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Abstract—The integration of large language models into
software systems is transforming capabilities such as natural
language understanding, decision-making, and autonomous task
execution. However, the absence of a commonly accepted software
reference architecture hinders systematic reasoning about their
design and quality attributes. This gap makes it challenging
to address critical concerns like privacy, security, modularity,
and interoperability, which are increasingly important as these
systems grow in complexity and societal impact. In this paper,
we describe our emerging results for a preliminary functional
reference architecture as a conceptual framework to address
these challenges and guide the design, evaluation, and evolution
of large language model-integrated systems. We identify key
architectural concerns for these systems, informed by current
research and practice. We then evaluate how the architecture
addresses these concerns and validate its applicability using
three open-source large language model-integrated systems in
computer vision, text processing, and coding

Index Terms—Software reference architecture, functional ref-
erence architecture, LLMs

I. INTRODUCTION

The integration of large language models (LLMs) into
software systems is transforming the software landscape, en-
abling capabilities like natural language understanding and
autonomous task execution [3]]. LLMs are driving innovation
across domains such as customer service, healthcare, and
education [7], [17]. However, serving pre-trained or fine-
tuned models to end-users introduces complexities, including
modularity and reuse [26]], quality attribute trade-offs [23]], and
challenges like bias, fairness, regulatory compliance [10], and
ethical use. Software architecture plays a key role in shaping
system quality [5]]. Reference architectures (RAs) provide
standardized guidance for design, reuse, and evolution [11,
[12]]. Well-known RAs, such as AUTOSAR and the NIST
Big Data Framework, have reduced costs, improved interop-
erability, and promoted best practices [12]. More recently, the
digital twin domain has highlighted their value for emerging
fields [[12]]. Despite the rapid adoption of LLM-integrated
systems designed to serve inference capabilities to end-users,
no documented RAs exist to address their design and quality
attributes. This gap leaves stakeholders without systematic
guidance to tackle critical concerns, hindering design reuse
and scalability. As these systems grow in complexity and
societal impact, the need for a guiding framework becomes
increasingly urgent.

In this paper, we present our emerging results for a prelimi-
nary functional reference architecture to address the challenges
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of LLM-integrated systems. We identify and analyze key
architectural concerns for systems serving pre-trained or fine-
tuned models for inference tasks, then propose a preliminary
functional software RA [6], [[12]. Our work is grounded in
a review of software architecture literature for LLMs and
our experience in LLM research and applications [20], [27].
Finally, we evaluate the proposed architecture against the
identified concerns and validate its applicability through three
open-source LLM-integrated systems in computer vision, text
processing, and coding.

The remainder of this paper is organized as follows. Sec-
tion [II| presents the architectural concerns for LLM-integrated
systems. Section details the proposed reference architec-
ture. Section validates the architecture against the identi-
fied concerns and analyses three open-source LLM-integrated
systems. Finally, Section [V] concludes with a discussion and
outlines directions for future research.

II. ARCHITECTURAL CONCERNS

This section presents the architectural concerns for LLM-
integrated systems, identified through a targeted literature
review and enriched by established architectural principles and
extensive experience in LLM research and applications [20],
[27]].

We searched IEEE Xplore, ACM Digital Library, and Sco-
pus [16] using a concise query string applied to titles and
abstracts: “software architecture” AND (“LLM*” OR ’large
language model*”). The search yielded 38 peer-reviewed pub-
lications, refined to 26 after removing duplicates and irrelevant
entries. Applying inclusion criteria focused on peer-reviewed
studies addressing LLLM software architectures [4]], the set was
narrowed to two studies. To mitigate biases [13]], backward
and forward snowballing [24]] identified one additional study,
resulting in three primary studies [14], [18[, [19] [ﬂ These
studies were analysed and further enriched with insights from
architectural principles and practical experience, leading to the
concerns summarized in Table |lIl It is important to note that
we do not claim these to be the only or exhaustive architectural
concerns for such systems.

LLM integration requires exposing model capabilities as
reusable services to avoid monolithic embedding, enabling
modularity, scalability, and dynamic updates. For instance,
OpenAI’'s GPT services leverage RESTful APIs for modu-
lar access. Data handling and performance are critical for
managing structured and unstructured data efficiently while
minimizing latency and maintaining reliability. Optimized

IThe interested reader can refer to the automatic search and selection
process detailed in 8]



TABLE I
ARCHITECTURAL CONCERNS

Concern [ Description |
LLM integra- | Incorporating LLMs into software systems involves exposing
tion their capabilities as reusable services.

Data handling LLM:s require efficient data pipelines and handling of structured
and unstructured data.

User Interfaces should provide seamless access while abstracting com-
interaction plexity.

Performance Minimizing latency during inference while maintaining accuracy.
Scalability Handle increasing loads (e.g., concurrent queries, larger datasets).
Security Protecting against threats like unauthorized access, malicious

prompts, and data breaches.
Adherence to data privacy regulations (e.g., GDPR, EU Al Act).

Privacy  and
compliance
Modularity
Customizability

Breaking down LLMs functionalities into reusable components.
Customizing LLMs for domain-specific tasks through prompt
engineering or retrieval-based methods.

Ensuring seamless integration of LLMs with existing tools,
databases, and APIs.

Addressing biases to ensure equitable and ethical usage.

Interoperability

Fairness

architectures using caching, parallelization, and hardware ac-
celeration, as demonstrated by HuggingFace’s Transformers
library [25]], ensure low-latency inference and efficient re-
source utilization. Scalability addresses the challenges of large
model sizes and high concurrent query volumes. Solutions like
OpenAl's GPT-4 [3|] APIs use distributed clusters and hori-
zontal scaling to manage millions of daily requests, ensuring
robust performance under load. User interaction focuses on
seamless, intuitive interfaces that abstract LLM complexity
while providing mechanisms for feedback and control over
probabilistic outputs. Microsoft’s GitHub Copilot exemplifies
this through its integration with IDEs, enhancing usability
and developer productivity. Security and privacy are essential
to safeguard against threats such as unauthorized access,
malicious prompts, and data breaches. Measures like input
validation, encryption, and secure deployment pipelines are
critical, with OWASP highlighting risks like prompt injection.
Federated learning, as used by Google on Android devices,
ensures compliance with privacy regulations like GDPR by
minimizing data exposure. Modularity simplifies updates and
enhances scalability by breaking LLM functionalities into
reusable components. AWS Sagemaker exemplifies this with
modular deployments of preprocessing and inference com-
ponents, enabling flexible system maintenance and scaling.
Customizability supports domain-specific adaptations without
disrupting core architecture through methods like prompt
engineering and fine-tuning. OpenAI’s GPT fine-tuning API
allows tailoring models for use cases such as customer support
and legal text generation. Interoperability ensures seamless
integration with existing tools, databases, and APIs, avoiding
adoption barriers. Salesforce’s Einstein GPT demonstrates
this by using adapters to interact smoothly with CRMs and
workflows. Fairness focuses on mitigating biases to ensure
equitable and ethical usage. Google’s Al ethics team addresses
this through bias detection and mitigation strategies during
model training, promoting fairness and inclusivity.

III. PROPOSED SOFTWARE REFERENCE ARCHITECTURE

In this section, we present the preliminary functional soft-
ware reference architecture (RA) for LLM-integrated systems.
Following Garces et al. [|12f], preliminary indicates that the RA
synthesizes insights from existing systems while proposing

generalized principles for future design. Based on Behere
and Torngren [6], functional emphasizes a black-box view
of the system, detailing entities and interactions. This aligns
with the functional view in ISO/IEC/IEEE 42010:2022, which
standardizes the architectural description of software-intensive
systems [[15]].
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Fig. 1. Preliminary functional software RA for LLMs-integrated Systems

Figure [I] shows the RA, organized into four layers: Pre-
sentation, Application logic, LLM integration, and Data man-
agement, represented by dotted black lines. Each layer con-
tains functional components (grey boxes) and optional sub-
components (white boxes), representing example functional-
ities with ellipses indicating possible extensions. Two side-
cars—Monitoring and Guardrail—span multiple layers. Con-
nections are shown with directional arrows, and overlapping
connections are marked by black-bordered white circles for
clarity. Each component operates as an independent service to
enable modular updates and scaling of LLM functionalities.

The Presentation layer facilitates user interaction and visu-
alization, acting as the entry point for external systems and
users. It includes a UI component for interfaces like web
apps, mobile applications, and chatbots, such as ChatGPT’s
web interface. The Connector bridges LLMs with external
services, supporting real-time streams (e.g., WebSocket) and
third-party integrations, such as Slack’s integration with Chat-
GPT for task management. The Middleware handles request
validation, transformation, and logging, maintaining conver-
sational context similar to OpenAI’s Session Management
Layer. Communication within this layer typically uses secured
HTTP/HTTPS or GraphQL, while event-driven middleware
ensures responsive interactions. The Application logic layer
manages task and data flow within the system. Its core com-
ponent, the Orchestrator, dynamically determines workflows
based on user inputs, such as summarization or translation.
For example, Jasper AI’s Content Workflow demonstrates this
functionality. The Orchestrator supports asynchronous, event-
driven workflows to ensure efficient execution and scalability.



The LLM integration layer is the system’s core, handling
input and output processing. The Pre-processing component
formats and enriches inputs with tasks like tokenization,
prompt engineering, and multi-modal integration, as seen in
Google’s Vertex Al Pipelines. The central inference relies on
the Pre-trained LLM and Task-specific adapters for fine-tuned,
domain-specific responses, such as ChatGPT’s adapters for
FAQs or personalized support. The Post-processing component
refines outputs (e.g., formatting, translation) for user-friendly
delivery, exemplified by DALL-E’s Caption Formatter, which
converts image outputs into natural language descriptions.
Components communicate via RESTful APIs, gRPC for low
latency, or shared caching mechanisms. The Data management
layer ensures efficient data handling. Model and adapter
checkpoints store pre-trained models and fine-tuned adapters
for seamless updates. A vector database enables retrieval-
augmented generation (RAG) for knowledge-grounded out-
puts, improving accuracy, as seen in Pinecone’s integration
with Notion Al. The Interaction memory component maintains
context across sessions. Long-term memory stores persistent
user data (e.g., profiles, preferences, and error history), while
short-term memory retains session-specific chat context, as
exemplified by ChatGPT’s Memory Feature. Integration com-
ponents connect with external APIs, knowledge bases, and
tools, ensuring system interoperability. The Monitoring sidecar
spans all layers, collecting metrics like latency, throughput,
and system health, along with user feedback. For example,
Azure OpenAI’s Metrics Dashboard monitors inference la-
tency, token usage, and error rates to identify bottlenecks and
improve performance. The Guardrail sidecar enforces security
and compliance across layers, validating user inputs and en-
suring adherence to regulations like GDPR and the EU Al Act.
For instance, Microsoft Copilot’s Compliance Checks prevent
outputs containing confidential or inappropriate content.

Intra-component communication ensures seamless interac-
tion across all layers. The Presentation layer communicates
with the Application logic layer via secured HTTP/REST or
GraphQL calls, returning responses in JSON. The Application
logic layer connects to the LLM integration layer through
synchronous (REST/GraphQL) and asynchronous (e.g., Rab-
bitMQ, Kafka) methods for real-time tasks and batch process-
ing. The LLM integration layer exposes APIs through REST
or gRPC, with outputs serialized as JSON or Protocol Buffers
(Protobuf) for high performance. The Data management layer
provides data to the LLM integration layer via REST APIs or
database queries, storing embeddings, interaction histories, and
structured data for context-aware operations. The Monitoring
sidecar collects metrics asynchronously using message brokers
like Kafka and aggregates them into a central system. Alerts
and anomalies are communicated back to the Application logic
layer via REST APIs or notification services. The Guardrail
sidecar validates inputs inline at the Presentation layer and
enforces security through synchronous REST APIs or policy
hooks.

IV. VALIDATING THE PROPOSED REFERENCE
ARCHITECTURE

This section evaluates how the proposed RA addresses the
identified concerns and validates its applicability through three

open-source LLM-integrated systems in computer vision, text
processing, and coding.

A. Proposed reference architecture Vs. architectural concerns

Table demonstrates how the proposed reference archi-
tecture (RA) addresses key architectural concerns through a
modular, layered design with cross-layer components.

TABLE II
PROPOSED REFERENCE ARCHITECTURE VS. ARCHITECTURAL CONCERNS

[ Concern
LLM integration

[ How the concern is satisfied |

The LLM integration layer encapsulates LLM functionalities
as modular services, accessible via APIs for easy integration
and independent updates.

Data pre-processors ensure efficient formatting and batching;
adapters integrate external data sources; vector databases sup-
port retrieval-augmented generation.

The Presentation layer provides user-facing interfaces and
unified access to underlying services through API gateways,
ensuring smooth interactions and validation.

Distributed processing and asynchronous workflows optimize
performance under high loads; auto-scaling and caching ensure
efficient handling of concurrent requests.

Secure communication with TLS; authentication managed at
Integrator; Guardrail enforces compliance policies, logs, and
mitigates risks like malicious prompts and breaches.

Layers separate concerns; microservices allow independent
updates and scaling of functionalities.

Fine-tuning and inference pipelines are modular, enabling
domain-specific adaptations and reusable components without
disrupting the core architecture.

Standardized APIs and integration adapters ensure seamless
interaction with external systems, databases, and workflows.

Data handling

User interaction

Performance and
scalability

Security, privacy,
compliance and
fairness
Modularity

Customizability

Interoperability

LLM integration is handled by the LLM integration
layer, which modularizes pre-processing, inference, and post-
processing using microservices and proxy patterns. These
components operate independently, accessible via standardized
APIs, ensuring seamless integration, scalability, and main-
tainability. Data handling is supported by the data man-
agement layer, which uses vector databases for retrieval-
augmented generation (RAG) and embedding-based opera-
tions, enabling low-latency access to external knowledge.
The interaction memory component maintains session context,
enhancing personalization and enabling context-aware user
interactions. User interaction is addressed in the presentation
layer, which provides adaptable interfaces, such as web apps
and chatbots, to abstract LLM complexity. Integrators and
middleware ensure smooth, real-time communication with
external systems by managing request validation, transfor-
mation, and session handling. Performance and scalability
are achieved through event-driven communication, distributed
processing, and horizontal scaling. Asynchronous workflows
optimize resource utilization, while caching mechanisms and
task-specific optimizations improve response times for high-
throughput applications. The Monitoring and Guardrail side-
cars address security, compliance, and system optimization.
Monitoring collects runtime metrics like latency and error
rates, enabling real-time performance tracking and proactive
improvements. Guardrails enforce compliance with privacy
regulations (e.g., GDPR) and mitigate risks such as malicious
prompts, ensuring secure and ethical operations. Fairness and
privacy are reinforced through bias detection and regulatory
compliance enforced by the Guardrail sidecar. Monitoring
further supports fairness by detecting anomalies and enabling
continuous improvements. Modularity and interoperability are



TABLE III

PROPOSED REFERENCE ARCHITECTURE VS. EXISTING LLM-INTEGRATED SYSTEMS

[ Component | MaxKB | Continue | InternVL
Ul Ul in Vue.js Continue Sidebar, Chat, In-editor | Ul in Streamlit Python
Ul
Connector RESTful APIs, LangChain Connectors | VSCode API, Web View, LLM | RESTful APIs
Providers APIs
Middleware Request Validation, Input Transforma- | — Request Validation, Input Trans-
tion in Django formation
Orchestrator Workflow Engine VSCode Extension Workflow Engine

Pre-processing

Context Retrieval, Prompt Reformula-
tion, Tokenization, Image Transforma-
tion in Langchain

Context Retrieval and Prompt Re-
formulation

Caption  Generation,  Image
Transformation, Tokenization

Pre-trained LLM

Multiple LLMs

Multiple LLMs

Multiple LLMs

Task-specific
adapter

LoRA

Post-processing

Output Parsing, Filtering, and Format-
ting in LangChain

Output Filtering, Code Change In-
tegration

Output parsing (Multi-modality),
Output Formatting

Model and adapters
checkpoints

Load LLMs via LangChain or Locally
via Ollama

Load LLMs from providers’APIs
or Locally via Ollama

Load LLMs from providers’ APIs

Vector Database

Knowledge Vectors with pgvector

Codebase Vectors

Interaction Memory

Session Storage, Conversational Mem-

Cache Completion

Session Storage, Conversational

ory (PostgreSQL) Memory
Integration RESTful APIs, Customized Functions | RESTful API (e.g., OpenAl, An- | RESTful API (e.g., OpenAl-
& tools thropic, Ollama) compatible)
Monitoring System Usage, User Feedback Telemetry (PostHog), User Feed- | User Feedback
back
Guardrail - - Safeguard for content moderation

strengths of the LLM integration layer, where independent pre-
processing, inference, and post-processing components allow
seamless updates and domain-specific adaptations, such as
fine-tuning or prompt engineering, without affecting the core
system. Customizability is achieved via modular task-specific
adapters and fine-tuned models, enabling tailored outputs for
diverse domains while preserving system stability, efficiency,
and reliability.

B. Proposed reference architecture Vs.
integrated systems

Table maps three open-source LLM-integrated sys-
tems—spanning text processing, coding, and computer Vvi-
sion—to the proposed preliminary functional software RA.

Max Knowledge Base (MaxKB) combines LLMs with
external knowledge retrieval to deliver accurate, domain-
specific responses [2]. It provides a Vue.js-based user interface
for interaction and supports workflow orchestration through
drag-and-drop components. MaxKB integrates with third-party
tools for dynamic task execution and uses PostgreSQL with
pgvector to store document embeddings for RAG. Documents
are segmented and stored as embeddings to enable efficient
retrieval and Dialogue logs maintain session histories and
user feedback, enabling query analysis over time ranges (e.g.,
past 7, 30, or 180 days) for refining AI responses. Built on
LangChain [9]], MaxKB integrates multiple LLM providers,
such as Llama 3, Qwen 2, OpenAl, Claude, and dynamically
combines top-k retrieved segments into contextually relevant
prompts, aligning with the LLM Integration Layer for pre-
processing and inference.

Continue, a coding assistant integrated with VSCode and
boasting nearly 20,000 GitHub stars [1f], exemplifies modular

existing LLM-

LLM integration. It offers three interfaces: a sidebar for
configuration, a chat for LLM interactions, and in-editor tools
for tasks like code autocompletion and bug fixing. Continue
connects to LLM providers (e.g., OpenAl, Anthropic, Google
Gemini) and supports local LLMs via Ollama. The Orches-
trator in the Application Logic Layer activates workflows
like docstring generation or code autocompletion. The plugin
indexes the project codebase into a vector database that is
leveraged by a context retrieval module to augment user
prompts with contextually relevant code. It supports multiple
LLMs for code autocompletion, chat, code editing, and code
retrieval. LLMs outputs are filtered to remove redundancy
before merging accepted changes into the codebase, aligning
with the RA’s Post-processing. Telemetry powered by PostHog
tracks user interactions, while feedback mechanisms allow
issue reporting, aligning with the Monitoring Sidecar.
InternVL supports multi-modal tasks such as text genera-
tion, reasoning, and dialogue, processing images, videos, and
text [21]. Its Streamlit-based user interface allows local and
web-based interaction, while RESTful APIs support external
integrations, mapping to the Presentation Layer. The middle-
ware handles input validation, transformation (e.g., tokeniza-
tion, image resizing), and logging, ensuring session context
for multi-turn conversations. The Orchestrator dynamically
selects workflows for text, images, or videos, enabling tasks
like captioning, multi-image reasoning, and video process-
ing. The Pre-processing component handles tokenization and
image transformations, while Post-processing refines outputs
for integration. InternVL uses pre-trained multimodal LLMs
(e.g., InternVL2-76B) with support for fine-tuning, including
parameter-efficient methods like LoRA, aligning with the
LLM Integration Layer. Interaction memory preserves session



context for multi-turn conversations, enhancing personaliza-
tion. LMDeploy enables OpenAl-compatible API deployment,
supporting interoperability. Telemetry tracks user interactions
(e.g., upvotes, flags) for performance improvement, while
Guardrails enforce content moderation, ensuring outputs ad-
here to ethical and safety guidelines.

V. FINAL DISCUSSION AND FUTURE STEPS

Compared to existing work, our study provides a novel
contribution by proposing a preliminary functional software
RA for LLM-integrated systems. Unlike related work, such
as foundation model-based systems [14], our RA explic-
itly addresses unique architectural concerns of LLM-driven
systems, including modular pre-processing, dynamic task
orchestration, and cross-layer monitoring. While our work
is grounded in software architecture literature, established
principles, and extensive experience in LLM research, we
acknowledge limitations in the scope and systematicity of
our review. However, given the limited availability of peer-
reviewed studies on LLM-integrated systems, this is unlikely
to introduce significant bias, as additional findings would more
likely complement rather than challenge our proposed RA.
The proposed RA synthesizes insights from existing systems
while also proposing generalized principles for future LLM-
integrated system designs. It is important to note that current
systems may not necessarily include all the identified RA
components (e.g., Task-specific adapters and Guardrail compo-
nents), which is typical for RAs, as demonstrated in previous
research on domains like DTs [11]]. Additionally, there may be
architectural concerns not yet considered, which is a natural
aspect of the early-stage development of such frameworks.
We anticipate that further research and practical applications
will help identify and address these gaps. To address the
above limitations, we are conducting a systematic literature
review, including grey literature, to capture broader perspec-
tives and emerging insights into this rapidly evolving field. The
proposed RA was validated against three open-source LLM-
driven systems—MaxKB, Continue, and InternVL. However,
further evaluation across real-world systems spanning diverse
domains is essential to ensure broader coverage and uncover
any overlooked challenges. As part of future work, we also
plan to conduct focus group validations and expert surveys to
gather qualitative feedback on the RA’s design and its practical
applicability in integrated system architectures. We also aim to
extend this RA by incorporating dedicated architectural views,
as suggested by the ISO/IEC/IEEE 42010 standard, such as the
technical view, and views addressing unique concerns of LLM-
integrated systems, including compliance and fairness. This
extension may ultimately form a comprehensive architectural
framework, similar to those introduced for the automotive
domain [22].
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