
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Technical Credit

IAN GORTON∗, Northeastern university, USA

ALESSIO BUCAIONI†,Mälardalen university, Sweden

PATRIZIO PELLICCIONE‡, Gran Sasso science institute (GSSI), Italy

ACM Reference Format:
Ian Gorton, Alessio Bucaioni, and Patrizio Pelliccione. 2024. Technical Credit. 1, 1 (August 2024), 5 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

Technical debt (TD) is an established concept in software engineering encompassing an unavoidable side effect of
software development [1]. It arises due to tight schedules, which often prioritizes short-term delivery goals over long-
term product quality concerns [1]. Even when long-term planning is feasible, the continuous evolution of requirements
and technology platforms necessitates design decisions and code revision. Inevitably, even the best software designs
will deteriorate over time, leading to TD [2].

Addressing TD is an essential task that entails continuous efforts to refactor code bases, update integrated third-party
components, and resolve low-priority bugs [3]. Just like managing personal finances or parenting teenagers, a living
software system requires constant attention to TD. Simply, TD is an unavoidable aspect of the software development
process. TD has been a subject of extensive research and analysis within the software engineering community. In many
ways, TD is the gift that keeps on giving for the research community, delivering an endless source of problems to study
from the vast global ecosystem of the software industry. It is simply an intrinsic problem in software engineering that
will never go away. Not while humans write code.

Surprisingly, the software engineering literature has yet to explore the opposite concept of TD, namely Technical

Credit (TC). While TD creates friction that decreases a project’s velocity over time, TC reduces development friction by
greasing the wheels of evolution for a software system. Recognizing this gap in research, the primary objective of this
viewpoint article is to introduce the concept of TC in the context of software engineering. In particular, we propose a
definition of TC and present an abstract model to provide a comprehensive understanding of the concept. Furthermore,
we provide real-world examples of TC and outline a set of research questions that must be addressed to effectively
implement TC management in practice.

WHAT IS TECHNICAL CREDIT?

Essentially, TC characterizes system features that can yield long term benefits as the system evolves. By highlighting the
benefits of strategic investment, TC contrasts with the conventional TD-driven focus on the drawbacks of sub-optimal
choices. Rather, TC advocates for a paradigm shift towards recognizing the positive potential of forward-thinking

Authors’ addresses: Ian Gorton, i.gorton@northeastern.edu, Northeastern university, USA; Alessio Bucaioni, alessio.bucaioni@mdu.se, Mälardalen
university, Sweden; Patrizio Pelliccione, patrizio.pelliccione@gssi.it, Gran Sasso science institute (GSSI), Italy.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Association for Computing Machinery.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

2 Ian Gorton, Alessio Bucaioni, and Patrizio Pelliccione

decisions. We believe that framing TC as a counterbalance to the dominant technical debt-centric view can unlock a
more nuanced, rounded understanding of a system’s attributes, qualities, and its intrinsic value and investment.

While largely absent from the software engineering literature, TC was described by Berenbach in systems engi-
neering [4]. Berenbach defines TC as extra effort put into designing, and building systems in anticipation of future
benefits from emergent properties — systems engineering terminology for unknown future requirements. Essentially, all
valuable systems evolve to add new functionalities. While the exact path of this evolution is unpredictable, some paths
are likelier than others.

For example, an online payment system is unlikely to transform into an electronic health record system. Yet, it might
need to adapt to new payment methods, support emerging payment devices and new countries, and so on. Hence,
when developing applications within a particular domain, having knowledge about that domain, product plans and
road-maps can provide valuable insights into the likely directions that the product may take. These insights make it
possible for developers to strategically engineer capabilities into a product to reduce the cost and effort required for
likely enhancements. These forward-thinking capabilities collectively embody a system’s technical credit.

investment

time

effort

break-even point

benefits of
technical credit

development effort over
time without TC

development effort over
time with TC

Fig. 1. Technical credit.

Technical credit is not a cost-free endeavor. It necessitates an initial investment to establish the necessary capabilities
to enhance future modifications. Figure 1 illustrates that such an investment can lead to returns over time, once the
break-even point is achieved. The key is to minimize the investment in technical credit while maximizing effort and
cost saving that result from the technical credit investment downstream. In light of the above, we define technical credit
as follows:

Technical credit is the benefits that result from making strategic design decisions that require a higher

initial investment, but offer highly advantageous long-term effects for the evolution of a system.

To exemplify this concept, imagine a system that relies on an external provider for email delivery. In this setup, there
are two primary ways to structure the system: (i) each service interfaces directly with the email vendor’s API, and
(ii) the system uses an intermediary edge service that wraps the email vendor’s API, with all services sending emails
through this edge service.

In this scenario, using an edge service represents TC. With multiple email vendors in the market, their prices and
features might change, necessitating a vendor switch. In such a case, updating the edge service to accommodate a new
vendor is faster and more cost-efficient than altering each service’s direct API calls to the email vendor. When you
switch vendor, you cash in your technical credit. However, if you never switch email vendors, you never exploit TC,
representing over-engineering or a YAGNI (You Ain’t Gonna Need It) feature — something agilistas caution against.
Manuscript submitted to ACM



105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

Technical Credit 3

This highlights why having deep knowledge of the domain, business, and product is essential as not every investment
will yield returns, underscoring the importance of strategic planning.

Business goal

System

has 1..*

Technical credit

has0..1

1..*

Technical credit item Design decision
caused

1..*

Artefact

associated with0..*

Reference architecture

Software product line

Framework

depends on0..*

Consequences

affects

0..*

causes 0..*

Quality impact

Cost impact

Process impact

Architecture impact

Fig. 2. Conceptual model of technical credit [5].

During the Dagstuhl Seminar 16162, Avgeriou et al. developed a conceptual model for TD [5]. Building on this,
Figure 2 introduces a conceptual model for TC. TC comprises of a set of items, each with associated causes and
consequences. The cause of TC is one or more design decisions. The consequences of TC impact the architecture
and its qualities, the system costs, and development process. For example, a particular design decision may enhance
the modifiability of a system, reducing the cost of future changes. Similarly. TC can affect the development process
by reducing delays when prescriptive and informative instruments are utilized. A TC item relates to one or more
specific, tangible artefacts. It should be noted that the above conceptual model does not account for approaches to TC
measurement and analysis, the activities necessary to manage TC, or the various states that credit may go through.

TECHNICAL CREDIT IN PRACTICE

Decisions leading to TC are inherently connected to a system’s business domain and product roadmap. However, not
all design decisions yield true TC: those not enabling cost-effective modifications in line with business objectives might
be deemed over-engineering. We create TC by crafting design decisions that ease future modifications anticipated by
the product’s roadmap. Thus, a design decision yields technical credit upon its utilization.

Drawing on extensive experience with product, architecture, and code reviews, we have identified examples of TC
across different application domains.

Platform Abstraction Layer. This strategy creates abstraction layers around third-party products and libraries, protecting
application code from external API changes. When these products need replacing, adjustments are made only to the
abstraction layer, not the application code. This approach exemplifies TC in reducing the effort and cost of major
modifications.

Manuscript submitted to ACM



157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

4 Ian Gorton, Alessio Bucaioni, and Patrizio Pelliccione

Architecture Fitness Function. A fitness function is an invariant that verifies the persistence of desired system properties
against changes [6]. For example, a run-time fitness function might monitor response times to keep them under a set
threshold, while a build-time fitness function might check for circular dependencies in the code. Fitness functions can
be viewed as a form of TC, providing developers with automatic alerts to potential issues that could cause adverse
effects down the line.

Stateless services. These services operate without maintaining conversational state, treating each request indepen-
dently with request-specific state stored externally, like in a cache or database. They are a critical component of scalable
applications as they allow the addition of service replicas and hardware instances without altering the code. Adopting
stateless services creates TC by easing the scaling process to accommodate higher loads.

Architecture Decision Records (ADRs). ADRs document key architectural design decisions and the involved trade-
offs, such as the results of a proof-of-concept prototype that led to the selection of a specific database over other
candidates. ADRs simplify understanding a system’s architecture, creating TC by streamlining planning for future
changes.

Circuit Breakers. This pattern is fundamental to building resilient micro-services-based systems, acting as safeguards
against transient performance degradation or complete failures of called services. Circuit breakers are TC as they guard
against cascading failures caused by slow responses to requests that lead to congestion, overload and eventual failure in
calling services. They ensure system resilience and facilitate its evolution.

Reference architectures (RAs). RAs capture the essence of the architecture of a collection of systems in a given domain,
serving prescriptive, descriptive, and informative roles. They guide the development, standardization, and evolution of
architectures within an application domain and aid decision-making by disseminating architectural knowledge. As
such, RAs are a form of technical credit.

A RESEARCH AGENDA FOR TECHNICAL CREDIT

We believe TCwarrants comprehensive investigation and scrutiny from the software engineering community. Analogous
to technical debt, we see three broad areas of research to explore [5]: (i) defining, comprehending, and operationalizing
the concept of value in relation to TC, (ii) investigating phenomena closely related to how TC operates in practice, and
(iii) establishing a shared infrastructure that enables all our research activities. Some specific Research directions that
can benefit from a more in-depth exploration of TC are discussed in the following.

• Identifying technical credit - How should a project team decide where to invest in technical credit? Answering this
question involves careful evaluation of criteria such as potential architectural impact, cost-benefit analysis, and
the likelihood of realizing the anticipated credit. All of these require insights into future product road-maps and
plans, which are inherently uncertain. Developing a solution to this challenge would allow teams to identify
design decisions that are most likely to yield high payback. The ICE Scoring Method1, commonly used in product
planning, offers a structured way to assess the impact, confidence, and ease of implementation for product

1https://www.productplan.com/glossary/ice-scoring-model/

Manuscript submitted to ACM

https://www.productplan.com/glossary/ice-scoring-model/


209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

Technical Credit 5

features. Adapting a similar method could help in identifying the most promising areas for TC investment by
quantifying their potential benefits.

• Identifying technical credit - How to benefit from technical credit? To realize the benefits of TC, it is important for
teams to be able to easily identify which TC items are generating value and which ones are not. This information
can help teams to better understand the impact of their decisions and to make more informed ones in the future.

• Quantifying technical credit - How to measure technical credit? Tools like SonarQube2 can be used to quantify
technical debt by estimating the effort to resolve it. In a similar way, teams need tools that can automatically
recognize and value TC, helping to track its benefits and guide resource allocation for the greatest effect.

• Deriving product value - How to measure the Return on Investment (ROI)? If we can quantify both TD and TC, it
may be possible to assign a value to individual design decisions, and to complete products. This could become a
crucial factor in evaluating decisions and product ROI, along with other elements such as revenue and customer
satisfaction. However, determining how to calculate this value requires further investigation and research.

In summary, we believe the concept of technical credit can positively impact the future of software engineering.
This article aims to inspire the software engineering research community to explore the concept of technical credit. By
identifying opportunities for practical implementation in conjunction with software practitioners, we can collectively
bring this valuable concept into engineering practice.

REFERENCES
[1] W. Cunningham, The wycash portfolio management system, in: Addendum to the Proceedings on Object-Oriented Programming Systems, Languages,

and Applications (Addendum), OOPSLA ’92, Association for Computing Machinery, New York, NY, USA, 1992, p. 29–30. doi:10.1145/157709.
157715.
URL https://doi.org/10.1145/157709.157715

[2] P. Kruchten, R. L. Nord, I. Ozkaya, Technical debt: From metaphor to theory and practice, Ieee software 29 (6) (2012) 18–21.
[3] M. Lemaire, Refactoring At Scale, " O’Reilly Media, Inc.", 2020.
[4] B. Berenbach, On technical credit, Procedia Computer Science 28 (2014) 505–512.
[5] P. Avgeriou, P. Kruchten, I. Ozkaya, C. Seaman, Managing technical debt in software engineering (dagstuhl seminar 16162), in: Dagstuhl reports,

Vol. 6, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.
[6] N. Ford, R. Parsons, P. Kua, Building Evolutionary Architectures: Support Constant Change, 1st Edition, O’Reilly Media, Inc., 2017.

2https://www.sonarsource.com/products/sonarqube/
Manuscript submitted to ACM

https://doi.org/10.1145/157709.157715
https://doi.org/10.1145/157709.157715
https://doi.org/10.1145/157709.157715
https://doi.org/10.1145/157709.157715
https://www.sonarsource.com/products/sonarqube/

	References

