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Abstract—Software architecture relies heavily on modeling
techniques to describe, analyze, and verify system designs. The
Unified Modeling Language is widely recognized as the de-
facto standard for modeling various types of systems. However,
UML’s lack of formal semantics poses challenges for performing
formal verification, a critical step in ensuring the correctness of
architectural models. Rebeca, an actor-based modeling language,
is designed to enable formal verification of concurrent reactive
systems. Previous efforts to bridge UML and Rebeca through
model transformations have required combining multiple UML
diagrams and a deep understanding of Rebeca, limiting practical
applicability.

In this paper, we explore the potential of leveraging large
language models, specifically GPT-4, to automate the trans-
formation of UML state diagrams into Rebeca models. Using
a few-shot learning approach, we investigated the feasibility
of this translation process. Initial results revealed that UML
state diagrams alone were insufficient for generating accurate
Rebeca models. To address this limitation, we augmented the
diagrams with metadata, enabling GPT-4 to produce models that
required only minor corrections to be executable in Rebeca’s
model-checking tool, Afra. Our findings demonstrate that LLMs
hold promise in facilitating model transformations for software
architecture, particularly for translating UML state diagrams
into Rebeca models for formal verification. While not yet fully
automated, this approach significantly reduces the effort required
for transformation, paving the way for further research into the
integration of LLMs into model-driven engineering practices.

Index Terms—Model transformation, Large language model
(LLM), Formal methods, Rebeca modeling language, Unified
Modeling Language (UML) state diagram.

I. INTRODUCTION

The interplay between Software Architecture (SA) and
Model-Driven Engineering (MDE) has gained increasing at-
tention due to its potential to address the challenges of design-
ing and verifying complex software systems. Formal verifica-
tion of architectural models plays a crucial role in ensuring that
systems behave as intended by verifying correctness and other
critical properties during the design phase. However, despite
its importance, the complexity of modeling and verification
processes often limits their adoption in industrial settings.

The Unified Modeling Language (UML), a general-purpose
modeling language widely regarded as the de-facto standard
for system modeling [1], provides versatile diagram types

suited for various applications. Yet, UML lacks formal se-
mantics, and its diagrams are often under-specified for tasks
requiring formal verification [2]. This gap creates an oppor-
tunity to explore how model-driven techniques can enhance
the usability and precision of UML for formal architectural
verification.

One promising avenue lies in the integration of general-
purpose modeling languages like UML with domain-specific
languages for formal verification. An example is Rebeca (Re-
active Objects Language)1, an actor-based modeling language
designed for the formal verification of concurrent reactive
systems [3]. Previous research has explored translating UML
diagrams into Rebeca models using extensions like ReUML
[2]. However, these approaches typically rely on multiple
UML diagrams as input, imposing significant complexity and
requiring substantial domain-specific expertise.

The emergence of technologies such as Large Language
Models (LLMs) offers a potential paradigm shift in addressing
these challenges. Generative artificial intelligence, exemplified
by tools like GPT-4 [4], presents opportunities to simplify
model transformation processes by reducing the need for
extensive input diagrams or specialized knowledge. Inspired
by low-code and no-code approaches, this work investigates
how LLMs can enable more user-friendly and efficient trans-
formations of architectural models, aligning with the broader
MDE goals of automation and usability.

In this paper, we present our experience using ChatGPT (the
interface fror GPT models) to transform UML state diagrams
into Rebeca models. Our long-term vision is to create a
semi-automatic transformation process that supports architects,
including those in industrial contexts, by ensuring ease of
use while maintaining accuracy through model-checker-in-the-
loop verification. To achieve this, we developed an iterative
three-phase method:

• Dataset Preparation: We curated a dataset of UML state
diagrams paired with corresponding Rebeca models, con-
structed manually from existing Rebeca models. This
dataset serves as a ground truth for evaluation.

1https://rebeca-lang.org
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Fig. 1. UML State Diagram of a Door

• Transformation with LLMs: Using ChatGPT-4, we ex-
plored both zero-shot and few-shot learning strategies to
translate UML state diagrams into Rebeca models. Meta-
data enhancements to UML diagrams were introduced to
improve the inference of critical architectural details such
as initialization and state transitions.

• Evaluation: We evaluated the generated Rebeca models
using Rebeca’s model-checking tool, Afra, and compared
them with the ground truth.

Our results indicate that LLMs hold promise in facilitating the
transformation of architectural models but are not yet mature
enough for fully automated translations. Supplementary infor-
mation and metadata remain essential for achieving accurate
results. The main contributions of this work are as follows:

• A semi-automatic procedure for transforming UML state
diagrams into Rebeca models.

• A curated dataset of UML state diagrams paired with Re-
beca models to support replication and further research.

• An evaluation of the effectiveness of GPT-42 in perform-
ing model transformations, highlighting its strengths and
limitations.

• Insights into the potential of LLMs to support MDE
techniques in industrial settings, with recommendations
for future improvements.

We provide a public replication package containing all the
artifacts used in this work to enable independent replication
and validation of our results3

II. BACKGROUND

In this section, we provide the fundamental knowledge
needed for the rest of the paper.

A. UML

UML is a general-purpose modeling language for a wide
range of software systems. UML models provide visual ab-
stractions of the system, which help identify flaws in the
early stages of software development. UML diagrams can be
categorized into structural and behavioral diagrams. Structural
diagrams, such as class and object diagrams, represent the
static structure of a system by showing its components and
their relationships. Behavioral diagrams, including sequence
diagrams and state diagrams, depict the dynamic behavior
and interactions between system components [1]. This paper
focuses on UML state diagrams. State diagrams model the
conditions a system or object is in at different points in time.

2We use the terms ChatGPT-4 and GPT-4 interchangeably throughout the
paper.

3Replication package:
https://github.com/gnowin/UML-To-Rebecca-Dataset

UML state diagrams include various components, but for
simplicity, our translations only involve the following compo-
nents: states, initial states, transitions, transition triggers, and
transition effects. We kept the number of UML components
to a minimum to avoid unnecessary complexity. Note that
the translations in this work use state diagrams augmented
with some metadata, which we will describe in Section V.
Figure 1 shows an example of a standard UML state diagram,
representing the states of a door that cannot be opened when in
the ”Locked” state and cannot be locked when in the ”Open”
state. To use state diagrams as input for ChatGPT-4, the input
needs to be text-based. To this end, we used PlantUML, an
open-source modeling tool 4 that supports both textual and
graphical syntax. Listing1. shows the state diagram of Figure 1
using PlantUML’s textual syntax.

B. Rebeca

Rebeca is an actor-based language designed for modeling
and formal verification of concurrent reactive systems [3],
[5]. Rebeca features a Java-like syntax and includes reactive
objects known as rebecs. Rebecs are concurrently executing
objects and are the fundamental components of Rebeca mod-
els 5. In Rebeca, computations occur through asynchronous
messages between rebecs. Rebecs can only receive messages
from other rebecs if they are defined as knownrebecs in the
class definition of the sending rebec (reactiveclass). When a
rebec sends a message to another rebec, it is received in its
message queue. In a pure actor model, the queue size would be
unbounded, but for model checking purposes, a limit must be
set. Messages in Rebeca are analogous to method calls; when
a message is dequeued, the corresponding message server
(msgsrv) executes its code

The foundation of Rebeca is called Core Rebeca with
constructs for modeling concurrent systems. However, several
extensions exist for specific purposes. Timed Rebeca is intro-
duced for real-time systems and includes the following timing
primitives: delay, to model the passage of time during execu-
tion; after, to delay the arrival time of a sent message; and
deadline, indicating that the related message must be served
within a specified time frame [6].Among other extensions,
which are outside the scope of this paper, we can mention

4https://plantuml.com
5Since Rebecca is a modeling language with a Java-like syntax, through-

out this paper, we may use the two words Rebecca model and Rebecca code
interchangeably.

1 @startuml
2 hide empty description
3 state Open
4 state Closed
5 state Locked
6 Open -> Closed : Close
7 Closed -> Locked : Lock
8 Locked -> Closed : Unlock
9 Closed -> Open : Open

10 @enduml

Listing 1: An example of a UML state diagram specified in
PlantUML

https://github.com/gnowin/UML-To-Rebecca-Dataset


Hybrid Rebeca [7] for cyber-physical systems and PTRebeca
[8] for probabilistic timed systems analysis.

Afra is an Integrated Development Environment (IDE) de-
signed to incorporate Java artifacts from projects associated
with Rebeca6. The tool offers model development, model-
checking capabilities, property specification, and visualization
of counterexamples.

C. ChatGPT

Large Language Models (LLMs) are generative mathe-
matical models that can generate and comprehend human-
based text [9]. One prominent example is Chat Generative
Pre-Trained Transformer, or ChatGPT 7, which functions as
a virtual assistant primarily used for text generation and
natural language understanding. On March 14, 2023, OpenAI
introduced a newer model, GPT-4 8. This upgraded version of
GPT provides users with advanced features and capabilities,
including the ability to generate images and engage in chats
using images and voice.

Designing and optimizing inputs to generative models is
known as prompt engineering [10]. The goal of prompt en-
gineering is to structure inputs so that AI models can better
interpret and understand the desired tasks 9. Prompts can be
provided in various formats, but in our case, we use text
prompts that include both instructions for the LLM and code
examples of translations.

Zero-shot learning attempts to solve tasks without any prior
training examples of that specific task [11]. For an LLM
like GPT, zero-shot learning involves giving a prompt that
describes what you want it to generate without providing
examples of how to do it. Few-shot learning, on the other hand,
is a machine learning technique that aims to train models with
a small amount of training data [11]. While GPT performs
well on general tasks, it can struggle with specific tasks [12].
Acquiring a large and suitable dataset for training can be
resource-intensive. Few-shot learning minimizes the effort and
cost needed by training LLMs on smaller datasets, allowing for
more flexible and adaptable machine learning systems. Given
the limited number of examples, the dataset for our experiment
is small. Therefore, utilizing the few-shot learning technique
for GPT-4 is essential.

III. RELATED WORK

In this section, we present and discuss related works to
highlight their results, limitations, and how they contributed
to our research. Due to the widespread use of UML, many
attempts at formalizing it have been made. Most of these
efforts employed systematic solutions, focusing primarily on
other UML diagrams, such as class diagrams and sequence
diagrams, rather than on state diagrams (e.g., [13], [14]). For
formalizing UML state diagrams, a recent survey [15] provides

6https://rebeca-lang.org/alltools/Afra
7https://openai.com/
8https://openai.com/index/gpt-4-research/
9https://github.blog/2023-07-17-prompt-engineering-guide-generative-ai-

llms/

insight into the approaches that attempt to either translate state
diagrams into a modeling language with formal semantics or
into an intermediate language that can be converted into the
input language of model checkers such as Spin and Uppal.
This survey offers a comprehensive comparison based on the
feature set of UML state diagrams. None of the approaches
surveyed support all feature sets, a few support timing aspects,
some have tool support, but most are for outdated versions of
UML, highlighting the lack of a comprehensive, up-to-date
approach.

There are works that attempt to translate UML to Rebeca
models. Sirjani and Alavizadeh proposed a method for veri-
fying reactive systems using the Rebeca modeling language
[16]. Their approach introduced a UML profile to represent
distributed systems with reactive objects and asynchronous
communication, and a systematic method for generating Re-
beca code from UML models. In 2007, the UML profile was
extended for large systems and subsystem communication,
resulting in the ReUML tool [2]. Our research also investigates
translating UML to Rebeca, but focuses specifically on UML
state diagrams using ChatGPT-4.

Djukanovic researched and proposed a conceptual mapping
of UML to Rebeca, providing corresponding UML concepts
for most elements in the Rebeca language [17]. Although
the mapping aimed to facilitate the creation of an automated
translation tool, Djukanovic did not implement one. Our work
focuses on translating UML state diagrams to Rebeca models,
while Djukanovic’s work primarily addresses UML sequence,
class, and object diagrams. Despite the different focuses,
Djukanovic’s mapping has been a valuable resource, offering
useful insights into translations between UML and Rebeca.

Another relevant piece of work was published by Bucaioni
et al., investigating the potential of ChatGPT to replace human
programmers using a dataset of 240 programming problems in
Java and C++ from LeetCode [18]. The results showed that
ChatGPT performed well on easy and medium problems but
struggled with harder ones, leading to the conclusion that it
cannot fully replace human programmers at present. This study
provides valuable insights into ChatGPT’s capabilities as a
programming tool, though its performance on more complex
Rebeca examples remains uncertain.

IV. RESEARCH PROCESS

In this section, we describe the research process imple-
mented in this work that consists of three phases. During
phase one, dataset creation, we collected a dataset compris-
ing UML state diagrams paired with corresponding Rebeca
models. Phase two, experimentation, involved conducting the
experiment, generating Rebeca models from UML state di-
agrams using ChatGPT-4 with a few-shot strategy. In phase
three, analysis, we analyzed the Rebeca models generated
by ChatGPT-4. All the process artifacts are available in a
public replication package to enable independent replication
and validation of our results 3.



Rebeca Example Type Reference
Dining Philosophers Core Rebeca Homepage10

Producer Consumer Core Rebeca Homepage
LCR Leader Election Core Rebeca Homepage

Sender Receiver Core Rebeca Homepage
Ticket Service Timed Handbook [19]

Train Door Controller Timed Paper [20]
Train-Bridge Controller Core Rebeca Homepage

TABLE I
AN OVERVIEW OF THE REBECA EXAMPLES CHOSEN FOR THE DATASET

A. Dataset creation

To prepare our dataset, we needed pairs of UML state
diagrams and Rebeca models as ground truth. Since such a
dataset did not exist, we created it by starting with existing
Rebeca models and manually generating corresponding UML
diagrams. We selected Rebeca examples from research papers
and the Rebeca website and verify them in Afra. Some models
had minor syntax errors, deadlock or queue overflow, as they
were created with an older version of Rebeca or intended to
indicate an error. We fixed the errors before proceeding with
the translation process. Then, we manually translated Rebeca
models into UML state diagrams to obtain the ground truth.
Since there was no established translation procedure from
Rebeca modes to UML state diagrams, we developed our
own approach. To ensure feasibility, we also created a con-
ceptual mapping of UML state diagrams to Rebeca, detailed
in Section V. During these processes, we realized that UML
state diagrams alone were insufficient to derive correct Rebeca
models. To address this, we extended UML state diagrams with
metadata, which enabled the generation of Rebeca models. We
discuss medatada in Section V. Our dataset contains seven
Rebeca examples (core and timed Rebeca) with corresponding
translations of UML state diagrams.

Table I provides an overview of the dataset, listing the
name of the example of the Rebeca models, the Rebeca type
(extension), and the reference to the Rebeca example. We have
detailed one of the examples in Section V.

B. Experimentation

In this phase, we conducted the experiment to translate
UML state diagrams into Rebeca models using few-shot
learning with ChatGPT-4. When interacting with ChatGPT-
4, to keep the history clean, we disabled the ”improve the
model for everyone” option to ensure that ChatGPT-4 could
not learn from previous attempts. UML state diagrams from
PlantUML were prompted into the chat session with the
intention of ChatGPT-4 generating a corresponding Rebeca
model in response. The output from ChatGPT-4 was then
analyzed. Our approach for the analysis phase is detailed in
Section IV-C. Each prompt and generated output response
from ChatGPT-4 is documented in our GitHub repository.
Listing 2 provides a sample of how the prompts are structured.

In the few-shot learning prompt, we provide multiple Rebeca
examples along with their corresponding UML state diagrams.
This is done until the last input and output section, where only
the input PlantUML is given, and the output remains empty.

10https://rebeca-lang.org/Rebeca

• Lines 1-5 of Listing 2: we start with instructions that
include both UML state diagrams and their corresponding
Rebeca models. This helps ChatGPT-4 learn the structure
and pattern of the translation.

• Multiple pairs of UML state diagrams and Rebeca models
are provided in a few-shot learning approach. Each pair
helps reinforce the pattern and logic of translation for
ChatGPT-4.

• Lines 7-11 of Listing 2: The final instructions consist only
of a UML state diagram in PlantUML format. ChatGPT-4
is expected to generate the corresponding Rebeca model
based on the patterns learned from the previous examples.

C. Analysis

After conducting the experiment, we performed a com-
parative analysis on the generated Rebeca models. For the
analysis we consider the following steps: i) Compilation check
and error handling: first, we check the compilability of the
generated code in Afra; in cases where there are compilation
errors, we fix them; ii) Model verification: if the model
compiles successfully, we then perform model checking to
verify it; and iii) Comparison with ground truth: we compared
the differences between the generated Rebeca code and the
original code in the dataset (ground truth), in both cases of
successful and unsuccessful compilation. For the comparison,
in addition to an overall evaluation based on Rebeca concepts,
we also perform a line-by-line comparison and a weighted
analysis to provide a quantitative measure for evaluating the
translation process. The results and their analysis are provided
in Section VI. Note that the models may be syntactically
different yet semantically equivalent.

V. MAPPING UML STATE DIAGRAMS TO REBECA MODELS

One key task in our process involved manually translating
Rebeca models into UML state diagrams to create a compre-
hensive dataset. Our translations were inspired by the concep-
tual mapping of UML to Rebeca provided by Djukanovic [17]
and the work of Sirjani et al. [2] on their tool for translating
a modified version of UML to Rebeca code. However, they
used different diagrams in their translations, so we developed
our own translation process specifically for state diagrams.
During the translation process, we realized that UML state
diagrams alone were insufficient to produce accurate Rebeca
models, and that we needed to add additional data to the

1 Could you translate this PlantUML diagram to Rebeca
(Reactive Objects Language) code?↪→

2 Input:
3 {PlantUML diagram}
4 Output:
5 {Corresponding Rebeca code}
6 ...
7 Could you translate this PlantUML diagram to Rebeca

(Reactive Objects Language) code?↪→
8 Input:
9 {PlantUML diagram}

10 Output:
11 {EMPTY}

Listing 2: Example of a Prompt for Few-Shot Learning



UML state diagrams to obtain certain behaviors, such as
message servers, messages, and timing primitives. We refer to
this added information as metadata. Below is the translation
procedure defined by the set of rules (R) we developed:

• R1. Each reactive class in the Rebeca code corresponds
to one UML state diagram. Regardless of the number of
reactive objects (rebecs) initiated in the main section of
Rebeca, there is only one UML state diagram for that
reactive class.

• R2. Each state in the UML state diagram corresponds to
a possible combination of values of the state variables
(statevars) that affect the state, i.e., state variables used
in conditionals.

– The state entered from the initial state is defined by
the values the state variables (statevars) are set to in
the constructor.

• R3. Message servers (msgsrv) of a reactive class are
translated into transition triggers in the corresponding
UML state diagrams. A message server can act as a
transition trigger for more than one transition.

• R4. The transition effects use metadata in the transla-
tions. The transition effect is represented as metadata
encapsulated in braces. Different kinds of metadata in
the transition are listed and separated, all written in a
syntax similar to Rebeca code. The metadata consists of
the following:

– Conditional statements in the Rebeca code that do
not relate to state variables (statevars) present in
the UML states are stated at the beginning of the
metadata. For example, a conditional about which
rebec is the sender of the message.

– Message calls to known rebecs’ message servers are
part of transition effects.

– The transition effect from the initial state corre-
sponds to the messages sent in the constructor.

– Timing primitives are also translated into the tran-
sition effect. The delay and after primitives are
added in the same order as in the Rebeca code. The
deadline primitive was not considered in our current
translation.

By applying the above procedure iteratively, we defined a
conceptual mapping (Table II) of UML state diagrams to
Rebeca models. This mapping is based on state diagram com-
ponents, Rebeca concepts, and insights gained from iteratively
refining our translation process to prepare the dataset. Each
state diagram corresponds to one reactive class. For example,
if we have three state diagrams, we define three corresponding
reactive classes in the Rebeca model. Each state contains a
subset of state variables. For instance, an actor’s id may not
be present in the state diagram, while it is represented as a
state variable in the corresponding Rebeca model. The initial
pseudo state is used to initiate the behavior of the system in
the constructor. Since rebecs use messages for communication,
their states change with messages. Thus, transitions are labeled
with the names of message servers, and what could happen

1 reactiveclass Node(8){
2 knownrebecs {
3 Node rightNode;
4 }
5 statevars {
6 boolean isLeader;
7 int myNumber;
8 int currentLeader;
9 }

10 Node(byte n) {
11 myNumber = n;
12 currentLeader = n;
13 isLeader = false;
14 self.send();
15 }
16 msgsrv ImLeader() {
17 self.ImLeader();
18 }
19 msgsrv send() {
20 rightNode.receive(currentLeader);
21 }
22 msgsrv receive(int n) {
23 if (n == myNumber) {
24 isLeader = true;
25 self.ImLeader();
26 }
27 else {
28 if (n > currentLeader) {
29 currentLeader = n;
30 self.send();
31 }
32 }
33 }
34 }
35 main {
36 Node node0(node2):(4);
37 Node node1(node0):(20);
38 Node node2(node1):(10);
39 }

Listing 3: Rebeca Code of LCR Leader Election Example

upon receiving a message is the transition effect. To keep the
state diagrams simple, we do not use choice pseudo-state, state
action; and final state is equivalent to a deadlock in Rebeca.

To exemplify the mapping, we provide the file contents
of the LCR Leader Election example. LCR Leader Election
problem can be described as follows: within a ring network
of nodes, each node initially assumes itself as the leader
and communicates with its neighbor nodes to determine the
actual leader. The node with the greatest ID should be the
leader. Nodes exchange messages with their IDs, and if a node
receives an ID greater than its current leader ID, it updates the
leader’s ID and notifies its neighbors. If a node receives an ID
equal to its own, it is set as the leader. This process continues
iteratively until only one node, with the greatest ID, remains
the leader. The code for this example is shown in Listing 3.
In the main section, three nodes are instantiated with IDs 4,
20, and 10. Each node has two states: leader or not leader by
setting the variable isLeader. The code consists of one reactive
class (reactiveclass) called ”Node,” which has a queue size of
8.
One property can state that eventually, node1 will be the
leader, while neither node0 nor node2 will be the leader. Since
node1’s ID is greater than those of the other two nodes, the
property is satisfied. When creating the UML state diagram,
we considered the state variable (statevars) isLeader as the
label for the states within the node, as it changes the states



UML State Diagram Concepts Corresponding Rebeca Concept
Events Messages received in the message servers (msgsrv).
States A combination of some of the state variables (statevars).
Initial Pseudostate In itself it could represent a reactive object (rebec) before initiated. However, the transition from

Pseudostate to the state it is connected to can contain the messages sent in the constructor.
Final State A Rebeca model that goes through formal verification should not terminate to a final state. A final state

can be considered as a deadlock in the Rebeca model.
Compound/Composite States Substates not applicable for simple translations.
Choice Pseudo-State and Guards Can be used for conditions in Rebeca.
Transition When message reaches message servers (msgsrv) and state variable (statevars) changes.
Self Transition Message server (msgsrv) reached and no statevars (statevars) changed.
Transition Trigger Message servers (msgsrv).
Transition Effect The execution of what is defined in the message server (msgsrv) body.
State Action Could abstractly define what happens when states are reached and exited.

TABLE II
CONCEPTUAL MAPPING BETWEEN UML STATE DIAGRAM AND REBECA

of the node. The send(), receive(), and Imleader() message
servers (msgsrv) are considered labels for the transitions.
Listing 4 contains the code for the PlantUML file, and Figure 2
is a visualization of the UML state diagram. All samples in the
dataset include these parts. The transition from the initial state
to N A uses self.send() as metadata, initiating communications
in the constructor of Node. The data in the transition triggers
and effects is considered metadata. In the N A state, there
are two self-loops based on the value of the currentLeader
variable and an outgoing transition to N B if the number
equals myNumber. The N B state indicates that the node is
the leader.

1 @startuml
2 hide empty description
3 state Node{
4 state N_A : !isLeader
5 state N_B : isLeader
6

7 [*] -> N_A : {self.send()}
8 N_A -> N_A: recieve(int n) \n {n > currentLeader \n

currentLeader = n \n self.send()}↪→
9 N_A -> N_A : send() \n

{rightNode.recieve(currentLeader)}↪→
10 N_A --> N_B : recieve(int n) \n {n == myNumber \n

self.ImLeader()}↪→
11 N_B -> N_B : self.ImLeader() \n {self.ImLeader()}
12 }
13 @enduml

Listing 4: PlantUML File of LCR Leader Election

Fig. 2. UML State Diagram of LCR Leader Election

VI. GENERATING REBECA CODE FROM UML STATE
DIAGRAMS WITH CHATGPT

We conducted the experiment with two different settings. In
the first setting, we prompted ChatGPT-4 with two examples
of UML state diagrams transformed into Rebeca models, as
shown in Listing 2. In the second setting, we increased the
number of examples in the prompt to five to explore how a
larger training set would affect the results. Additionally, in the
second setting, we asked ChatGPT-4 to translate two UML
state diagrams in a single prompt. Once the Rebeca model
was generated, we first compiled it in Afra to check for any
compilation errors. If the model compiled successfully, we
proceeded with model checking. Following successful compi-
lation and model checking, we compared the generated Rebeca
model with the original model from the dataset to identify any
differences. If the generated model did not compile initially,
we compared it with the original Rebeca model, fixed the
errors, and then performed model checking to verify the
corrected generated models.

First, we used the Dining Philosophers and Train Bridge
Controller as our training examples in the prompt and asked
ChatGPT-4 to generate the Rebeca model for the UML state
diagram of the LCR Leader Election. The result of this
iteration was that the generated code was not functional as
it contained some errors. In the generated code for LCR
Leader Election example, three lines of code needed fixing.
Additionally, the instantiation of the rebecs in the main sec-
tion did not conform to Rebecca’s syntax. Some of the if
statements are done slightly differently but essentially achieve
the same result. A detailed explanation are provided in our
replication package3. Then, in another setting we expanded
the training set to include the following five examples: Train
Door Controller, Dining Philosophers, LCR Leader Election,
Train Bridge Controller, and Consumer Producer. Additionally,
we asked ChatGPT-4 to generate the Rebeca models for the
Sender Receiver and Ticket Service examples in the same
prompt. Detailed results of these attempts can be found in our
replication package3. None of the generated Rebeca models
were successfully compiled in Afra. While the Rebeca model
for the Ticket Service had only a few minor syntactic errors,
the Rebeca model for the Sender Receiver example contained
concepts that did not exist in Rebeca, which ChatGPT-4 added
erroneously. In both cases, aside from these errors, the queue



size and overall code were acceptable, as the code worked
after fixing these issues.

The common findings from the analysis of the generated
models are as follows:

• The correct number of message servers (msgsrv) is
present in the code, with names similar to those in the
original code.

• ChatGPT-4 successfully initializes the correct number of
rebecs in the code with accurate names.

• ChatGPT-4 added environment variables in the generated
code, even though they were not necessary. This inclusion
might be explained by the presence of environment
variables in only one training example, which are not
represented in our UML state diagrams.

• Since queue size is not specified in the UML state
diagrams, ChatGPT-4 guesses this attribute, resulting in
discrepancies with the target code.

• ChatGPT-4 demonstrates flaws in handling non-
deterministic values, possibly because none of the
training examples included non-deterministic concepts
from Rebeca.

• There are flaws in recreating the ”main” section of the
code. Given that the code and concepts from the ”main”
section are not represented in the UML state diagrams, it
was expected that this section would contain errors.

According to the results, most errors, particularly in the main
section, stem from a lack of understanding of the correct syn-
tactical structures. For example, in the case of message queues,
the initial attempts by ChatGPT considered a low number,
which could potentially cause queue overflow. However, after
increasing the training examples to five, the numbers became
acceptable. In some aspects, the results deteriorated, as the
final attempts introduced new concepts from the training set,
such as environment variables, that were not present in the
original models (although these additions did not necessarily
cause errors). It is also worth noting that ChatGPT-4 made
some improvements, such as condensing four lines into one
for flipping a value, and removing a ’knownrebec’ that was
never used in a reactive class, demonstrating ChatGPT’s grasp
of the concept of ’knownrebecs’.

In addition to the overall evaluation based on Rebeca
concepts, we also performed a line-by-line comparison to
provide a quantitative measure11. This includes analyzing the
number of lines that required changes and the parts of the code
that were improved. Although a line-by-line comparison can
be challenging due to potential differences in code formatting
that do not affect functionality, we employed a straightforward
strategy to intuitively assess the results. This approach involves
distinguishing the types of differences that may exist between
the original Rebeca model and the generated Rebeca code for
each line of code:

• Correct (Cr): LoC that are accurate and do not require
any modifications.

11Note that we do not consider curly brackets as a line of code (LoC).

1 env boolean networkReliability = true; //-> Added
(0)↪→

2 reactiveclass Messenger(5) {
3 knownrebecs { ... }
4 statevars { ... }
5 Messenger() {
6 hasSucceeded = false; //-> Added (0)
7 ... }
8 msgsrv sendMsg() {
9 //-> NotExist(-2) if

(hasSucceeded == true) {↪→
10 //-> NotInPlace(-1.5) if

(sendBit == true){ sendBit =
false; }

↪→
↪→

11 //-> else {
sendBit = true; }}↪→

12 medium.pass(sendBit); }
13 msgsrv receive(boolean status) {
14 hasSucceeded = status;
15 sendBit = !sendBit; //->

Improved(+1)↪→
16 self.sendMsg();}
17 }
18 reactiveclass Receiver(2) {
19 knownrebecs {
20 //-> Improved(+1) Removing an unused known

reference, i.e., Medium medium;↪→
21 Messenger messenger; }
22 statevars { ... }
23 Receiver() { ... }
24 msgsrv receiveMsg(boolean msgBit) { ... }
25 }
26 reactiveclass Medium(3) {
27 knownrebecs { ... }
28 statevars { ... }
29 Medium() { ... }
30 msgsrv pass(boolean msgBit) {
31 passMessage = (Math.random() > 0.5) ? true :

networkReliability; //-> Incorrect(-1)
passMessage = ?(true,false)

↪→
↪→

32 ... }
33 }
34 main {
35 Medium medium():(); //-> Incorrect (-1) Medium

medium(receiver, messenger):();↪→
36 Messenger messenger(medium):();
37 Receiver receiver(messenger):(); //-> Incorrect

(-1) Receiver receiver (medium,
messenger):();

↪→
↪→

38 medium.setKnownRebecs(receiver, messenger); //->
Added (-1)↪→

39 }

Listing 5: ChatGPT-4 Generated Rebeca model for the
Sender Receiver Example

• Incorrect (Incr): LoC that are syntactically incorrect but
located correctly within the code structure.

• Added (Ad): LoC added by ChatGPT that may impact
functionality or could be neutral (e.g., setting a default
value for a state variable to false in the constructor).

• Improved (Imp): LoC that represent enhancements over
the original version.

• Not In Place (NInP): LoC that are correct but misplaced
within the code structure.

• Not Exist (NE): Missing LoC, such as the use of ”?” for
representing non-determinism in Rebeca.

In Listing 5, we depict the generated code for the Sender
Receiver example, highlighting the differences from the orig-
inal Rebeca model and indicating the types of discrepancies.
We selected this example as it contains a diverse range of
errors, making it particularly illustrative for our analysis.



Example LoC Cr (+1) Incr (-1) Ad (0/-1) Imp
(+1)

NInP (-
1.5)

NE(-2) %Cr %WSucess

Sender
Receive

48 39 3 2/1 2 1 1 85 69

Ticket Service 31 24 3 4/0 0 0 0 77 67
TABLE III

QUANTITATIVE ANALYSIS FOR CHATGPT GENERATED MODELS

The quantitative results, based on line-by-line differences, are
presented in Table III.

For the Sender Receiver example, ChatGPT-4 generated 39
correct lines out of 48, achieving an 85% success rate. The
Ticket Service shows a success rate of 77%. However, a more
nuanced analysis might benefit from a weighted approach.
Consider the following simple weighting mechanism: assign
+1 for each Correct line, -1 for each Incorrect line, 0 or -1 for
Added lines depending on their impact, +1 for Improved lines,
-1.5 for Not In Place, and -2 for Not Exist. Using this method,
the weighted success rates for the generated Sender Receiver
and Ticket Service codes are 69% and 67%, respectively. The
last two columns of Table III show the percentage of correct
lines of code and the weighted success rate for each example.

VII. DISCUSSION

In this work, we shared our experience in generating Rebeca
models from UML state diagrams using ChatGPT-4 and few-
shot learning. To prepare the dataset including Rebeca models
and their corresponding UML state diagrams, we introduced a
mapping from UML state diagrams to Rebeca models. Several
challenges emerged during the translation process, providing
insight that we can not represent all that is captured in a
Rebeca model using only UML state diagrams. This led us
to augment the state diagrams with metadata to enable a more
accurate translation. Examples of concepts in Rebeca that lack
equivalent counterparts in UML state diagrams include the
main function and its contents, environment variables, state
variables in message servers, timing primitives, constructors
that builds the initial behavior of the model, and message calls
to other rebecs. We included a subset of the missing elements
in state diagrams as metadata that we believe ChatGPT cannot
infer and, have higher priority for describing the behavior of
the system. This subset includes message calls to other rebecs,
timing primitives, initialization messages in the constructor,
and certain conditional statements.

The Rebeca models generated through few-shot learning
could not compile in Afra, as they either contained syntax
errors or non-existing concepts in Rebeca. According to the
results, most of the errors stem from a lack of understanding
of how they should be written syntactically. A potential
future research direction could investigate the necessary and
sufficient metadata required to generate correct and efficient
Rebeca models from UML diagrams using LLMs. Increasing
the training examples to five led to improvements, such as
acceptable message queue values. However, some outcomes
were less favorable, as the final models incorporated new
concepts from the training set, like additional environment
variables, which did not necessarily result in errors. It is

noteworthy that ChatGPT-4 introduced other enhancements,
such as providing one line instead of four for flipping a value,
or removing an unused knownrebec from a reactive class
that underscore ChatGPT’s improved grasp of concepts like
knownrebecs.

The creation of our dataset poses several validity threats.
Firstly, our dataset comprises only a few examples. Although
few-shot learning is designed for small datasets, the limited
number of examples might still be too small to achieve optimal
results. Additionally, including both Core and Timed Rebeca
models raises the concern that ChatGPT-4 might not fully
differentiate between them. Another issue is dataset bias due to
the addition of metadata for translation. Furthermore, the lack
of transparency in how ChatGPT-4 learns from history and
interactions introduces an external validity threat; although we
disabled learning from our chat history, it can still learn from
other online sources. Lastly, ChatGPT-4’s non-deterministic
behavior may lead to varying results from the same input,
affecting result reproducibility.

VIII. CONCLUSIONS AND FUTURE WORK

Formal verification is crucial for ensuring systems operate
as intended during design, but its complexity limits indus-
trial application. Although UML is the standard for system
modeling, it lacks the formal semantics needed for verifi-
cation. Integrating UML with verification-specific languages
like Rebeca could bridge this gap. We are seeking a model
transformation approach that requires minimal knowledge and
effort. In this work, we shared our experience using ChatGPT-
4 to generate Rebeca models from UML state diagrams,
revealing that UML alone does not suffice for accurate trans-
lations. Our enhancements with metadata improved model
accuracy. According to the results, most errors, particularly
in the main section, arise from a lack of understanding of
the correct syntactical structures. For the Sender Receiver
example, ChatGPT-4 generated 39 correct lines out of 48,
achieving an 85% success rate. The Ticket Service example
displayed a slightly lower success rate of 77%.

We conclude that using few-shot learning with ChatGPT-
4 holds potential for translating UML state diagrams into
Rebeca models. However, we believe that incorporating more
examples and Retrieval-Augmented Generation (RAG) tech-
niques alongside LLMs for tuning can enhance the transla-
tion process. Other potential future research directions could
include exploring the essential metadata needed to generate
accurate and efficient Rebeca models from UML diagrams
using LLMs, providing the syntax of Rebeca along with a
brief description of each example, and fine-tuning LLMs for
our translation purposes. The results of this research such as



conceptual mappings and identifying key minimal elements
and representations can be leveraged in other model transfor-
mations, especially those targeting actor-based languages and
formal verification.
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