixPro is the only method that
offers better precision than CLLD; however, its recall is ≈2% lower
than the average recall achieved by CLLD. Upon comparing CLLD with
PixPro, it is observed that CLLD tends to generate a higher number of
FP, whereas PixPro is more prone to producing FN. This comparison
indicates that CLLD excels in lane extrapolation compared to PixPro,
whereas PixPro demonstrates superior performance in lane interpola-
tion. It has been observed that all CLLD variants outperform VICRegL
with a large margin despite being trained for 200 fewer epochs. This
suggests that VICRegL, known for its trade-off between global and local
features, might not be the most suitable choice for lane detection tasks.
We aim to accurately detect lanes not only under nominal scenarios
but also under more challenging conditions with low visibility, such
as scenarios where lane markings are obscured by shadows. CLLD
suppresses all other CL methods, achieving an improvement of 7%
in such challenging scenarios (As illustrated in Appendix A. Table
7). CLLD markedly enhances lane detection performance in scenarios
where the visibility of extensive lane segments is compromised by
lighting conditions, such as shadows. This improvement is attributed
to the maintenance of long-range dependencies between local features
through the cross-similarity module. Consequently, lanes can be recon-
structed by leveraging the similarity among illusion-invariant features,
including edge and shape features.
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Fig. 5. Qualitative comparison of the results of CLLD with prior SSL methods and supervised learning.
Table 1
Performance of U-Net on CuLane and TuSimple with pretraining by different
contrastive learning methods.

Method # Epoch CuLane TuSimple

Precision Recall F1-measure Accuracy

PixPro [6] 100 73.68 67.15 70.27 95.92
VICRegL [8] 300 67.75 63.43 65.54 93.58
DenseCL [23] 200 63.8 58.4 60.98 96.13
MoCo-V2 [21] 200 63.08 57.74 60.29 96.04

CLLD (𝛼 = 1) 100 71.98 69.2 70.56 95.9
CLLD (𝛼 = 2) 100 70.69 69.36 70.02 95.98
CLLD (𝛼 = 3) 100 71.31 69.59 70.43 96.17

Table 2
Performance of RESA [5] on CuLane and TuSimple with different contrastive
learnings.

Method # Epoch CuLane TuSimple

Precision Recall F1-measure Accuracy

PixPro [6] 100 77.41 73.69 75.51 96.6
VICRegL [8] 300 76.27 69.58 72.77 96.18
DenseCL [23] 200 77.67 73.51 75.53 96.28
MoCo-V2 [21] 200 78.12 73.36 75.66 96.56

CLLD (𝛼 = 1) 100 79.01 72.99 75.88 96.74
CLLD (𝛼 = 2) 100 78 73.45 75.66 96.78
CLLD (𝛼 = 3) 100 78.34 74.29 76.26 96.81

5.1.2. RESA
Table 2 (Appendix Table 8) illustrates the performance of RESA on

CuLane and TuSimple with different contrastive learning methods for
pretraining. With the RESA architecture, all variations of CLLD surpass
the performance of all other methods. CLLD (𝛼 = 1) emerges as the best
precision on the CuLane benchmark. CLLD (𝛼 = 3) also outperforms
other methods on the TuSimple benchmark and, for the most part, on
CuLane, according to various evaluation metrics. Similar to U-Net, the
combination of RESA and CLLD shows a significant improvement (≈4%)
on the shadow subset of CuLane. This highlights the general enhance-
ment in detecting lanes under low visibility conditions. The behavior
of CLLD on RESA can be understood through the same rationale applied
to U-Net, suggesting a reinterpretation of its efficacy in enhancing lane
detection under challenging lighting conditions.

5.1.3. CLRNet
Table 3 (Appendix Table 9) presents the effectiveness of CLLD

on CLRNet. Compared to prior contrastive learning methods, CLLD
achieves over 1% improvement in recall for CuLane dataset. It also
achieves SOTA results on TuSimple accuracy and CuLane’s F1-Measure.
Similar to previous studies, PixPro achieves better Precision on CuLane.
CLRNet is not a semantic segmentation approach. Instead, it detects
lane anchors and connects them to achieve better lane extrapolation.
CLRNet exhibits marginal improvement with the integration of CLLD.
This is attributed to CLRNet’s strategy of refining lane detection at
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Table 3
Performance of CLRNet [13] on CuLane and TuSimple with different pretraining
strategies.

Method # Epoch CuLane TuSimple

Precision Recall F1-measure Accuracy

PixPro [6] 100 89.19 70.39 78.67 93.88
VICRegL [8] 300 87.72 71.15 78.72 89.01
DenseCL [23] 200 88.07 69.67 77.8 85.15
MoCo-V2 [21] 200 88.91 71.02 78.96 93.87

CLLD (𝛼 = 1) 100 88.72 71.33 79.09 90.68
CLLD (𝛼 = 2) 100 87.95 71.44 78.84 93.48
CLLD (𝛼 = 3) 100 88.59 71.73 79.27 94.25

a higher layer; if it detects the majority of lane segments, it can
extrapolate to fill in missing parts. However, if it fails to identify most
of the lane segments, it may disregard the segments it has detected.
While CLLD enhances the likelihood of detecting lane segments within
CLRNet, the refinement of lanes at a higher level means that detecting
discrete lane segments at lower levels may not significantly boost
performance.

5.2. Comparison with supervised learning

Table 4 presents the results of the CLLD pretraining strategy with
supervised pretraining. The best improvement (≈1% in the average
of all CuLane subsets), compared to supervised learning, is in the
RESA with ResNet50 as the backbone. CLLD also achieves a maximum
≈4% increase in CuLane’s low visible subsets, such as the shadow.
CLLD outperforms supervised learning on RESA for all metrics on both
datasets, with the exception of the FP rate on TuSimple. FP is the only
metric for which supervised learning has provided better prediction
outcomes than CLLD at a rate of 0.0343 per prediction.

CLLD performance is equivalent to supervised learning based on
most evaluation metrics on CLRNet (± ≤1%). For the shadow subset
of CuLane, the accuracy of CLRNet was about ≈4% better with CLLD
pretraining than supervised learning. CLLD performance in U-Net is
comparable to supervised learning. It gains over 1% better precision
than supervised learning. CLLD also produces over 300 more FPs than
supervised learning in the cross subset of CuLane.

5.3. Visual demonstration

Fig. 5 illustrates a qualitative comparison of lane prediction pre-
retained on CLLD compared with supervised learning and prior lane
detection methods. The results illustrate CLLD performance, especially
for the most left lane with an occluder. Most other training strategies
detect lanes, but with many false positives, except DenseCL, which
destroys the lane. PixPro also has worse predictions than CLLD, with
significant FP for the occluded part.

Fig. 6 is the interpolated view of the latent layer on RESA for
supervised and self-supervised learning (CLLD). The results show that
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Table 4
Comparison of the performance of state-of-the-art lane detection methods on CuLane and TuSimple in two situations of pretraining with supervised learning and CLLD self-supervised
learning.

Method Pretrain CuLane TuSimple

Overall (%) F1-measure (%) FP

Precision Recall F1 Normal Crowd Night Noline Shadow Arrow Hlight Curve Cross Accuracy FP FN

U-Net [12] Supervised 70.93 69.65 70.28 89.82 67.72 64.95 40.49 68.13 84.48 59.83 67.02 2482 96.24 0.0489 0.0428
CLLD 71.31 69.59 70.43 89.8 68.39 64.65 40.68 68.86 84.5 58.93 66.2 2656 96.17 0.055 0.045

RESA [5] Supervised 77.51 73.15 75.27 92.16 73.16 69.99 47.71 72.97 88.16 68.79 70.65 1503 96.67 0.031 0.0265
CLLD 78.34 74.29 76.26 92.57 74.35 71.21 48.83 76.62 89.14 67.58 72.68 1454 96.81 0.0343 0.0264

CLRNet [13] Supervised 88.21 71.88 79.22 93.1 77.83 74.3 52.69 76.92 89.63 73.16 69.41 1082 93.17 0.0232 0.0748
CLLD 88.59 71.73 79.27 92.94 77.44 74.43 53.3 81.2 89.31 72.46 68.4 1026 94.25 0.214 0.069
Table 5
Ablation: Multi-task contrastive learning. Comparison of the impact of similarity loss
and consistency loss on the lane detection accuracy.
𝑠𝑖𝑚 𝑐𝑜𝑛𝑠 CuLane TuSimple

Precision Recall F1 Accuracy

∗ 76.91 70.82 73.74 95.94
∗ 77.41 73.69 75.51 95.92

∗ ∗ 78.34 74.29 76.26 96.17

Table 6
Ablation: Impact of the masking as the augmentation. Comparison of the accuracy of
CLLD with and without using masking as the augmentation.

Masking CuLane TuSimple

Precision Recall F1 Accuracy

No 72.2 65.77 68.84 95.7
Yes 71.98 69.2 70.56 96.17

supervised learning pays more attention to the texture of the road; how-
ever, CLLD focuses more on lanes’ and objects’ shapes, which is more
important for lane detection. Wu et al. [29] study these differences in
supervised and self-supervised learning behavior. This may be a reason
why self-supervised learning performs better on lane detection.

6. Ablation study

6.1. Similarity loss impact

Table 5 (Appendix Table 10) ablates CLLD performance with a
single similarity loss, a single consistency loss, and the combination of
them together. We did not study the absence of instance loss because it
did not affect the segmentation results and used it for classification.
The accuracy of combining similarity and consistency is remarkably
better than using only one. 𝑠𝑖𝑚 + 𝑐𝑜𝑛𝑠 performed significantly better
results (≈5%) in challenging subsets of CULane dataset such as the
shadow; however, the performance in the normal CuLane subset is not
affected by the loss of similarity. This observation illustrates the effect
of similarity loss on the detection of low visible lanes.

6.2. Impact of masking as the augmentation

Table 6 (Appendix Table 11) examines the effect of the masking
strategy on overall accuracy. CLLD with masking yields a significantly
better recall in CuLane (≈4%); however, it achieves a marginally lower
precision (≈0.2%). It increases the F-measure by an average of ≈2% over
all CuLane subsets. The combination with masking also improves the
accuracy of TuSimple markedly (≈1%).

7. Discussion

CLLD framework exhibits comparable performance in scenarios
where lane delineations remain unaffected by occlusions or fading phe-
nomena. However, it demonstrates a markedly superior performance
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Fig. 6. Low-level features in RESA; The left column is the input image, the middle
column is low-level features in supervised learning, and the right column is low-level
features in CLLD.

in conditions where lane visibility is partially compromised, such as
within the shadowed subsections of the CuLane dataset. This enhanced
efficacy can be attributed to the incorporation of a cross-similarity
module within the encoding process, which facilitates the capture of
long-range dependencies across the visual field. Consequently, this
mechanism affords the model the capability to infer the presence of
lanes even in segments where they have become ostensibly invisible.
It achieves this by leveraging the feature comparisons between visible
lane segments and their occluded counterparts, thereby providing a
probabilistic basis for the accurate prediction of the latter. Such an
approach underscores the pivotal role of cross-similarity in enhancing
the robustness of lane detection algorithms under varying visibility
conditions. Looking forward, we aim to explore the application of CLLD
to Vision Transformers (ViTs) and develop a second version of CLLD
compatible with both CNNs and ViTs. This expansion will address
the evolving challenges in autonomous driving and lane detection
technologies, potentially leading to even more robust lane detection
systems.

8. Conclusion

Our paper presents a novel self-supervised approach, Contrastive
Learning for Lane Detection via cross-similarity (CLLD), designed to
enhance the resilience of lane detection models in adverse conditions.
CLLD is a multi-task CL that addresses the challenge of detecting ob-
scured lane markings caused by factors like poor lighting and weather
by integrating our novel operation cross-similarity to local feature CLs.
CLLD captures long-range dependencies between different lane seg-
ments through the use of a cross-similarity operation. By computing the
similarity between illusion-invariant features such as shape and edges,
cross-similarity can reconstruct lane patterns even in segments with low
visibility. This approach utilizes similarity to enhance lane detection
precision for lanes that are partially occluded or have invisible due to
natural variations.
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Our method (CLLD) demonstrates remarkable improvements over
existing contrastive learning techniques, particularly excelling in sce-
narios with low visibility, such as shadows. In the future, our focus will
be on identifying challenges associated with applying CLLD to Vision
Transformers (ViTs) and developing a second version of CLLD that is
compatible with both CNNs and ViTs.
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