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Abstract. [Context and Motivation] Engineers often need to refer
back to release notes, manuals, and system architecture documents to
understand, modify, or upgrade functionalities in alignment with new
software releases. This is crucial to ensure that new stakeholder require-
ments align with the existing system, maintaining compatibility and
preventing integration issues. [Problem] In practice, the manual pro-
cess of retrieving the relevant information from technical documenta-
tion is time-intensive and frequently results in inefficient software release
management. [Principal ideas/results] In this paper, we propose a
question-answering chatbot, ReqRAG, leveraging Retrieval Augmented
Generation (RAG) with Large Language Models (LLMs) to deliver ac-
curate and up-to-date information from technical documents in response
to given queries. We employ various context retrieval techniques paired
with state-of-the-art LLMs to evaluate the ReqRAG approach in indus-
trial settings. Furthermore, we conduct human evaluations of the results
in collaboration with experts from Alstom to gain practical insights. Our
results indicate that, on average, 70% of the generated responses are ad-
equate, useful, and relevant to the practitioners. [Contribution] Fewer
studies have comprehensively evaluated RAG-based approaches in in-
dustrial settings. Therefore, this work provides technical considerations
for domain-specific chatbots, guiding researchers and practitioners facing
similar challenges.

Keywords: Software Release Management · Large Language Models
(LLMs) · Retrieval Augmented Generation (RAG) · Industry Study

1 Introduction

In the domain of safety-critical systems, such as those in the railways industry,
accurate and comprehensive documentation is the foundation for ensuring the
system’s safety, reliability, and integrity [30]. During software development, espe-
cially when introducing new versions or updates, associated requirements must
remain traceable throughout the system lifecycle [3]. In this regard, the EN 50128
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[1] railway control and protection system standard outlines clear guidelines for
documenting software changes. These guidelines provide a structured approach
to software release management, enabling tracking of each version and its mod-
ifications. Furthermore, efficient access to critical information during software
release management is essential to ensure that each new release meets all speci-
fied requirements and compliance guidelines. However, the system’s complexity
often influences how information is organized and collected in different formats,
such as architectural documents, interface control documents, and release notes
[18]. Such technical documentation provides practitioners with relevant insights
into system changes and dependencies. In practice, engineers must ensure that
new software version requirements are traceable and consistently align with the
overall system. This is often achieved by cross-referencing technical documen-
tation, which validates that each change meets system-level requirements and
regulatory standards. Engineers, therefore, commonly raise queries such as:

– Which new or updated features and functionalities are implemented in release
1.2.1.0?

– Is release 1.2.1.0 backward compatible with the release 1.2.0.2?

Manually accessing relevant information to the user queries is often tedious and
prone to inconsistencies, as the required information is distributed over several
documents. This scattered nature of data makes manual information retrieval
time-consuming, which may result in inefficient software release processes. There-
fore, an automated approach to generating accurate answers for requirements-
related queries in technical documentation is required to address these challenges
and improve efficiency in managing new software versions in complex systems.

In this industry-driven research, we collaborated closely with Alstom Sweden
(Alstom), a world-leading railway vehicle manufacturing company. The primary
objective is to investigate and propose an automated solution that leverages
NLP techniques, particularly Large Language Models (LLMs), to deliver precise
answers to user queries based on Alstom’s technical documentation, thereby
enhancing efficiency in managing software releases.

While LLMs have shown great performance across various software engi-
neering tasks due to their extensive training on diverse datasets, their inherent
knowledge remains limited to their initial training [37]. As a result, pre-trained
LLMs struggle to reliably answer domain-specific queries without additional fine-
tuning, which is costly given the size of LLMs [34]. To address this, our approach
ReqRAG incorporates a well-known Retrieval Augmented Generation (RAG)
technique [15] coupled with pre-trained LLMs. ReqRAG first retrieves relevant
information from a knowledge base of technical documents in response to user
queries, then provides this context to LLMs to support the generation of ac-
curate and domain-specific answers. We evaluated various information retrieval
techniques and generative LLMs within ReqRAG approach to assess their perfor-
mance. Additionally, we conducted a human evaluation of the results to further
provide valuable practical insights into their effectiveness.

The rest of the paper is structured as follows: Section 2 provides a brief
overview of the background and related work. Section 3 presents the study design
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of our proposed ReqRAG approach. Section 4 presents and discusses the results.
Section 5 presents potential validity threats and limitations. Finally, Section 6
concludes the paper with future directions.

2 Background & Related Work

2.1 Background

In this section, we detail the fundamental concepts used in our ReqRAG ap-
proach, i.e., Information Retrieval and Large Language Models (LLMs).

Information Retrieval (IR). IR is an NLP technique that efficiently identifies
and ranks relevant information from a large corpus in response to user queries
[23]. Traditional IR techniques, such as TF-IDF and its variation BM25, laid the
foundation for evaluating textual similarity in retrieval tasks such as document
retrieval and recommender systems. These methods represent the textual data
as sparse high-dimensional feature vectors for retrieval; however, they do not
capture the semantic relationships between different textual attributes. On the
other hand, dense-vector representations based on deep learning models effec-
tively map semantic meaning, enabling accurate context retrieval [20].

Large Language Models. A Language Model (LM) learns a probability dis-
tribution over a sequence of words to perform various natural language process-
ing (NLP) tasks, such as topic modeling and classification [8,7]. The advent of
modern Large Language Models (LLMs) began with the introduction of trans-
former architecture proposed by Vaswani et al. [32]. The approach incorporated
a self-attention mechanism to better capture the relationship between data at-
tributes. This was followed by the release of the BERT (Bidirectional Encoder
Representations from Transformers) model [11], an encoder-only model that
improved language understanding by learning bidirectional representations. The
evolution of transformer-based architecture continued with the arrival of Gen-
erative Pre-trained Transformers (GPT) [25] and its successive iterations [26,9],
which significantly improved performance in various NLP tasks such as language
translation, summarization, and question answering systems [17].

However, pre-trained LLMs often hallucinate in specialized domains and pro-
vide incorrect information because of their inability to access factual informa-
tion, particularly from proprietary knowledge bases [31,40]. In this regard, IR
techniques could leverage specialized knowledge sources to retrieve relevant and
verified information that can inform the LLMs to generate factually accurate re-
sponses. This combination of IR techniques with LLMs, also known as Retrieval-
Augmented Generation (RAG), enables LLMs to access up-to-date proprietary
knowledge rather than relying solely on pre-existing training data [29].

2.2 Related Work

Recently, the RAG framework has been employed in software engineering tasks
such as requirements traceability, test case generation, and code understanding
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[14]. Ali et al. [5] proposed a RAG-based chatbot to enhance traceability between
natural language requirements and code using Llama 3 LLM. Similarly, Ezzini et
al. [13] develop a question-answering assistant (QAssist), which analyzes require-
ments to improve their quality. QAassist utilizes domain-specific corpus along
with an external knowledge base to answer requirement-related queries. The tool
uses BERT LLM variants, which highlight answers in the passages given user
queries in a non-conversational manner.

In another work, Arora et al. [6] proposed a domain-specific RAG-based
LLM approach (RAGTAG) to generate test cases using natural language require-
ments. They employed few-shot and zero-shot prompting techniques to compare
RAGTAG using GPT-3.5-turbo and GPT-4.0. Chaudhary et al. [10] develop a
chatbot for continuous integration and continuous delivery (CI/CD) documents.
To evaluate retrieved-context, they compared multiple retrieval techniques, such
as TF-IDF and BM25. For answer generation, the authors employed a Llama 2
LLM to respond to CI/CD-related queries. In another recent study, Abedu et al.
[4] utilize a RAG-powered chatbot to process repositories for QA tasks dynam-
ically. The authors used OpenAI ada-002 embeddings for context retrieval and
generated answers using the GPT-3.5-turbo model. Similarly, Veturi et al. [33]
used GPT-3.5-turbo to generate response suggestions for customer service agents
in retail contact centers and compared multiple dense embedding techniques for
context retrieval.

While the above-mentioned work shares the same general objective as our
study, it does not specifically address our goal: answering requirement-related
queries during software release management. Additionally, in our study, the units
under analysis are comprised of PDF documents, which require different retrieval
and preprocessing methods to enable effective context augmentation for LLMs.
To the best of our knowledge, this study is the first to develop and comprehen-
sively evaluate a chatbot specifically tailored to answer queries in the context of
software release management.

3 Study Design

This section outlines the methodology for developing and evaluating ReqRAG at
Alstom. Following, we describe the industrial context, research questions, data
collection, ReqRAG approach and evaluation metrics.

3.1 Industrial context

Software release management is crucial in the rail manufacturing industry be-
cause of the safety-critical nature of systems and strict regulatory requirements.
Engineers not only support end-users by patching new code with legacy sys-
tems and resolving compatibility issues but also ensure that each update aligns
with existing system-level requirements. In this regard, engineers frequently con-
sult technical documentation to ensure compatibility in these regulatory envi-
ronments to access necessary information for software upgrades, requirement
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changes, or modifications. For instance, determining the exact features imple-
mented in a release or verifying backward compatibility with previous releases
is important to maintaining reliability and regulatory compliance. However, due
to the ever-increasing customer requirements and market competition, Alstom
continuously seeks to enhance its processes to support engineers in effective
software release management. Therefore, in this paper, we investigate and pro-
pose a domain-specific chatbot, ReqRAG, that gives up-to-date answers for user
queries in technical documentation. Seven technical documents from Alstom are
the units under analysis, addressing requirements-related queries relevant to soft-
ware release management.

3.2 Research Questions

The objective of the study is to enhance the software release management pro-
cess for practitioners in the studied context by improving the efficient retrieval
of relevant information and providing accurate answers to their domain-specific
queries. Therefore, we explore multiple information retrieval techniques to ex-
tract relevant context for the queries and then employ various LLMs to generate
accurate answers. We aim to identify the configurations that present the best
results for our proposed ReqRAG approach. To this end, we define the following
research questions:

– RQ1: Which information retrieval technique provides the most ac-
curate context for ReqRAG?

– RQ2: Which Large Language Model yields the best results in an-
swer generation?

– RQ3: How useful do practitioners find ReqRAG’s responses?

3.3 Data Collection

We had access to seven industrial documents from Alstom to create the knowl-
edge base. These technical documents include the release notes, architectural
documents, and interface control documents from the Train Control Manage-
ment System (TCMS). Additionally, the documents contain relevant informa-
tion that engineers must refer to during new software releases. This is because
the release notes track changes in software modifications, while interface con-
trol documents define how different railway systems communicate and interact.
Similarly, architectural documents outline the overall system design and safety
mechanisms.

For the evaluation of ReqRAG, we obtained a diverse set of 27 queries with
ground truth answers from Alstom. This collection represents real-world ques-
tions that practitioners ask and address regularly, which includes, but is not
limited to, clarification and traceability of requirements for new software ver-
sions.
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Fig. 1: Overview of the proposed ReqRAG approach

3.4 ReqRAG Approach

Figure 1 provides an overview of the proposed ReqRAG approach, highlighting
its two primary phases: Retrieval and Generation. Figure 2 shows a working ex-
ample, demonstrating a user query, ground truth answer, and its corresponding
response from the ReqRAG phases. Below, we detail the ReqRAG phases and
the design decisions involved.

1. Retrieval. In this phase, the aim is to extract the relevant information from
different data sources to infer LLM for contextually aware and accurate answers.
For this purpose, we must first create a knowledge base that stores the relevant
information for retrieval. Therefore, we created a data ingestion pipeline that
systematically transforms raw data—PDF technical documents in our case—to
a searchable vector format that can be utilized for the semantic search of user
queries and their relevant information. In this regard, we perform the following
steps for the retrieval phase:

1.a Data extraction. In general, accurate data extraction from PDF docu-
ments presents significant challenges because of their complex layouts consisting
of embedded fonts, tables, and images [38]. Therefore, for effective data ex-
traction from PDF files, we employed Optical Character Recognition (OCR)
techniques. OCR models support structured text extraction, which is crucial for
efficient text analysis and retrieval in our case. In particular, we compare two
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User Query:  Is release 1.2.1.0 backward compatible with the release 1.2.0.2? 

Ground Truth Answer: BBN-S2 release 1.2.1.0 is application backwards compatible with the 

previous BBN-S2 release 1.2.0.2. 

Output from Retrieval Phase. 

Retrieved Chunk 1: 

Doc 1: 5.1.4 Compatibility with earlier releases BBN-S2 release 1.2.1.0 is application 

backwards compatible with the previous BBN-S2 release 1.2.0.2.  

 

Retrieved Chunk 2: 

Doc 2: Compatibility with earlier releases BBN-S2 release 1.1.4.0 is application backward 

compatible with the previous BBN-S2 release 1.1.2.0. 

 

Output from Generation Phase. 

Yes, according to Doc 1 (5.1.4 Compatibility with earlier releases), BBN-S2 Release 1.2.1.0 is 

application backwards compatible with the previous BBN-S2 release version 1.2.0.2. This 

means that applications designed for and running on the older software should continue to 

function correctly without any modifications when upgraded to this newer release, 

assuming they do not utilize new features introduced in between these versions. 

 
 Fig. 2: An example user query and corresponding output from the ReqRAG

phases.

popular open-source OCR models for data extraction, namely YOLOX [16] and
Detectron2 (Det2) [36] (see section 4 for details).

1.b Text processing. Once the raw structured data is extracted through
the OCR model, refining or preprocessing the text is crucial so that only relevant
information is stored for the subsequent stages. Moreover, raw data extracted
from PDF documents often includes noisy and irrelevant elements, which reduces
the effectiveness of relevant information retrieval. To address this, we employ
rule-based filtering to remove common noise elements such as headers, footers,
and page numbers and use regular expressions to remove table of contents pages
from the PDF documents.

Following text cleaning, we segment the data into semantic units or so-called
chunks to store them within a vector database. Chunking the data into smaller
semantic units improves contextual relevancy and addresses the issue of LLMs’
limited context window, which may be insufficient for processing entire docu-
ments [33]. In our case, we explored different sizes and determined that 1600
characters are optimal for each chunk document before exceeding the context
window length of considered LLMs for answer generation.

1.c Indexing. In this step, we process the document chunks to create vector
embeddings and store them within a vector database, Milvus [35]. The rationale
behind selecting the Milvus database is its advanced query processing feature,
which allows efficient retrieval of relevant document chunks. Specifically, we em-
ploy IVF-FLAT [19] indexing method, an Approximate Nearest Neighbor Search
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(ANNS) technique, which organizes the data into clusters for efficient retrieval
during semantic search. For a given query, the ANNS first identifies the clusters
closest to the query vector embedding and then searches within these clusters to
find the nearest neighbors to return the relevant context.

To create vector embeddings, we select and compare two techniques, i.e.,
mxbai-embed-large-v1 4 (maxbai-L) and stella_en_400M_v5 5 (stella_v5) be-
cause of their high performance in Massive Text Embedding Benchmark (MTEB)
[24] (see section4 for results). Notably, the steps involved in the retrieval phase
are executed only once during the initial setup, where the chunk vector embed-
dings are stored in the database. Subsequently, for each query, only the relevant
context chunks are retrieved from the database to generate the final answers
from LLMs.

2. Generation. During the Generation phase, we prompt the generative LLMs
to provide accurate domain-specific answers by augmenting with the retrieved
context documents given the user query. In the following, we explain the steps
involved in the generation phase:

2.a Prompt formation. When a user provides a query, the retrieval phase
selects the top-k document chunks from the knowledge base, combined with the
task instructions for the LLMs and the original query to structure an input
prompt template. Figure 3 shows an example of our prompt template. In this
template, we define the system instructions to establish a role-play that guides
the LLM in understanding the environment and ensures that its responses are
well aligned with the specific domain context. Moreover, in cases where the LLM
cannot provide an accurate answer against a user query because of insufficient
context, it is instructed to inform the user that it lacks the necessary data. This
approach helps prevent potential hallucinations, a common limitation in LLMs,
by setting clear boundaries. The remaining part of the template contains tem-
porary fields for context documents and the user’s query, which are substituted
at runtime.

2.b Inferencing. Once the prompt template is populated with the relevant
context chunk documents and user query, we infer answers from the LLM. To
select the best performing model for ReqRAG, we compare three open-source
LLMs: Phi3-mini (3.8B)6 gemma-2 (2B)7 Llama-3.2 (1B)8. The rationale for
selecting these LLMs for comparison is their smaller size (1B to 3.8B param-
eters), which provides a balance between performance and computational effi-
ciency. These LLMs’ open-source nature also meets our strict data privacy and
confidentiality requirements. We specifically employ instruct-tuned variants of
these LLMs over base versions because of their improved ability to understand
and respond accurately to given prompts [39]. For evaluation, we set the LLMs’

4 https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1
5 https://huggingface.co/dunzhang/stella_en_400M_v5
6 https://huggingface.co/microsoft/Phi-3-mini-128k-instruct
7 https://huggingface.co/google/gemma-2-2b-it
8 https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct

https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1
https://huggingface.co/dunzhang/stella_en_400M_v5
https://huggingface.co/microsoft/Phi-3-mini-128k-instruct
https://huggingface.co/google/gemma-2-2b-it
https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct


ReqRAG: Enhancing Software Release Management 9

<|begin_of_text|><|start_header_id|>system<|end_header_id|>

You are a technical AI assistant within Alstom, a global leader in the railway industry.

Your role is to support Alstom's engineers by providing accurate, concise, and relevant

information based solely on the given context.

If the context does not contain sufficient information to answer a query, please avoid

providing an answer and inform the user that the necessary data is unavailable.<|eot_id|>

<|start_header_id|>user<|end_header_id|>

Context: {context}

Query: {query} <|eot_id|>

<|start_header_id|>assistant<|end_header_id|>

Fig. 3: An example of prompt template.

temperature configuration to zero to minimize the randomness in the answers
generated by the LLMs.

3.5 Evaluation Metrics

We comprehensively evaluate our ReqRAG approach by employing a set of eval-
uation metrics for both the retrieval and generation phases. These evaluation
metrics provide quantitative scores and practical insights into the effectiveness
of our approach in retrieving relevant context and generating accurate answers.

Retrieval Phase Evaluation. In the retrieval phase, we measure Context Recall
using LLM as an evaluator. In particular, we calculate R@k that measures the
retrieval component by calculating the proportion of the relevant context within
the top k results given the ground truth reference. The value of k represents
the number of retrieved-context document chunks considered for the evaluation.
We use the prompt template provided by Ragas [12] to calculate R@k with an
open-source Llama3 8B 9 instruction tuned model.

Generation Phase Evaluation. We employ widely adopted NLP metrics, BLEU,
ROUGE, and METEOR, to evaluate the quality of generated answers [28]. These
metrics are standard in evaluating the overlap between the generated text and
reference ground truth. In particular, the BLEU metric focuses on precision by
evaluating the n-grams co-occurrence between machine-generated text and those
in human reference text. ROUGE metric, commonly used to evaluate summa-
rization tasks, calculates recall by estimating the amount of reference text over-
lapping in the generated result. METEOR, an extension of BLEU, focuses on
precision and recall and considers synonyms and stemming to evaluate linguistic
similarities between generated text and human judgment.
9 https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct

https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
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Table 1: Results of different embedding techniques with OCR models for ReqRAG
retrieval phase.

Embedding OCR R@1 R@2 R@3

mxbai-L v1
YoloX 0.69 0.73 0.75

Det2 0.72 0.79 0.74

stella_v5
YoloX 0.73 0.79 0.76

Det2 0.62 0.83 0.90

In addition to using traditional NLP metrics for evaluation, we calculate an-
swer similarity (Answer Sim.) by measuring the semantic relatedness between
the LLM generated and the ground-truth answer. We first created dense embed-
ding vectors for both LLM-generated answers and ground truth, then calculated
their cosine similarity. We selected the stsb-roberta-base-v210 variant of sentence-
bert to create the embeddings because of their good performance in semantic
similarity tasks [2].

Human Evaluation. Apart from the quantitative evaluation of retrieval and gen-
eration phases of the proposed ReqRAG approach, we also performed human
evaluation to gain insights into the practical utility and quality of the generated
answers. We conducted the human evaluation based on the following criteria:

– Adequacy criterion evaluates the quality of the responses based on their
completeness and richness.

– Usefulness measures the practical value of LLM-generated answers in helping
practitioners understand and perform their tasks effectively.

– Relevance metric examines how closely the responses relate to the ground
truth, evaluating its accuracy with the correct information.

Each above-mentioned criterion is evaluated by experts at Alstom using a five-
point Likert-scale [21] (1 for poor, 2 for marginal, 3 for acceptable, 4 for good,
and 5 for excellent).

4 Results and Discussion

Table 1 and Table 2 show the evaluation results for the Retrieval and Generation
phases of our approach, respectively.

RQ1: Retrieval performance. For answering RQ1, we evaluated multi-
ple embedding techniques coupled with OCR models on the context retrieval
task. As Table 1 shows, maxbai-L embedding technique combined with YOLOX
OCR, the R@1 on average is 0.69, which increases to 0.72 when using Det2.
However, R@3 score slightly decreases from 0.75 with YoloX to 0.74, indicating
10 https://huggingface.co/sentence-transformers/stsb-roberta-base-v2

https://huggingface.co/sentence-transformers/stsb-roberta-base-v2
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Table 2: The results of LLMs for ReqRAG generation phase.
LLM Retrieval Chunks BLEU ROUGE METEOR Answer Sim.

Phi-3-mini (3.8B)

mxbai-L v1, YoloX
1 0.08 0.28 0.22 0.56
2 0.22 0.37 0.30 0.58
3 0.20 0.37 0.34 0.62

mxbai-L v1, Det2
1 0.08 0.23 0.18 0.51
2 0.21 0.33 0.30 0.59
3 0.17 0.36 0.34 0.62

Stella_v5, YoloX
1 0.10 0.27 0.20 0.53
2 0.18 0.33 0.27 0.55
3 0.19 0.36 0.32 0.62

Stella_v5, Det2
1 0.08 0.27 0.22 0.54
2 0.18 0.36 0.30 0.63
3 0.17 0.38 0.30 0.64

gemma-2 (2B)

mxbai-L v1, YoloX
1 0.08 0.31 0.23 0.55
2 0.28 0.39 0.33 0.62
3 0.25 0.42 0.36 0.64

mxbai-L v1, Det2
1 0.06 0.23 0.17 0.50
2 0.22 0.35 0.30 0.57
3 0.19 0.33 0.30 0.60

Stella_v5, YoloX
1 0.12 0.28 0.19 0.51
2 0.22 0.37 0.29 0.58
3 0.21 0.35 0.29 0.60

Stella_v5, Det2
1 0.06 0.27 0.19 0.51
2 0.17 0.38 0.30 0.60
3 0.18 0.39 0.31 0.64

Llama-3.2 (1B)

mxbai-L v1, YoloX
1 0.08 0.30 0.26 0.60
2 0.15 0.37 0.34 0.63
3 0.13 0.35 0.32 0.66

mxbai-L v1, Det2
1 0.08 0.29 0.24 0.61
2 0.12 0.30 0.27 0.61
3 0.09 0.28 0.26 0.61

Stella_v5, YoloX
1 0.06 0.27 0.23 0.58
2 0.08 0.30 0.27 0.62
3 0.08 0.32 0.30 0.63

Stella_v5, Det2
1 0.05 0.25 0.20 0.58
2 0.12 0.32 0.29 0.60
3 0.10 0.33 0.29 0.65

that YOLOX may retrieve more relevant contexts within the top three docu-
ment chunks in some cases. For the stella_v5 embedding, R@1 is higher with
YOLOX (0.73) compared to Det2 (0.62). On the other hand, R@3 with Det2
significantly increases to 0.90, outperforming all the other combinations and in-
dicating that the correct context is highly likely to be retrieved within the top
three results. Counter-intuitively, in some configurations, such as maxibai-L with
Det2 and stella_v5 with YOLOX, R@2 is slightly better than R@3. This could
be explained by the fact that increasing the number of retrieved-context docu-
ments may not always increase recall, as additional documents may introduce
irrelevant or redundant information, potentially degrading retrieval performance.
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Nevertheless, ensuring that each retrieved document adds unique and relevant
information is crucial to improving retrieval performance. Based on these results,
we summarize an answer to RQ1.

Answer to RQ1. In our dataset evaluation, stella_v5 embeddings with
Det2 OCR achieve the best average recall within the top three result docu-
ment chunks (with a context recall score of 0.90). However, careful consider-
ation is required to select the optimal number of context document chunks
to ensure each adds relevant information to the retrieval process.

RQ2: LLM Generation performance. The results for the generation phase
of ReqRAG are summarized in Table 2. To answer RQ2, we comprehensively
evaluate the considered LLMs with different retrieval methods and document
chunk sizes. Our findings indicate a clear relationship between the size of LLMs
and their performance across traditional NLP metrics. In all configurations, Phi-
3-mini achieved the highest average performance in the majority of cases, with
BLEU = 0.15, ROUGE = 0.33, and METEOR = 0.27. Similarly, gemma-2 scored
the highest on ROUGE (0.34) and performed moderately on others, while Llama-
3.2 scored the lowest on traditional metrics on average. However, interestingly,
the Answer Sim. metric shows that the smallest model, Llama-3.2, performed
the best with an average score of 0.62, followed by phi3-mini (0.58) and gemma
(0.57). Moreover, we observe that document chunk size directly influences the
quality of the generated answers. In particular, ROUGE and METEOR metrics
perform similarly to or slightly better with a document chunk size of 3 compared
to a chunk size of 2 across all LLMs and configurations. In contrast, the BLEU
score consistently performed better with chunk size 2 than with chunk size 3.
This is because the BLEU metric n-gram precision approach penalizes irrelevant
information that a larger chunk may introduce, which results in reduced align-
ment with the generated answer, while ROUGE focuses on n-gram recall and
METEOR metric accounts for text variations. On the other hand, Answer Sim.
metric, which calculates the semantic relatedness based on dense embedding vec-
tors, shows a linear relationship with document chunk sizes, where an increase
in chunk size corresponds to higher scores. For example, in the case of gemma-2
configured with Stella_v5 and Det2, the Answer Sim. score improved from 0.51
at document chunk size 1 to 0.60 at 2 and 0.64 at 3. A similar progression of
score can be observed across all configurations, which shows that chunk size 3
enhances the LLM’s semantic alignment with the reference answers by providing
richer context information.

Answer to RQ2. In general, Phi-3-mini yields best results for NLP met-
rics, while Llama-3.2 excelled in Answer Sim. metric. Moreover, we observed
that chunk size 3 improves the semantic alignment of generated answers
with reference text and provides the best results across all configurations.

RQ3: Human Evaluation results. We conducted a human evaluation to
assess further the quality of ReqRAG responses using a five-point Likert scale.
Specifically, we select the responses from best-performing configurations of the
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retrieval phase (Stella_v5, Det2) paired with LLM (gemma-2). Based on the
evaluation criteria, we asked four industry experts to rate ReqRAG responses.
The results from human evaluation show that, on average, 70% of the responses
met the criteria, with specific average (avg.) and standard deviation (std.) scores
as follows: Adequacy avg. (std.) = 3.69 (1.54), Usefulness avg. (std.) = 3.44
(1.68), and Relevance avg. (std.) = 3.32 (1.64).

Adequacy. ReqRAG-generated responses achieved an average adequacy score
of 3.69, which suggests that it effectively covers the important aspects of prac-
titioners’ queries, and the experts generally found the response to be acceptable
in terms of quality. However, the standard deviation (1.54) shows moderate vari-
ability in experts evaluation.

Usefulness. The average score is 3.44, with experts agreeing that the re-
sponses are valuable in understanding and effectively performing their tasks.
Additionally, experts noted that the answers provide actionable insights into
requirement-specific queries, effectively supporting software release management.
The standard deviation score of 1.68 shows noticeable variability in experts’ per-
ception of usefulness.

Relevance. The average relevance score of 3.32 indicates that experts found
the responses reasonably aligned with the ground truth references, providing
accurate information. However, the standard deviation of 1.64 shows significant
variability in experts’ perceptions, suggesting that some responses closely match
the expected information while others are only partially aligned.

During the evaluation, experts also noted that some queries were not formu-
lated clearly, which led to the responses not being completely aligned with the
ground truth information. This could be an area of improvement to rewriting
the queries in an automated fashion, as queries are not always well-defined or
structured [22].

Answer to RQ3. The evaluation shows that experts find ReqRAG-generated
responses acceptable across the evaluation criteria, with average scores of
3.69 for adequacy, 3.44 for usefulness, and 3.32 for relevance. However, the
moderate variability in assessment suggests potential areas of improvement
in refining the queries and generated responses.

5 Threats to Validity

Construct validity. To address this, we conducted both quantitative and human
evaluations for ReqRAG. For quantitative analysis, we calculate context recall,
traditional NLP metrics, and semantic similarity to assess the performance of
our approach. These metrics have been widely adopted to assess the performance
of RAG-based systems. Furthermore, we analyzed results with practitioners to
validate our approach.

Internal validity. One possible internal validity threat could arise from using
open-source LLMs in our approach. Given that our approach was evaluated on
the proprietary industrial dataset, we mitigate the possibility of LLMs being
familiar with the data during its pre-training.
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External validity. Generalization has always been a concern in industrial case
studies. We conducted our evaluations on a domain-specific dataset and plan to
conduct further evaluations on extended datasets. However, we do not claim the
generalizability of our results beyond the studied context.

6 Conclusion and Future Work

This study is oriented toward supporting engineers in software release manage-
ment by providing efficient access to relevant information addressing requirement-
related queries for new software version releases. Therefore, we introduce Re-
qRAG, an automated solution designed to deliver accurate answers to user
queries within technical documentation at Alstom. ReqRAG leverages Large Lan-
guage Models (LLMs) and adopts the Retrieval-Augmented Generation (RAG)
technique to enhance answers quality with relevant, domain-specific context. We
conducted an empirical evaluation on an industrial dataset, exploring various
configurations to assess the performance and select the best approach for the fi-
nal design. Moreover, we conducted a human evaluation to gather insights from
the practitioners on the effectiveness of the approach. To this end, we plan to
improve the ReqRAG approach by re-writing given user queries to ensure they
are well-structured for processing by LLMs. Furthermore, we plan to extend the
evaluation with other document sets to assess the generalizability of our ap-
proach.
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