
Enhancing IoT Edge Platforms: Selecting an
MQTT-Compatible Broker for Kubernetes

Environments
Bahareh Aghajanpour∗, Alessio Bucaioni∗, Gabriele Capannini∗

∗ Mälardalen University (Sweden)
† name.surname@mdu.se

Abstract—This paper aims to enhance IoT communication
in edge platforms by identifying suitable MQTT-compatible
solutions. The primary focus is on investigating two critical
quality attributes of message brokers: data throughput and
latency. To guide this research, we address two questions: (1)
How do protocols like MQTT and their architecture contribute
to messaging in IoT communications? and (2) How can MQTT
architecture be optimized to meet the requirements of the
ABB IoT Edge Platform? A mixed-methods research approach
was applied, encompassing both quantitative and qualitative
phases. The quantitative phase involves experimental evaluation
of data throughput and latency among various message brokers,
while the qualitative phase includes stakeholder interviews and
literature review. Results indicate that event-driven architecture,
publisher-subscriber design patterns, and the NATS message
broker provide effective support for MQTT-based IoT edge
platforms. Notably, NATS demonstrated high throughput and
low latency compared to alternative brokers, making it a strong
candidate for use in IoT edge environments. These findings
offer valuable insights into best practices for MQTT-compatible
message brokers in IoT platforms, specifically benefiting software
architects developing for the ABB IoT edge platform.

Index Terms—IoT, Edge, MQTT, Kubernetes, NATS

I. INTRODUCTION

The Internet of Things (IoT) refers to a network of intercon-
nected, intelligent objects capable of autonomously transfer-
ring data [1]. At its core, IoT involves the seamless integration
of physical objects with the internet, creating vast networks
that serve applications ranging from household devices to
industrial systems [2]. Regardless of scale, efficient data
transfer is essential for IoT devices. Typically, these devices
transmit telemetry data to edge gateways and cloud platforms,
often relying on the Message Queuing Telemetry Transport
(MQTT) protocol. Known for its publisher-subscriber design
pattern, MQTT facilitates machine-to-machine communica-
tion, making it particularly suited for IoT applications [3].
Consequently, MQTT has emerged as a key protocol in
supporting reliable communication and data exchange within
IoT platforms.

Message brokers act as intermediaries in these systems,
translating and routing messages to meet the requirements
of different software components, services, or systems. They
leverage the MQTT protocol to bridge applications and mid-
dleware, creating seamless connections between disparate
components [4]. However, the abundance of broker imple-
mentations presents software architects with the challenge
of selecting a suitable broker, especially in enterprise IoT
contexts where data throughput and latency are critical con-
siderations [5]. In clustered environments, factors such as

capacity planning, configuration, and system availability add
further complexity [6].

Initial research by ABB has highlighted limitations with
certain brokers, such as Mosquitto, especially concerning
latency and data throughput. For instance, on ABB’s IoT
edge platform, Mosquitto has exhibited persistence issues and
struggles to handle the high data throughput required by
enterprise-level IoT deployments. As IoT platforms expand,
the need for scalable brokers with robust performance becomes
increasingly important.

In this paper, we aim to enhance IoT communication in
edge platforms by identifying an MQTT-compatible broker
that aligns with the requirements of an event-driven, publisher-
subscriber architecture. Experimental evaluation of various
MQTT-compatible brokers, including NATS, indicates that
NATS is a promising candidate to replace Mosquitto in
Kubernetes-orchestrated edge environments, particularly for
ABB’s IoT edge platform.

The remainder of this paper is structured as follows.
Section II outlines the research process. Section III details
the experimental setup and results. Section IV presents the
findings derived from experimental and research data. Sec-
tion V discuss the findings of this research, while Section VI
compares this study with relevant works. Finally, Section VII
concludes the paper and suggests avenues for future research.

II. RESEARCH PROCESS

The primary Research Goal (RG) was to identify an ar-
chitectural solution, including a message broker, that would
function effectively for an IoT application on an edge-based
platform with Kubernetes orchestration. We broke down the
overarching RG into the following Research Questions (RQs):
RQ1: How do protocols like MQTT and their architecture

contribute to messaging in IoT communications?
RQ2: How can the MQTT architecture be enhanced to meet

the requirements of the ABB IoT edge platform?
To provide answers to these questions, we employed a mixed-
methods research approach, inspired by [7], [8], combining
experimental analysis and literature review to gain insights
into MQTT broker limitations and to identify best practices
for IoT edge platforms on Kubernetes clusters. The research
process began with a quantitative phase, where we conducted
experiments to evaluate the data throughput and latency of
different message brokers under various conditions. This phase
helped us in answering to RQ1. The qualitative phase fol-
lowed, involving an in-depth literature review to contextualize
these findings within broader architectural considerations and
industry best practices. This phase helped us in answering

to RQ2 and, partially, RQ1. In the final interpretation phase,
we integrated results from both quantitative and qualitative
methods, creating a comprehensive perspective that addresses
existing limitations and offers informed recommendations for
enhancing IoT edge platforms.

A. Literature review
To address our research questions, particularly RQ2, we

conducted comprehensive literature reviews as the qualitative
phase of our study. Striving to maintain a balance between
rigor and agility, we adopted a streamlined protocol for our
literature review, structured as follows:

Search strategy: our primary academic databases were
IEEE Xplore and ScienceDirect, with the majority of literature
sourced from IEEE. We conducted searches using keywords
such as “MQTT,” “Kubernetes clustering,” “IoT architecture,”
and “message brokers.” Additionally, we employed Boolean
operators to combine these keywords (e.g., “MQTT AND IoT
architecture,” “MQTT OR IoT architecture,” “MQTT AND
message broker”). To ensure comprehensive coverage, we
also included relevant conference proceedings, official website
documentation, and books.

Inclusion and exclusion criteria: given that IoT is a rapidly
evolving field, we focused on articles and conference papers
published within the last decade. We prioritized publications
that concentrated on MQTT architecture, IoT edge comput-
ing, and message brokers, selecting only those written in or
translated into English. Publications not directly relevant to
our main focus were excluded.

Paper selection: an initial screening of titles and abstracts
led to the selection of 25 relevant papers for full-text review.
Following a detailed examination, three papers were excluded
due to lack of relevance.

Data extraction: to directly address RQ2, we systematically
reviewed nine of these papers, while the remaining studies
provided a broader understanding of the topic. Key findings
and insights were extracted and synthesized to answer the
research questions comprehensively throughout the report.

B. Experiment
Our selection of message brokers was guided by specific

criteria aligned with the requirements of this study, informed
by relevant literature [3], [9]. The key features considered were
as follows:

• Latency: time taken for each broker to deliver a message
from publisher to subscriber.

• Throughput: rate of messages sent per second.
• Ease of setup.
• Compatibility with MQTT protocol standards.

These criteria were chosen to ensure that the selected message
broker could meet the real-time communication needs of
our IoT system while adhering to industry standards and
minimizing implementation complexity. Initially, five message
brokers were considered—HiveMQ, VerneMQ, RabbitMQ,
NATS, and Apache Kafka—which are discussed further in
Section III. Due to time constraints, only one of these brokers
was benchmarked in this study. Although Apache Kafka was
considered initially, challenges in setup led to an unsuccess-
ful attempt at benchmarking. Kafka’s complex deployment
requirements were deemed unsuitable, given the priority for

ease of setup in this study. As a result, we relied on existing
research data for Apache Kafka [10], [11]. Similarly, we used
benchmarking data from existing studies for HiveMQ and
VerneMQ [12], which are also discussed in Section III. After
further consideration, NATS was selected over RabbitMQ for
benchmarking due to its simple deployment, efficient perfor-
mance characteristics, and its event-driven architecture [13].

Experimental environment: The test environment con-
sisted of a Linux Ubuntu 20.04.6 LTS Virtual Machine with a
16-core CPU, 128GB RAM, and 250GB HDD. Docker version
26.0.0 was installed to facilitate deployment. To benchmark
the performance of NATS, we used JetStream [14], a built-in
distributed system within the NATS ecosystem that enhances
functionality by operating atop the core NATS services and
enabling accessibility from all client applications. JetStream
was used to conduct both benchmark and stress tests, simu-
lating high loads and evaluating data throughput and latency
within the NATS messaging system. The tests focused on
both publishers and subscribers under various load scenarios,
enabling a detailed examination of system performance under
different conditions.

Experimental setup: to work around security restrictions
limiting internet access, we pre-downloaded the NATS im-
age for deployment. The NATS server was started using
Docker, which allowed for simplified deployment. Although
Docker can support clustered configurations with multiple
NATS servers, our focus was on benchmarking a single broker
instance to isolate and measure performance in a controlled
environment. JetStream was activated on top of the NATS
server via the command nats-server -m 8222 -js,
providing confirmation of server readiness through a “Server
is ready” status message. Due to network restrictions, the
Docker command for running JetStream included network
proxy credentials to facilitate connectivity.

Test scenarios for throughput and latency: we structured
the benchmarking tests around six throughput scenarios and
eight latency scenarios to assess NATS under different con-
ditions. For the throughput Scenarios, configurations varied
by message size, number of publishers and subscribers, and
message volume. Each scenario was designed to test the
broker’s performance under progressively increased load and
message size variations. For the latency scenarios, we tested
NATS in request-reply mode using various combinations of
publishers, subscribers, and message counts. Each latency
scenario simulated different usage patterns to evaluate system
responsiveness under varying loads. Latency was measured
by averaging the time taken for each request-response cycle,
allowing for comparative analysis across scenarios. This pro-
cedural setup allowed for a structured assessment of NATS
under diverse workload scenarios, providing insights into the
broker’s capacity to handle the demands of an IoT edge
environment. A summary of the specific experimental results
is presented in Section III.

III. HOW DO PROTOCOLS LIKE MQTT AND THEIR
ARCHITECTURE CONTRIBUTE TO MESSAGING IN IOT

COMMUNICATIONS? (RQ1)

As outlined earlier, to address RQ1, we evaluated five
message brokers: HiveMQ, VerneMQ, RabbitMQ, NATS, and
Apache Kafka. Due to time constraints, direct benchmarking

was conducted only for NATS. For the remaining brokers, we
relied on benchmarking data from prior studies, as detailed
below.

A. Experimental results for NTS industrial benchmarking
Due to security restrictions limiting internet connectiv-

ity, the NATS image was pre-downloaded for deployment.
The remainder of the setup was conducted via Docker. A
NATS server was initiated using the docker run com-
mand, though it is possible to create clusters of multiple
NATS servers via Docker [13]. However, for this study, we
aimed to benchmark NATS in a controlled, single-server
environment to accurately measure performance for individual
publisher and subscriber pairs. JetStream, an integral feature
of NATS for benchmarking, was activated using the command
nats-server -m 8222 -js, with the server readiness
confirmed by the Server is ready status.

For the experimental work, network proxy credentials were
incorporated into the Docker command to overcome connec-
tion restrictions. The performance of NATS was then tested
across six throughput scenarios and eight latency scenarios to
evaluate its capacity in handling varied workloads.

A set of tests was conducted by varying the number of pub-
lishers in the set {1, 4, 16} and the number of subscribers in
the set {1, 4, 16, 64}, across different scenarios with message
sizes of 2 and 20 kilobytes. The results in Table I indicate
that as the number of publishers and subscribers increases,
the overall bandwidth also increases until the load on the
system exceeds its capacity, then it becomes congested and
the bandwidth degrades.

Pubs # Subs Msg/s (GB/s)
2kB 20kB

1 1 568820 (1.08) 86408 (1.65)
1 4 804433 (1.53) 137822 (2.63)
1 16 1026244 (1.96) 162124 (3.09)
1 64 903633 (1.72) 156847 (2.99)
4 1 579655 (1.11) 73812 (1.41)
4 4 963657 (1.84) 112364 (2.14)
4 16 1391364 (2.65) 218907 (4.18)
4 64 1233010 (2.35) 182787 (3.49)

16 1 562086 (1.07) 76624 (1.46)
16 4 1056885 (2.02) 125987 (2.40)
16 16 1306175 (2.49) 213806 (4.08)
16 64 1152619 (2.20) 118377 (2.26)

TABLE I: Bandwidth results for messages of 2 kB and 20 kB
in Messages per Second and GB/s.

To evaluate latency, NATS was tested in eight request-
reply scenarios with varied publisher, subscriber, and message
configurations, simulating different system loads. In each
scenario, average latency was calculated as the inverse of the
publishing rate.

• Scenario 1: configured with 1 publisher, 1 subscriber, and
1,000 messages, this setup resulted in an average latency
of approximately 0.4325 ms.

• Scenario 2: with 20 publishers and 20 subscribers for
1,000 messages, latency decreased significantly to 0.0321

ms, highlighting how increasing publishers and sub-
scribers can reduce latency.

• Scenario 3: with 50 publishers, 50 subscribers, and 1,000
messages, latency dropped further to 0.0260 ms.

• Subsequent scenarios: increasing the message count to
10,000 across different publisher-subscriber configura-
tions resulted in latency values as low as 0.0173 ms
in high-load conditions, showing an inverse relationship
between message volume and latency.

These latency results, shown in Table II, indicate that higher
numbers of publishers, subscribers, and messages generally
lead to reduce the latency, showing NATS efficiency under
high-load conditions. The explaination could be that¸ when
more publishers and subscribers are present in the system,
multiple messages can be processed concurrently. Applying
batching and pipelining techniques, NATS is able to optimize
the network usage more effectively by reducing the average
latency per message.

Pubs # Subs Messages Latency (ms)
1 1 1000 0.4325

20 20 1000 0.0321
50 50 1000 0.0260
1 1 10000 0.3950

20 20 10000 0.0299
50 50 10000 0.0173

TABLE II: Latency results NATS benchmark

These findings demonstrate a trade-off between latency
and throughput in NATS. Increasing system complexity—such
as by adding more publishers and subscribers—can improve
performance but also requires additional resources, impacting
overall system design. However, by further increasing the num-
ber of publishers and subscribers, we expect that the broker
and the network will become saturated, thereby increasing the
latency due to resource contention.

B. Comparison of NAS with other brokers
We selected other four brokers, encompassing both MQTT-

native and MQTT-compatible options. VerneMQ and HiveMQ
are MQTT-native brokers, while the others—RabbitMQ,
Apache Kafka are compatible with the MQTT protocol. For
all these brokers, we relied on benchmarking data from prior
studies.

VerneMQ: VerneMQ is a high-performance MQTT-native
broker designed for scalability and robust messaging applica-
tions [15]. According to Koziolek et al. [12], VerneMQ was
developed to overcome scalability limitations in brokers like
RabbitMQ, which is based on the AMQP protocol. VerneMQ
is lightweight yet powerful, capable of managing millions of
device connections [15].

HiveMQ: Another MQTT-native broker, HiveMQ is known
for its reliability and scalability, making it well-suited for
mission-critical IoT and messaging applications [16]. HiveMQ
offers strong security features, including TLS encryption,
authentication, and integration with third-party security sys-
tems, making it ideal for applications with stringent secu-
rity requirements. Performance tests conducted by Koziolek
et al. [12] (see Table III) reveal key distinctions between

VerneMQ and HiveMQ. VerneMQ achieved a throughput of
10,000 messages per second (msg/s) with a latency of 8.7
milliseconds, delivering messages quickly and efficiently for
applications that require low latency. In contrast, HiveMQ
achieved a throughput of 8,000 msg/s but with a higher
latency of 119.4 milliseconds, making it less suitable for
time-sensitive applications, despite its strengths in reliability
and message handling. Both brokers offer scalability through
multi-threaded architectures and support horizontal scaling,
with the test environment limited to eight CPU cores. This
suggests that performance could potentially improve with
additional resources.

RabbitMQ: an open-source broker implementing the Ad-
vanced Message Queuing Protocol (AMQP), RabbitMQ offers
flexibility and reliability in message delivery [17]. Supporting
both point-to-point and pub-sub architectures, RabbitMQ is
versatile for diverse application needs. However, it may not
be ideal for applications requiring guaranteed precise delivery
of each message, as it ensures delivery of at least one message
among several. Despite this, RabbitMQ performs well in
complex routing scenarios, which makes it valuable for certain
applications.

Apache Kafka: Kafka is a distributed streaming platform de-
signed for high-throughput data processing, commonly used in
real-time analytics and event-driven architectures [10]. Kafka’s
high throughput and low latency provide strong message deliv-
ery and ordering guarantees, making it suitable for applications
requiring strict sequencing. However, Kafka’s complexity in
setup and configuration may present challenges for simpler
IoT implementations. Performance analyses by GCORE [11]
and benchmarking by Confluent [18] (Table III) indicate that
Kafka achieves a throughput of up to 2,000,000 msg/s with a
latency of 5 milliseconds, ideal for high-speed data streams.
RabbitMQ, in comparison, manages up to 60,000 msg/s with
a latency of around 10 milliseconds, a figure that may vary
based on message routing complexity, system configuration,
and hardware resources. RabbitMQ’s emphasis on reliability
may contribute to slightly higher latency than other platforms.

System Throughput (msg/s) Latency(ms)
HiveMQ 8000 119.4
VerneMQ 10000 8.7
RabbitMQ 60000 10.0

Kafka 2000000 5.0

TABLE III: Performance comparison of HiveMQ, VerneMQ,
RabbitMQ, and Kafka

In summary, based on the requirements of this
work—including high throughput, low latency, MQTT
compatibility, and ease of deployment—NATS emerges as the
most suitable message broker for the application discussed
in this study. Its strong performance metrics, combined with
MQTT compatibility and a focus on simplicity, make it an
ideal choice for enhancing IoT communication within the
ABB IoT edge platform.

IV. HOW CAN THE MQTT ARCHITECTURE BE ENHANCED
TO MEET THE REQUIREMENTS OF THE ABB IOT EDGE

PLATFORM? (RQ2)

To strengthen the MQTT protocol for the ABB IoT Edge
Platform, we conducted a systematic literature review to
inform architectural improvements. Al-Awami et al. [1] em-
phasize the importance of redundancy and scalability in IoT
architectures, highlighting the need for robust messaging sys-
tems to mitigate potential failures. Al-Fuqaha et al. [2] identify
MQTT’s lightweight advantages for IoT applications but note
its limitation in relying on a single broker, thus supporting
the enhancement of MQTT with multiple brokers for greater
resilience. Johari et al. [19] underscore the need for efficient
routing within MQTT to ensure reliable message delivery,
suggesting a more resilient broker architecture. Additionally,
Shahri et al. [20] propose real-time and reliability enhance-
ments to MQTT, such as message prioritization and deadlines,
aligning with the demands of dependable IoT communication.
Further studies reinforce this perspective. Koziolek et al. [12]
evaluate various MQTT brokers, emphasizing performance
and scalability in distributed IoT environments. Deploying
each broker instance on a separate cluster node allows for
future scalability to handle increased demands. Bandai et
al. [21] advocate for geographically distributed brokers to
boost performance and redundancy, with Kubernetes assigning
brokers to distinct cluster nodes for continued stability in
case of failures. Grüner et al. [6] highlight how Kubernetes
orchestration can improve system stability by distributing
MQTT brokers across nodes, thus minimizing single points
of failure and enhancing system availability.

Drawing on these insights, we propose an enhanced MQTT
architecture that integrates an event-driven model with a
pub/sub pattern to support real-time communication in IoT
systems. The MQTT architecture includes clients that publish
or subscribe to messages, with a central broker acting as
an intermediary to deliver these messages to subscribers. To
support real-time communication, we propose an event-driven
architecture, where events are generated by an event producer,
transmitted to an event handler, and distributed among event
consumers [22]. This real-time event handling is well-suited
to IoT applications, where timely communication is essential.
To enhance this architecture, we couple the event-driven
model with the pub/sub (publisher-subscriber) design pattern,
wherein a publisher sends messages to a broker that then
distributes these messages to subscribers via output channels.
This design supports real-time data handling and aligns with
MQTT’s architecture for IoT systems. Additional features,
such as client properties and a centralized controller, are
introduced to enable effective message delivery by prioritizing
attributes like deadlines. A database aids in analyzing these
real-time attributes to ensure prompt communication. In edge-
platform IoT environments, Kubernetes orchestration provides
a robust framework for distributed systems by organizing
containers into Pods, which are deployed on virtual or physical
nodes based on system requirements [23]. Running system
modules within a Kubernetes cluster offers benefits such as
container management, service discovery, and self-healing,
although it also introduces some complexities [24]. To further
enhance system stability and redundancy in MQTT-based IoT

architectures, we propose three solutions:
• Node-based broker deployment: each broker instance is

deployed on a separate node within a single system
cluster, allowing the system to scale as needed. Instances
synchronize to transfer messages and related data. If
an instance fails, others can continue to operate, thus
increasing system availability and stability. This setup
uses the pub/sub design pattern, allowing applications,
such as mobile apps, to subscribe to topics published
by device broker clients, resulting in a more resilient
messaging framework.

• Clustered broker deployment without queue mirroring:
this solution involves deploying multiple broker instances
across different hardware nodes. Although the instances
operate independently, each can handle client connections
and process messages, ensuring system resilience even if
one broker fails [6].

• Geographical broker deployment: this solution involves
deploying brokers based on geographic locations to en-
hance system stability. Clients subscribe to topics based
on their location, and Kubernetes assigns each broker to
a distinct cluster node. This approach distributes work-
load across brokers, allowing the system to maintain
operations if a broker fails, as other brokers take over
responsibilities.

Each of these solutions enhances MQTT’s performance, redun-
dancy, and scalability in IoT systems by leveraging Kubernetes
orchestration and clustered broker setups.

V. DISCUSSION

In this study, we set out to enhance IoT communications on
edge platforms by analysing the MQTT protocol, architectural
considerations, and broker selection. Our focus on message
brokers was guided by performance evaluations centred around
the key quality attributes of throughput and latency within
MQTT-based IoT architectures. Additionally, we explored
the role of orchestration tools like Kubernetes in optimizing
message broker performance within distributed systems.

As described in Section III, our experimental analysis
primarily concentrated on benchmarking the NATS message
broker. The detailed results, presented in Tables I and II, offer
insights into metrics such as the number of messages sent,
average message rate, and message size, providing a nuanced
understanding of throughput for individual publishers and
subscribers. Specifically, our tests on the NATS broker with 8
publishers and 4 subscribers, using message sizes of 2 kB and
20 kB, yield valuable findings for applications with similar
configurations. However, this setup may not fully capture
performance characteristics for larger-scale implementations
with an extended number of clients.

Our focus throughout this study was on the MQTT protocol,
which is widely recognized as a suitable choice for IoT envi-
ronments due to its lightweight design. While our work did not
assess protocol alternatives, as such considerations fell outside
the scope of this work, discussions on protocol selection are
well-covered in works such as [25]. Instead, our analysis
concentrated on choosing an appropriate message broker, eval-
uating both MQTT-native and MQTT-compatible options. This
narrowed focus provided clarity in broker selection but may
limit some alternative solutions. It is also important to note that

this work was conducted within a company context, where the
decision to use the MQTT protocol and specific brokers had
been made prior to our involvement. Nonetheless, selecting a
manageable and efficient broker like NATS offers considerable
benefits, particularly for software architects seeking ease of
deployment and flexibility across varied applications where
setup simplicity is essential.

Our findings also suggest that MQTT, when combined with
an event-driven architecture and pub/sub design pattern, is
effective in supporting real-time communication and message
handling in IoT systems. While using MQTT as the primary
messaging protocol may restrict some architectural flexibility,
adopting this protocol along with a pub/sub design pattern can
significantly improve the efficiency of real-time request-reply
interactions in IoT communications.

Additionally, Kubernetes plays a crucial role in managing
brokers within an IoT edge platform. Its capabilities extend
beyond basic management; Kubernetes enables clustering of
message brokers, allowing flexible allocation and failover
support. In scenarios where one or more brokers fail, Ku-
bernetes can automatically reassign responsibilities among the
remaining brokers, ensuring system continuity. As discussed
in Section IV, this clustering feature helps maintain the
functionality of other application components even if specific
brokers experience failures.

In conclusion, our proposed solution integrates the MQTT
protocol with an event-driven architecture and a pub/sub
design pattern within a clustered Kubernetes environment,
where each node hosts a dedicated message broker. Based
on our findings, we recommend NATS as the most suitable
message broker due to its compatibility with MQTT and
its strong performance in applications characterized by a
moderate number of publishers and subscribers and message
sizes between 2 kB and 20 kB. This configuration offers
a viable model for system architects designing similar IoT
edge platforms that require scalability, reliability, and real-time
communication.

VI. RELATED WORK

In this study, our goal was to propose an efficient and
reliable message broker architecture for IoT applications,
specifically identifying a broker compatible with an IoT plat-
form that utilizes the MQTT protocol for message queuing
services. Previous research has proposed various architectures
for client-broker communication. For example, [21] outlines
two architectures: one where brokers broadcast messages to all
clients and another where clients subscribe to specific subjects,
allowing publisher clients to share information only with
relevant subscribers. Several studies, including [19] and [26],
present the basic MQTT architecture consisting of publish-
ers, subscribers, and a broker. In this setup, publishers send
messages to the broker, which then delivers these messages to
subscribers based on their subscribed topics. This architecture
aligns with our approach, where we adopt a pub/sub design
pattern with a central broker that facilitates communication
between publisher and subscriber clients.

Additionally, message brokers vary from native MQTT
solutions, such as HiveMQ [16] and VerneMQ [15], to al-
ternatives that are compatible with MQTT but not exclusively
MQTT-based, like Amazon Kafka [10], RabbitMQ [17], and

NATS [13]. Various studies have compared these brokers based
on different quality attributes. For instance, [12] conducted
experiments focusing on throughput and latency across three
MQTT-based brokers, revealing that factors such as the un-
derlying programming language affect performance. Erlang-
based brokers, such as EMQX and VerneMQ, demonstrated
superior performance compared to the Java-based HiveMQ
in this study, indicating that EMQX and VerneMQ achieved
better results in terms of both throughput and latency.

In this work, we propose NATS as the preferred message
broker due to its MQTT compatibility, despite not being
natively MQTT-based. According to our experiments, NATS
achieved higher throughput and lower latency compared to
HiveMQ, VerneMQ, and RabbitMQ. A study by [6] also
evaluated MQTT brokers, finding that EMQX had the highest
throughput, followed by VerneMQ and HiveMQ. However, our
results with NATS demonstrated significantly higher through-
put and lower latency than these MQTT-native brokers. Ad-
ditionally, NATS exhibited an estimated average latency of
approximately 238.6 milliseconds per request, underscoring
its suitability for high-performance IoT applications.

To ensure a robust evaluation of message brokers, we
followed a structured benchmarking approach, building on the
results of studies by [12] and [6]. These studies conducted
comprehensive performance tests on HiveMQ and VerneMQ
using a test infrastructure with Dual Intel Xeon E5-2640 v3
CPUs (32 threads), 128 GB RAM, and Gigabit connectivity,
with StarlingX v3.0 on CentOS 7.6 supporting the virtualiza-
tion environment. MZBench was employed for benchmarking.
In comparison, our test environment consisted of a Linux
Ubuntu 20.04.6 LTS Virtual Machine with a 16-core CPU,
128 GB RAM, and a 250 GB HDD. Docker version 26.0.0
was used, with JetStream [14] deployed to benchmark NATS
performance.

Comparisons of broker architectures have revealed that
protocol efficiency, as well as scalability, is crucial for high-
performance IoT and automotive systems [27].

VII. CONCLUSION AND FUTURE WORK

This work enhanced IoT communication on edge plat-
forms by analysing the MQTT protocol. Our findings indicate
that an event-driven architecture, pub/sub design pattern, and
NATS message broker are effective choices for MQTT-based
IoT systems, achieving high throughput and low latency.
Benchmarking results showed NATS handling over 1 million
messages per second, with data transfer rates up to 1.22
GB/sec, highlighting its suitability for high-performance IoT
applications. Additionally, Kubernetes was found to improve
system scalability and availability by effectively managing
message brokers.

For future work, expanding the scope to include additional
transport protocols beyond MQTT could reveal more options
for IoT communication. Investigating the newer MQTT ver-
sion 5, which offers improved scalability and error handling,
is also recommended for applications requiring enhanced
performance in large-scale IoT systems.

REFERENCES

[1] S. H. Al-Awami, M. M. Al-Aty, and M. F. Al-Najar, “Comparison of iot
architectures based on the seven essential characteristics,” in 2023 IEEE
3rd International Maghreb Meeting of the Conference on Sciences and

Techniques of Automatic Control and Computer Engineering (MI-STA).
IEEE, 2023.

[2] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash,
“Internet of Things: A Survey on Enabling Technologies, Protocols, and
Applications,” IEEE Communications Surveys & Tutorials, vol. 17, no. 4,
2015.

[3] Ansyah, Adi Surya Suwardi and Arifin, Miftahol and Alfan, Muhammad
Bahauddin and Suriawan, Matthew Vieri and Farhansyah, Nadhif Haikal
and Shiddiqi, Ary Mazharuddin and Studiawan, Hudan, “Mqtt broker
performance comparison between aws, microsoft azure and google cloud
platform,” 2023 International Conference on Recent Trends in Electronics
and Communication (ICRTEC), IEEE, 2023.

[4] Apukhtin, Vladyslav and Shirokopetleva, Mariya and Skovorodnikova,
Victoria, “The relevance of using message brokers in robust enterprise
applications,” 2019 IEEE International Scientific-Practical Conference
Problems of Infocommunications, Science and Technology (PIC S&T),
IEEE, 2019.

[5] A. Bucaioni, P. Pelliccione, and S. Mubeen, “Modelling centralised au-
tomotive e/e software architectures,” Advanced Engineering Informatics,
vol. 59, p. 102289, 2024.

[6] S. Gruener, H. Koziolek, and J. Rückert, “2021 ieee 18th international
conference on software architecture (icsa),” 2021, pp. 69–79.

[7] J. W. Creswell and V. L. Plano Clark, Designing and Conducting Mixed
Methods Research. Sage Publications, 2017.

[8] A. Bucaioni, A. Di Salle, L. Iovino, I. Malavolta, and P. Pelliccione,
“Reference architectures modelling and compliance checking,” Software
and Systems Modeling, vol. 22, no. 3, pp. 891–917, 2023.

[9] B. Mishra, B. Mishra, and A. Kertesz, “Stress-testing mqtt brokers: A
comparative analysis of performance measurements,” Energies, vol. 14,
no. 18, 2021. [Online]. Available: https://www.mdpi.com/1996-1073/14/
18/5817

[10] “Apache Kafka,” https://kafka.apache.org/.
[11] “Gcore Compare,” https://gcore.com/learning/

nats-rabbitmq-nsq-kafka-comparison//.
[12] H. Koziolek, S. Grüner, and J. Rückert, “A comparison of mqtt

brokers for distributed iot edge computing,” in Software Architecture.
ECSA 2020, A. Jansen, I. Malavolta, H. Muccini, I. Ozkaya, and
O. Zimmermann, Eds. Cham: Springer, 2020, p. Page numbers.
[Online]. Available: https://doi.org/10.1007/978-3-030-58923-3 23

[13] “NATS,” https://nats.io/.
[14] “Jetstream benchmark,” https://docs.nats.io/nats-concepts/jetstream/.
[15] “VerneMQ,” https://vernemq.com/.
[16] “HiveMQ,” https://www.hivemq.com/.
[17] “RabbitMQ,” https://www.rabbitmq.com/.
[18] “Confluent.io,” https://developer.confluent.io/learn/kafka-performance//.
[19] R. Johari, S. Bansal, and K. Gupta, “Routing in iot using mqtt protocol,”

in 2020 12th International Conference on Computational Intelligence and
Communication Networks (CICN). IEEE, 2020.

[20] E. Shahri, P. Pedreiras, and L. Almeida, “Enhancing mqtt with real-time
and reliable communication services,” in 2021 IEEE 19th International
Conference on Industrial Informatics (INDIN), 2021, pp. 1–6.

[21] A. not provided, “Edge based mqtt broker architecture for geograph-
ical iot applications,” in 2020 International Conference on Information
Networking (ICOIN). IEEE, 2020.

[22] “Event-driven architecture, wikipedia,” https://en.wikipedia.org/wiki/
Event-driven architecture/.

[23] “redhat,” https://www.redhat.com/en/topics/containers/
what-is-kubernetespod#:∼:text=A%20Kubernetes%20pod%20is%
20a,a%20more%20common%20use%20case).

[24] N. Kebbani, P. Tylenda, and R. McKendrick, The Kubernetes Bible:
The definitive guide to deploying and managing Kubernetes across major
cloud platforms, 2022.

[25] N. Naik, “Choice of effective messaging protocols for iot systems:
Mqtt, coap, amqp and http,” Defence School of Communications and
Information Systems, Year of publication.

[26] A. not provided, “Mqtt-like network management architecture,” in
2021 44th International Convention on Information, Communication and
Electronic Technology (MIPRO). IEEE, 2021.

[27] N. Kukulicic, D. Samardzic, A. Bucaioni, and S. Mubeen, “Automotive
service-oriented architectures: a systematic mapping study,” in 2022
48th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA). IEEE, 2022, pp. 459–466.

https://www.mdpi.com/1996-1073/14/18/5817
https://www.mdpi.com/1996-1073/14/18/5817
https://kafka.apache.org/
https://gcore.com/learning/nats-rabbitmq-nsq-kafka-comparison//
https://gcore.com/learning/nats-rabbitmq-nsq-kafka-comparison//
https://doi.org/10.1007/978-3-030-58923-3_23
https://nats.io/
https://docs.nats.io/nats-concepts/jetstream/
https://vernemq.com/
https://www.hivemq.com/
https://www.rabbitmq.com/
https://developer.confluent.io/learn/kafka-performance//
https://en.wikipedia.org/wiki/Event-driven_architecture/
https://en.wikipedia.org/wiki/Event-driven_architecture/
https://www.redhat.com/en/topics/containers/what-is-kubernetes pod#:~:text=A%20Kubernetes%20pod%20is%20a,a%20more%20common%20use%20case).
https://www.redhat.com/en/topics/containers/what-is-kubernetes pod#:~:text=A%20Kubernetes%20pod%20is%20a,a%20more%20common%20use%20case).
https://www.redhat.com/en/topics/containers/what-is-kubernetes pod#:~:text=A%20Kubernetes%20pod%20is%20a,a%20more%20common%20use%20case).

	Introduction
	Research process
	Literature review
	Experiment

	How do protocols like MQTT and their architecture contribute to messaging in IoT communications? (RQ1)
	Experimental results for NTS industrial benchmarking
	Comparison of NAS with other brokers

	How can the MQTT architecture be enhanced to meet the requirements of the ABB IoT edge platform? (RQ2)
	Discussion
	Related work
	Conclusion and future work
	References

