
LLM-Based Recommender Systems for Violation
Resolutions in Continuous Architectural

Conformance
1st Riccardo Rubei

University of L’Aquila
L’Aquila, Italy

riccardo.rubei@univaq.it

2nd Amleto Di Salle
Gran Sasso Science Institute

L’Aquila, Italy
amleto.disalle@gssi.it

3rd Alessio Bucaioni
Mälardalen University

Västerås, Sweden
alessio.bucaioni@mdu.se

Abstract—Software architectures are fundamental to the de-
velopment, evolution, and quality of software-intensive systems.
Architectures rarely exist in isolation, but instead adhere to
overarching structures such as architectural patterns and styles,
frameworks, software product line architectures, and reference
architectures. To fully leverage the benefits of these structures,
conformance between them is essential, enhancing interoperabil-
ity, reducing costs through reusability, mitigating project risks,
and facilitating the adoption of best practices. In our previous
work, we introduced the concept of continuous conformance and
focused on detecting architectural violations using a model-driven
engineering approach.

In this paper, we extend our previous work by proposing a
large language model-based recommender system into the model-
driven tool to suggest resolutions for architectural violations.
Leveraging large language models, we reduce the accidental
complexity of model-driven techniques by combining the reason-
ing capabilities of large language models with the formalization
of architectures as (meta)models. We evaluate the success rate
using two large language models and architectures from the IoT
domain, including one reference architecture and four software
architectures that we manually mutate in 16 faulty architectures.
The results demonstrate the system’s effectiveness in providing
intelligent, context-aware recommendations for restoring archi-
tectural conformance.

Index Terms—Large language models, recommender systems,
model-driven engineering, architectural conformance

I. INTRODUCTION

Software architectures (SAs) are widely recognized as the
backbones of software-intensive systems, playing a vital role
in determining their quality, development, and evolution [1].
SAs are rarely developed nor used in isolation; instead,
they follow overarching structures and principles to guide
their standardization and evolution within specific domains
or organizations [2]. Examples include architectural patterns
and styles, architectural frameworks, software product line

This work has been partially funded by (a) the European Union -
NextGenerationEU under the Italian Ministry of University and Research
(MUR) National Innovation Ecosystem, grant ECS00000041 - VITALITY –
CUP: D13C21000430001, (b) PRIN 2020 program grant n. 2020W3A5FY -
EMELIOT, (c) Italian “PRIN 2022” TReX-SE grant n. 2022LKJWHC,(d)
the MUR (Italy) Department of Excellence 2023 - 2027, (e) the Euro-
pean HORIZON-KDT-JU research project MATISSE “Model-based engi-
neering of Digital Twins for early verification and validation of Industrial
Systems”, HORIZON-KDT-JU-2023-2-RIA, Proposal number: 101140216-
2, KDT232RIA 00017, (f) the Swedish Knowledge Foundation through the
MoDEV project (20200234), and (g) the Sweden’s innovation agency Vinnova
through the project iSecure (202301899)

architectures, and reference architectures (RAs). For software
systems to fully leverage the benefits of these architectural
structures, a degree of conformance between them is nec-
essary. Such conformance enhances interoperability, reduces
costs through re-usability, decreases project risks, improves
communication among stakeholders, and facilitates the adop-
tion of best practices. By aligning architectural structures,
organizations can maximize the effectiveness of their software
systems and ensure their architectures remain both robust and
adaptive to change.

In our previous work, we introduced the concept of con-
tinuous conformance, which measures the optimal alignment
between any two architectural structures at a given time [3].
The continuous conformance concept enables multi-level, in-
cremental, non-blocking checking and restoration tasks. Fur-
thermore, it allows for validating partial architectures without
obstructing the overall design process. In addition, we oper-
ationalized this concept by formalizing SAs as (meta)models
and by developing a Model-Driven Engineering (MDE) tool,
named AssistRA, that supports continuous conformance by
detecting architectural violations [3]. However, our work did
not address the automatic resolution of these detected vi-
olations, leaving this a promising future research direction.
Specifically, we envisioned leveraging Recommender Systems
(RS) to automate and enhance the resolution process.

In this paper, we extend our previous work by proposing a
recommender system into the MDE tool to suggest resolutions
for architectural violations. By building on current trends
in utilizing Large Language Models (LLMs) to reduce the
accidental complexity associated with MDE techniques, we
leverage the reasoning capabilities of LLMs in combination
with the formalization of architectures as (meta)models to de-
liver intelligent, context-aware recommendations for restoring
architectural conformance. Specifically, we propose an LLM-
based recommender system to address architectural violations
and evaluate its preliminary applicability and efficacy using
illustrative examples from the IoT domain, including one RA
and four SAs. Based on the RA and SAs, we manually create
16 faulty SAs, which we use as input for two LLMs: Gemini
1.5 and ChatGPT-4o. Results indicate that the LLM-based rec-
ommender system exhibits promising performance, achieving
at least 60% correct suggestions in certain configurations.

The remainder of this paper is organized as follows. Sec-
tion II provides the background concepts. Section III describes
the proposed LLM-based recommender system. Section IV
presents the experimental results, illustrating the system’s
applicability and efficacy. Section V discusses existing works
related to our approach. Section VI concludes the paper with
final remarks and outlines potential future work.

II. BACKGROUND
Several definitions of RAs have been provided in the last

three decades [2], [4]. All these definitions highlight that a
RA is a template used when specifying a concrete SA. In our
work, we leverage the definition of the well-known Systematic
Mapping Study (SMS) study on Reference Architecture by
Lina Garcés et al. [5]. In particular, the authors define an RA
as an abstraction of software elements, together with the main
responsibilities and interactions of such elements, capturing
the essentials of existing software systems in a domain and
serving as a guide for the architectural design of new software
systems (or versions of them) in the domain. The study also
states that 85% of the identified primary studies adopted an
ad-hoc approach to design the 162 RAs, even though an
architecture language (AL) can define RAs [5].

Different ALs, such as AADL 1, ArchiMate 2, and C4
Model 3, have been proposed over the years. Typically, ALs
support aspects and concerns such as structural, behavioural,
functional, and programmatic. However, they do not allow
defining a RA as a first-class citizen to be used as a building
block during the definition of SA. In other words, a SA
that conforms to a RA can not be specified through these
ALs. Hence, their conformance must be manually verified and
validated by the software architect.

To overcome these challenges, we defined a model-driven
approach named MORE to model RAs [6]. Our approach
automatically checks the conformance of a RA with defined
guidelines and rules, e.g., styles, and of a concrete SA concern-
ing a RA. The approach is binary in that the conformance is
satisfied or not. Recently, we extended the MORE approach by
introducing the continuous concept. In particular, we defined
continuous conformance as a distance function that estimates
the degree to which an SA conforms to a specific RA. The
approach can also be applied to an RA conforming to an
architectural style, thus enabling multi-level, incremental, and
non-blocking conformance checking. We also developed an
assistive modeling tool that implements the distance function,
named AssistRA. The tool helps architects create an SA
aligned with a specific RA or more abstract architectures by
automatically detecting and restoring misalignments.

In the following, we use the defined language in our
assistive modeling tool to describe an RA in the Internet of
Things (IoT) domain, and the FIWARE SA borrowed fromt
the work by Guth et al. studies [7], [8]. Figure 1 shows the
RA from the IoT domain and comprises five layers containing
seven components, where the bottom contains the Sensors and
Actuators components. The IoT RA also employs the Publish-
Subscribe architectural style [9]. The Device intermediates

1http://www.openaadl.org/
2https://www.opengroup.org/archimate-forum/archimate-overview
3https://c4model.com/

between the hardware and the counterpart software, allowing a
driver to access a sensor or actuator. A Gateway is used when
a Device can not be attached to other systems. A Gateway
converts various protocols, communication technologies, and
payload formats. The last layer, before the Application, is the
IoT Integration Middleware (IoTIM). It is a broker for Sensors,
Actuators, Devices, and Applications. It receives data from
a Device, processes data, and sends data to the connected
Applications. A Device can communicate directly with the
IoTIM if it supports a suitable communication technology.

Fig. 1. IoT reference architecture

Listing 1 represents an excerpt of the same RA using our
language defined in [3]. The language is based on Flexmi,
which defines domain-specific languages using a JSON-style
notation [10] and employs the components and connectors
view to represent architectures [2]. In particular, lines 2–4
describe the components Application, IoTIM, and Gateway,
which act as a subscriber, broker, and publisher in the Publish-
Subscribe style, respectively. Lines 5–7 represent two-way
connectors among Application, IoTIM, and Gateway.

1 ArchitecturalModel: {
2 Component: {name: Application, implements:

Subscriber},
3 Component: {name: IoTIM, implement: Broker},
4 Component: {name: Gateway, implements:

Publisher},
5 Connector: {source: Application, target: IoTIM

, twoWay},
6 Connector: {source: Gateway, target: IoTIM,

twoWay },
7 Connector: {source: Gateway, target: Device,

twoWay},
8 }

Listing 1. Internet of Things reference architecture

Listing 2 shows an excerpt of the FIWARE architecture
conforming to the IoT RA.

1 ArchitectureModel: {
2 Component: {name: MyApp, implements:

Application},
3 Component: {name: Data Context Broker,

implements: IoTIM},
4 Component: {name: Device1, implements: [Device

, Sensor, Actuator]},
5 Connector: {source: MyApp, target: Device1,

twoWay}
6 }

Listing 2. FIWARE software architecture

The implements keyword is used to specify a component
in the architecture that implements the related component in
the RA. For example, line 2 expresses the MyApp component
implementing the Application component defined in the RA.

http://www.openaadl.org/
https://www.opengroup.org/archimate-forum/archimate-overview
https://c4model.com/

The SA also contains a violation concerning the RA. In
particular, Device1 is connected to the MyApp component, and
the IoT RA only considers connectors between Application
and IoTIM components (line 5).

Building an SA is often a complex and time-consuming
process. A challenge further intensified when the SA must
conform to an RA [11]. Therefore, automatic support during
the design of an SA by the software architect should be
desirable.

III. PROPOSED APPROACH
Figure 2 illustrates our proposed approach for assisting

architects in resolving inconsistencies SAs. During the archi-
tecting and refinement stages, any violations identified by our
model-driven assistive tool are reported to the architect (1).
The tool’s validation service generates a tuple on the dash-
board that specifies the component responsible for violating a
particular architectural constraint. This tuple, along with the
RA and the SA under development, is used to construct a query
prompt (2). Next, the LLM is queried to address the specific
violation identified (3). The LLM processes the input and
generates a potential resolution, which is then presented to the
architect as a proposed solution (4).

LLMPrompt Generator

Reference
Architecture

Software
Architecture

Violation
Identification

1 2 3

Suggested
 Corrections

4
Violations Prompts

Fig. 2. Architecture of the proposed approach
A. Violation Identification

We base the violation identification on our previously de-
veloped model-driven tool, AssistRA [3], designed to sup-
port architects in defining and evolving architectures. This
tool operationalizes the concept of continuous conformance
to verify the alignment between an RA and an SA under
development. AssistRA’s validation service offers detailed
insights into detected violations, making it a valuable resource
for extracting relevant information. Specifically, we leverage
this capability to classify a subset of possible violations and
identify the actors involved, as detailed below. It is worth
noting that the list of violations provided is not exhaustive
but includes a few representative examples. In general, these
violations depend on several factors, such as the specific style
of the RA and any additional constraints applied and cannot
be applied to a generic SA.

a) Link Violation: RAs explicitly define which com-
ponents (source) can connect to other components (target).
A Link Violation occurs when a connection in the SA is
established between two components not permitted by the RA.

b) Component Omission Violation: This type of violation
arises when a connection is defined without specifying the
target component, leaving it incomplete.

c) Mandatory Component Violation: RAs can include
additional user-defined constraints. For example, certain com-
ponents may be mandatory. This type of violation arises when
a mandatory component in the RA is not defined in the SA.

In addition to the violations above, architectures under
development may simultaneously exhibit combinations of
multiple violations. As an example, and for simplicity, we
consider the conjunction of a Link Violation and a Component
Omission Violation.

d) Link and Component Omission Violation: This type
of violation arises when architectures include an illegal con-
nection alongside a connection where the target component’s
specification is omitted.

B. Prompt Generation
This component is responsible for generating the prompt

used to query the LLM. The core idea behind the prompt
generator is to create a query adaptable to any generic LLM.
To achieve this, the component utilizes the RA, the SA under
development, the violation tuple, and the target LLM. For
this experiment, we define four distinct prompt skeletons
corresponding to each type of violation examined.

a) Link Violation Prompt: The prompt is constructed us-
ing the source component and the incorrect target component,
emphasizing that a direct connection between them is not
allowed. No additional information is provided to the LLM
to ensure a generic and unbiased query. Listing 3 illustrates
an example of a prompt designed to address a Link Violation.

Hi! I’m giving you an example of a Reference
Architecture (RA), and a concrete Software
Architecture (SA) based on the RA. The SA
contains an error, the component "MyApp" cannot
be directly connected to the component "Device1
". Can you solve this violation? Thank you

"Reference Architecture": "ArchitectureModel:
{...}",

"Software Architecture": "ArchitectureModel:
{...}"

Listing 3. Link violation prompt
b) Component Omission Violation: In the case of a

Component Omission Violation, the SA contains a component
that lacks a connection to another component. This violation
occurs when the connector does not specify the target of
the connection. Listing 4 presents an example of a prompt
designed to address this type of violation. For the sake of
conciseness, we omitted the RA and SA definitions from this
and the following example listings.

Hi! I’m giving you an example of a Reference
Architecture (RA), and a concrete Software
Architecture (SA) based on the RA. The SA
contains an error, the component "MyApp" is not
connected to any component. Can you solve this
violation? Thank you

Listing 4. Component omission prompt

c) Mandatory Component Violation: A RA may have the
concept of mandatory component. In the prompt, we explicitly
indicate the component of a SA that fails to implement
any required RA component. Since some components may
have multiple implementation alternatives, we omit details

about these options, delegating the decision-making to the
LLM’s reasoning capabilities. An example of such a prompt
is provided in Listing 5.

Hi! I’m giving you an example of a Reference
Architecture (RA), and a concrete Software
Architecture (SA) based on the RA. The SA
contains an error, the component "MyApp" is not
implementing anything. Can you solve this
violation? Thank you

Listing 5. Mandatory component prompt

d) Link and Component Omission Violation: We define
the prompt by combining the Link Violation and Component
Omission scenarios. In this case, the architecture violates
the RS by including both an inadmissible connection and a
missing connection. The prompt is constructed by integrating
elements from the prompts defined in Listings 3 and 4. An
example of this combined prompt is shown in Listing 6.

Hi! I’m giving you an example of a Reference
Architecture (RA), and a concrete Software
Architecture (SA) based on the RA. The SA
contains an error, the component "MyApp" cannot
be directly connected to the component Device1
and the component "IoT Device Management" is not
connected to any component. Can you solve this
violation? Thank you

Listing 6. Link and component omission prompt

C. Suggested Correction
Once the prompt is received, the LLM generates a response

to fix the architecture with violations. The output consists of
a textual document that includes a new version of the archi-
tecture along with a succinct description of the modifications.
This format offers two key advantages: first, the new archi-
tecture is immediately ready for evaluation by the architect;
second, the textual description provides developers with a
clear understanding of the rationale behind the modifications
and the components affected. Once the architect approves
the suggested changes, the updated architecture is integrated,
allowing the development process to proceed seamlessly. A
concrete example of the produced architecture is presented
in Section IV. It is worth noting that in this exploratory
study, we do not structure the prompts to produce a strictly
predefined output format. Defining a practical output format
and optimizing the presentation of results to the architect are
immediate steps we plan to pursue in future work.

IV. EXPERIMENT

To evaluate the efficacy of the proposed methodology, we
established a three-step evaluation framework. First, a set of
SAs is deliberately mutated to introduce simulated violations.
Second, the architectural recommendations generated by the
LLMs are manually compared with the original, unmutated
architectures. Finally, the effectiveness of the approach is
quantitatively assessed by calculating the proportion of LLM-
generated suggestions that are deemed acceptable.

A. Architecture Mutation
In our experiment, we consider a set of four SAs and one

RA taken from the work by Guth et al. [7]. In particular, we
utilize the IoT RA, AWS IoT, Azure IoT Hub, FIWARE, and

SmartThings, as they provide well-defined components and
connection specifications. Based on the violation identified
by AssistRA, we define a set of mutations applied to the
original SA to test the model’s fixing capability. We describe
the specific mutations as follows:

a) Link Violation: We mutate the SA by substituting the
target of a connection with a non-admissible component.

b) Component Omission Violation: We mutate the SA by
removing the target of a connection.

c) Mandatory Component Violation: We remove the im-
plementation definition from the architecture.

d) Link and Component Violation: We simultaneously
employ the link and component omission violation mutation
to the same SA. Therefore, we evaluate two suggestions for
this violation.

Considering the above mutations for each SA, we reached
a test-bed of 16 total SAs.

B. Evaluation
To evaluate the capability of the proposed approach in

resolving inconsistencies, we assess the correctness of the
solutions provided by the LLM by manually comparing the
fixed architecture with the original one. Since the architecture
under development can be completed in multiple ways—for
instance, a connection may be valid with different target
components—we define three distinct degrees of correctness
to guide our evaluation.

a) Correct Match: A correct match occurs when the
LLM suggests an admissible solution for the architecture. For
instance, if a component can be legally connected to multiple
components, suggesting any one of those valid components
constitutes a correct match.

b) Wrong Match: A wrong match is identified when the
LLM’s proposed solution introduces another violation. For
example, suggesting a connection to a component that violates
the rules defined by the RA.

c) Undesired Action: This category includes cases where
the LLM suggests unnecessary or inappropriate actions. Ex-
amples include adding, removing, or modifying elements
unrelated to the violation, or offering trivial solutions, such
as simply removing the problematic element.

We use these three degrees of correctness to calculate the
success rate as the proportion of cases where the model
produces a Correct Match out of all evaluated scenarios. This
metric provides a quantitative measure of the model’s ability
to assist architects effectively while minimizing undesired and
wrong actions.

C. Example of Suggested Correction
Listing 7 reports an admissible solution to a link violation

as described in Section II.
"The rest of the architecture is omitted"
Connector: {source: MyApp, target: IoT Broker,
twoWay},
Connector: {source: IoT Broker, target: Device1,
twoWay}

Listing 7. Suggested Correction

In this particular example, we omit the rest of the architecture
for the sake of conciseness. The suggested solution is a

modification of the Connector MyApp - Device1. The LLM
propose to first link MyApp to the IoT Broker and then
connect the IoT Broker to Device1. We can notice that both the
connections are legal, as described in the RA in Listing 1. The
LLMs suggested a copy of the mutated architecture with some
modifications. Generally, modifications pertain only to the
violations. In rare cases, the LLMs modified the architecture
by applying and reporting further optimization that was not
explicitly required. In our experiment, we explicitly handled
these undesired actions, as Section IV explains. The corrected
architecture is then proposed to the architect who can accept
the suggestions and continue the development. At this stage
of the study, we do not develop this presentation layer as it
requires to be embedded in the tool.

D. Results
Table I reports the results of the experiments. We describe

the amount of Correct Matches, Undesired Actions, and Wrong
Matches calculated on the answer produced by the LLMs.
The results reported for a particular architecture represent the
cumulative success rate for that LLMs across all the mutations.
For example, to fix the violations for the architecture AWS,
Gemini got five correct matches. This means that Gemini
correctly solved the Link Violation, Component Omission,
Mandatory Component and Link and Component Omission.
We observed a number of positive results. Notably, both
Gemini and ChatGPT achieved at least 60% correct matches,
indicating that the models are capable of providing valuable
suggestions in most cases. To ensure a fair evaluation, we did
not set or adjust the models’ temperature values during testing.
Finally, we observed a generally favorable trend regarding
incorrect matches, with only one instance where a model
proposed more than one erroneous fix. Summing up the correct
matches for Gemini and ChatGpt, we obtain a total of 90% and
70% of success rate, respectively. Gemini never suggested an
undesired action, whereas ChatGpt proposed a total of 5 over
16. Finally, concerning the wrong recommendations, Gemini
suggested two wrong fixes over 16, while ChatGpt performed
slightly worse, suggesting 25% of erroneous corrections.

TABLE I
SUMMARY OF THE EXPERIMENTAL RESULTS

Correct Match Undesired Action Wrong Match
SAs Gemini ChatGpt Gemini ChatGpt Gemini ChatGpt
AWS 5 (100%) 4 (80%) 0 0 0 1 (20%)
Azure 4 (80%) 3 (60%) 0 3 (60%) 1 (20%) 1 (20%)

FIWARE 5 (100%) 3 (60%) 0 0 0 2 (40%)
Smart
Things 4 (80%) 4 (80%) 0 2 (40%) 1 (20%) 1 (20%)

Table II shows a detailed description of the different fixes
proposed by the model, focusing on the particular violation.

Each row reports the status of the suggestions for the entire
set of violations. A ✓ indicates a positive evaluation of the
model’s fix, a ✗ represents an incorrect suggestion, and a
✽ denotes cases involving undesired actions. This perspective
provides a clearer understanding of the LLMs’ capability to
address specific violations. For the Link Violation, Gemini
made one error, while ChatGPT produced no mistakes but gen-
erated undesired actions on two occasions. Interestingly, both
Gemini and ChatGPT failed to provide the correct answer for

the Azure architecture. For the Component Omission violation,
both Gemini and ChatGPT suggested correct fixes. However,
ChatGPT proposed additional modifications for Azure and
SmartThings, resulting in undesired actions. A similar trend
is observed for the Mandatory Component violation, where
Gemini achieved 100% correct matches, whereas ChatGPT
produced two incorrect recommendations across two architec-
tures. Finally, for the Link and Component Omission violation,
Gemini successfully solved seven out of eight violations,
while ChatGPT produced two incorrect and two undesired
suggestions.

E. Discussion
Gemini tends to be less creative in its approach and avoids

performing undesired actions. In contrast, ChatGPT exhibits
greater independence, occasionally performing optimization
operations not explicitly requested in the prompt. For instance,
in two cases, ChatGPT introduced superfluous modifications
to the solution. Both models found Component Omission
violations relatively straightforward to resolve, correctly iden-
tifying the target component in broken connections. However,
selecting the most appropriate target among multiple valid
options ultimately depends on the architect’s decision, high-
lighting an area for future exploration. Interestingly, the mod-
els performed worse when addressing violations in the Azure
and SmartThings architectures, suggesting limitations in their
ability to comprehend more complex or unique architectural
styles. For example, in Azure, Gemini failed to address a
Link Violation, while ChatGPT proposed an undesired solution
by simply removing the problematic connection. Similarly, in
SmartThings, ChatGPT introduced unnecessary optimizations,
and both models provided incorrect solutions for Component
violations in Link and Component Omission scenarios. In
contrast, the AWS and FIWARE architectures yielded bet-
ter results. On AWS, ChatGPT produced a single incorrect
solution, while FIWARE exhibited similar outcomes, with
ChatGPT generating two erroneous recommendations. These
observations underscore the variability in model performance
across different architectures and the need for further refine-
ments to improve consistency and understanding of unique
architectural constraints.

V. RELATED WORK

In the following, we provide some related work employing
LLM to assist software architects. To the best of our knowl-
edge, our approach is the first to tackle the specific task of
recommending fixes during the architecture development. Pace
et al. [12] proposed an LLM-based tool to help architects
create an Architecture Decision Record (ADR). In particular,
the authors exploited the zero-shot and Retrieval Augmented
Generation (RAG) prompting techniques. Similarly, Dhar et
al. [13] developed a tool to assist architects in defining ADR.
In this work, the authors used GPT and T5 models to generate
the suggestions. Furthermore, they explored the effects of
different prompting techniques (zero and one-shot) and fine-
tuning. Automated Test Architecture Generation (ATAG) [14]
is an LLM-based tool conceived to generate test architecture
and test function names. The authors define a fine-tuned
version of the BERT model to produce function names. In

TABLE II
DETAIL OF THE VIOLATIONS

Link Violation Component Omission Mandatory Component Link & Component Omission
Architecture Gemini ChatGpt Gemini ChatGpt Gemini ChatGpt Gemini ChatGpt
AWS ✓ ✓ ✓ ✓ ✓ ✗ ✓ and ✓ ✓ and ✓

Azure ✗ ✽ ✓ ✓ + ✽ ✓ ✓ ✓ and ✓ ✽ and ✓

FIWARE ✓ ✓ ✓ ✓ ✓ ✗ ✓ and ✓ ✓ and ✗

Smart Things ✓ ✓ + ✽ ✓ ✓ + ✽ ✓ ✓ ✓ and ✗ ✓ + ✽ and ✗

✓: Correct Match ✗: Wrong Match ✽: Undesired Actions

[15], the authors explore the feasibility of applying LLM in
the design and development of ensemble-based architecture.
In particular, the authors tested ChatGPT 4’s capability to
understand the definition of ensemble architecture. In the
context of model-driven engineering, Kebaili et al. [16] em-
ployed an approach similar to ours to help modellers ease
the effects of model evolution. In particular, the authors
studied the effects of prompting ChatGpt 3.5 to co-evolve
metamodels. The evaluation of 5320 prompts demonstrates the
effectiveness of ChatGpt on this task. Although conceptually
similar to our approach, the context is different. We are not
dealing with complexities bound to co-evolution. In a similar
direction, Zhang et al. [17] propose an LLM-based tool to
translate code changes from one programming language to
another. Selfevolve [18] is a self-augmented code generation
framework based on LLMs, particularly ChatGpt 3.5.

VI. CONCLUSION AND FUTURE WORK

This study investigates the potential of leveraging LLMs
to assist software architects during the architectural process,
with resolving potential violations. The evaluation involved
two of the most widely used LLMs: Google’s Gemini and
ChatGPT. The results highlight the capability of these models
to understand architectural structures and propose accurate
resolutions for identified violations. In particular, Gemini and
ChatGPT achieved 100% and 80% correct recommendations,
respectively, for certain configurations.

For future work, we plan to extend our approach in sev-
eral directions. First, we aim to fully integrate the violation
resolution mechanism into the AssistRA tool to enable real-
time recommendations. Additionally, we intend to explore
and support advanced prompting techniques, such as Few-
Shot learning and Retrieval-Augmented Generation (RAG).
The ability of RAG to utilize multiple relevant examples offers
significant potential for providing highly focused and context-
aware recommendations.

REFERENCES

[1] P. Kruchten, H. Obbink, and J. Stafford, “The past, present, and future
for software architecture,” IEEE software, vol. 23, no. 2, pp. 22–30,
2006.

[2] L. J. Bass, P. C. Clements, and R. Kazman, Software architecture
in practice fourth edition, ser. SEI series in software engineering.
Addison-Wesley-Longman, 2021.

[3] A. Bucaioni, A. D. Salle, L. Iovino, L. Mariani, and P. Pelliccione,
“Continuous conformance of software architectures,” in 21st IEEE
International Conference on Software Architecture, ICSA. IEEE, 2024,
pp. 112–122.

[4] E. Y. Nakagawa, M. Guessi, J. C. Maldonado, D. Feitosa, and
F. Oquendo, “Consolidating a process for the design, representation,
and evaluation of reference architectures,” in IEEE/IFIP Conference on
Software Architecture, WICSA, 2014, pp. 143–152.

[5] L. Garcés, S. Martı́nez-Fernández, L. Oliveira, P. Valle, C. Ayala,
X. Franch, and E. Y. Nakagawa, “Three decades of software reference
architectures: A systematic mapping study,” Journal of Systems and
Software, vol. 179, p. 111004, 2021.

[6] A. Bucaioni, A. Di Salle, L. Iovino, I. Malavolta, and P. Pelliccione,
“Reference architectures modelling and compliance checking,” Softw.
Syst. Model., vol. 22, no. 3, pp. 891–917, 2023.

[7] J. Guth, U. Breitenbücher, M. Falkenthal, P. Fremantle, O. Kopp,
F. Leymann, and L. Reinfurt, “A detailed analysis of iot platform
architectures: Concepts, similarities, and differences,” in Internet of
Everything - Technology, Communications and Computing. Springer,
2018, pp. 81–101.

[8] J. Guth, U. Breitenbücher, M. Falkenthal, F. Leymann, and L. Reinfurt,
“Comparison of iot platform architectures: A field study based on
a reference architecture,” in Cloudification of the Internet of Things.
IEEE, 2016, pp. 1–6.

[9] N. Fotiou, D. Trossen, and G. C. Polyzos, “Illustrating a publish-
subscribe internet architecture,” Telecommunication Systems, vol. 51, pp.
233–245, 2012.

[10] D. Kolovos and A. de la Vega, “Flexmi: a generic and modular textual
syntax for domain-specific modelling,” Software and Systems Modeling,
vol. 22, no. 4, pp. 1197–1215, 2023.

[11] S. Angelov, P. W. P. J. Grefen, and D. Greefhorst, “A framework for
analysis and design of software reference architectures,” Inf. Softw.
Technol., vol. 54, no. 4, pp. 417–431, 2012. [Online]. Available:
https://doi.org/10.1016/j.infsof.2011.11.009

[12] J. A. D. Pace, A. Tommasel, and R. Capilla, “Helping novice architects
to make quality design decisions using an llm-based assistant,” in
Software Architecture - 18th European Conference, ECSA, vol. 14889.
Springer, 2024, pp. 324–332.

[13] R. Dhar, K. Vaidhyanathan, and V. Varma, “Can llms generate architec-
tural design decisions? - an exploratory empirical study,” in 21st IEEE
International Conference on Software Architecture, ICSA. IEEE, 2024,
pp. 79–89.

[14] G. Wang, J. Wu, H. Yang, Q. Sun, and T. Yue, “Test architecture genera-
tion by leveraging BERT and control and data flows,” in Engineering of
Complex Computer Systems - 28th International Conference, ICECCS,
vol. 14784. Springer, 2024, pp. 125–145.

[15] M. Töpfer, D. Khalyeyev, T. Bures, P. Hnetynka, and F. Plásil, “How
well do llms understand deeco ensemble-based component architec-
tures,” in 12th International Symposium, ISoLA 2024, vol. 15220.
Springer, 2024, pp. 208–223.

[16] Z. K. Kebaili, D. E. Khelladi, M. Acher, and O. Barais, “An empirical
study on leveraging llms for metamodels and code co-evolution,” J.
Object Technol., vol. 23, no. 3, pp. 1–14, 2024.

[17] J. Zhang, P. Nie, J. J. Li, and M. Gligoric, “Multilingual code co-
evolution using large language models,” in 31st ACM Joint European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ESEC/FSE, 2023, pp. 695–707.

[18] S. Jiang, Y. Wang, and Y. Wang, “Selfevolve: A code evolution
framework via large language models,” CoRR, vol. abs/2306.02907,
2023. [Online]. Available: https://doi.org/10.48550/arXiv.2306.02907

https://doi.org/10.1016/j.infsof.2011.11.009
https://doi.org/10.48550/arXiv.2306.02907

	Introduction
	Background
	Proposed Approach
	Violation Identification
	Prompt Generation
	Suggested Correction

	Experiment
	Architecture Mutation
	Evaluation
	Example of Suggested Correction
	Results
	Discussion

	Related work
	Conclusion and future work
	References

