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Abstract The recent advances in digitalization, improved connectivity and cloud 
based services are making a huge revolution in manufacturing domain. In spite of 
the huge potential benefits in productivity, these trends also bring in some concerns 
related to safety and security to the traditionally closed industrial operation scenarios. 
This paper presents a high-level view of some of the research results and technolog-
ical contributions of the InSecTT Project for meeting safety/security goals. These 
technology contributions are expected to support both the design and operational 
phases in the production life cycle. Specifically, our contributions spans (a) enforcing 
stricter but flexible access control, (b) evaluation of machine learning techniques for 
intrusion detection, (c) generation of realistic process control and network oriented 
datasets with injected anomalies and (d) performing safety and security analysis on 
automated guided vehicle platoons. 

1 Introduction 

Industry 4.0 is aiming towards convergence between industrial systems and IT infras-
tructures to enable higher levels of productivity through information sharing among 
all stakeholders. Digitalisation, automation, autonomy, artificial intelligence (AI), 
cloud computing, higher connectivity are regarded as key drivers the next industrial 
revolution. Breaking the traditional 5-level automation pyramid (“Purdue”) architec-
ture to enable interoperability, autonomy and seemless data transfers however comes 
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with some concerns, especially with respect to safety and security in the traditionally 
rigid industrial segments. 

As the future factories are envisioned to be flexible, adaptable and collaborative 
endeavours involving man and machines (“autonomous robots”) forming complex 
system of systems, their emergent behaviours are quite hard to fully characterise at 
design time. Majority of the factories also can be termed as safety critical systems 
since failures can often lead to adverse impacts not only on productivity but also 
on humans, infrastructure and environment. Here comes the mandatory and often 
legal safety requirements set forth by various generic/domain specific standards and 
machine directives. 

Security is one of the major focus aspects of the EU-funded InSecTT project 
(https://www.insectt.eu/). The ever-increasing landscape of cyber security threats, 
together with higher levels of connectivity and opening up of traditionally closed 
factories into Internet, pose many potential risks to productivity, safety of products 
and processes, as well as industrial repute. It becomes paramount to perform detailed 
hazard and risk analysis and careful planning of mitigation mechanisms to meet 
security requirements applicable to the targeted industrial domains. 

2 Background 

One of the key building blocks of the EU-funded InSecTT project is denoted as 
“BB3.1: Methodologies, concepts system solutions for enabling safety and security”. 
It focuses on cross-layer security analysis, concepts, and system solutions including 
the essential steps of revealing security requirements and performing a threat anal-
ysis, defining suitable security methodologies, planning mitigation and resilience 
strategies (on system level), and finally looking at defining (cyber-)security con-
cepts and solutions. The aim was to provide applied solutions as well more generic 
schemes, which can be used for a wider range of applications (e.g., cybersecurity in 
IoT system). Enabling safe system operation is of utmost priority for this task. 

The task participants were an excellent mix of industrial partners (ABB, INDRA, 
ISS RFID, Kaitotek, LDO, LCC, Nurd, Philips Research, TietoEvry and Westermo) 
and academic partners (Mälardalen University (MDU), CINI, RISE, UCC, UTwente, 
UPM), who together provided 50+ specific requirements. These requirements can 
broadly be classified into the following four themes addressing cross-layer system 
level concepts and solutions as indicated in Fig. 1:

• Security requirements and threat analysis: High level requirement analysis and 
analysis of various vulnerabilities and effects of cyber-attacks on them.

• Security methodologies, concepts and system solutions: Focus on design of sys-
tem/ application-level approaches and methods for identification of various secu-
rity vulnerabilities as well as proactive measures for avoiding them.

https://www.insectt.eu/
https://www.insectt.eu/
https://www.insectt.eu/
https://www.insectt.eu/
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Fig. 1 Cross-layer security analysis, concepts and system solutions

• IoT security, certification and key management: Device/edge level mechanisms for 
enabling secure infrastructures and architectures access control and for enforce-
ment of privacy.

• Mitigation and resilience strategies: Identification and implementation of adequate 
mitigation strategies to assure required levels of systems’ reliance and robustness. 

During the first half of the InSecTT project, a deep discussion on the individual 
partner contributions took place, elaborating on the various use cases, their align-
ments and possible synergies, resulting in the following six sub building blocks: 

(A) Access control and authentication infrastructure; 
(B) Intrusion detection systems; 
(C) IoT privacy and security mechanisms; 
(D) Secure IoT applications; 
(E) Security guidelines; 
(F) Tools and simulators. 

The grouping is mainly done to find synergies and collaboration than on unifica-
tion. In this chapter, we mainly present some of the research/technologies, relating to 
A, B, E and F, developed by a set of Swedish partners working closely in the realisa-
tion of two use cases related to smart collaborative manufacturing and secure network 
communications. Main critical aspects we focused on were ensuring safety/security 
of the industrial automation and control systems and security and privacy of the 
network infrastructure.
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2.1 Industrial Automation and Control Systems 

Industrial Automation and Control Systems (IACS) are used for operating a wide 
range of industrial applications, including critical infrastructure, such as power plants 
and clean water supplies [ 62]. The safe and secure operations of these systems are 
of utmost importance, for system owners from a business perspective, for private 
persons relying on reliable services and safe products, and for the society as a whole 
for supply of critical resources and as a basis of economical stability. 

There is a trend in Industrial Control System (ICS) architectures, transitioning 
from a hierarchical controller-centric model as described by the Purdue Enterprise 
Reference Architecture (PERA) [67], towards a network-centric design strategy using 
a common network back-bone [ 2, 32]. Driving forces behind this trend are techni-
cal advances as well as novel business models and market expectations related to 
flexibility and customization, etc. The trend is connected to the Industry 4.0 [ 21, 31, 
42] paradigm which is currently shaping the future of IACS, implying huge changes 
both from a business and technological perspective. 

The named developments have a fundamental impact on the technical level for 
how IACS are constructed, implying increased connectivity, higher diversity and 
complexity, and more classes of stakeholders taking part in the system. This makes 
cybersecurity a major concern. 

3 Selected InSecTT Technologies Targeting Security 
and Safety 

3.1 Access Control and Authentication Infrastructure 

Access control [ 58] is a crucial aspect of enhancing security in industrial systems [ 22], 
but it is still relatively underdeveloped compared to modern IT systems. 

At the beginning of the InSecTT project, a survey was conducted among cyber-
security practitioners within industrial organizations and companies in Sweden. The 
study was designed to sample which techniques and principles are used related to 
access control, what was the foreseen challenges in the area, and, possibly, to see 
if the technical maturity in access control usage was related to used cybersecurity 
standards. The study [ 36] focuses on two essential cybersecurity requirements: iden-
tification and authentication control. 

The purpose of performing the study was to increase knowledge on state-of-the 
practice and establish a starting point for further exploration, thereby bridging the 
gap between the current state and the requirements of emerging systems with regards 
to access control. 

Cybersecurity is an area were practitioners typically are reluctant in sharing poten-
tially sensitive information, which made recruiting respondents to the study difficult. 
The surveying activity received enough responses to analyze and give a broad picture
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of “what is out there”, but not enough to claim any statistical significance. Question-
naire was sent out to 350 organizations, which resulted in 40 respondents, some of 
which dropped out before completing the survey. 

In the part of the survey related to challenges, the respondents could answer in a 
free-text form. The answers were then analyzed, resulting in seven different themes: 

T1 Cost related to inclusion of secure HW components. 
T2 Cost of account management. 
T3 Increasing system complexity. 
T4 Lack of technical support and standardization. 
T5 Improper use of methods. 
T6 Regulations related to open market making implemented methods ineffective. 
T7 Increasing amount of cyber-attacks. 

Analyzing the perceived challenges indicated by the respondents, it becomes 
clear that they see increasing costs related to components (theme T1) as well as  
management effort (T2, T3) in relation to identification and account management. 
This may be an effect of increased system complexity driven by the Industry 4.0 
evolution, but also requirements related to evolving best practices. As an example, 
the cost for changing from shared user accounts to unique user accounts puts a 
significant additional burden on the account management process. 

The heterogeneity of the future industrial systems is seen as a big challenge (theme 
T4), with different component manufacturers choosing incompatible technical solu-
tions. A lack of standardization is mentioned by several respondents as an issue 
hampering effective account management in industrial systems. 

Three themes imply direct threats to the integrity of the industrial systems. Theme 
T5 indicates a lack of technical maturity leading to improper usage of the available 
methods. Theme T6 indicates that “right to repair”-regulations may force manu-
facturers to include mechanisms which could make authentication less secure. The 
theme T7 related to cybersecurity attacks on industrial systems are possibly wors-
ened by the previous two, as the likelihood of a successful attack will increase with 
improperly configured systems or inherently vulnerable mechanisms. Cybersecurity 
attacks and information leakages in other seemingly unrelated systems may have 
collateral impact also on industrial systems using unique user identifications, as 
password re-use over several platforms is a common issue. 

The perceived challenges illustrate the on-going technical shift from isolated to 
increasingly interconnected systems, with a resulting complexity and heterogeneity 
that currently used solutions cannot handle, requiring investments both related to 
technical components and system solutions for account management. The fear is 
that lack of standardization and improper usage of technical solutions may lead 
to more vulnerable systems, consequently increasing the likelihood of successful 
cybersecurity attacks. 

It is clear that detailed access control used correctly will improve security char-
acteristics of a system, but there are risks of complexity and heterogeneity making 
management efforts too costly and difficult. An advanced security mechanism which
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is poorly configured can be worse than a very simple one used correctly. In the light of 
these challenges, we wanted to develop approaches and methods for handling access 
control in support of the emerging IACS characteristics, which are practically useful 
with regards to management effort and adherence available industrial standards. 

Dynamic manufacturing is a well-established development of industrial automa-
tion and control systems. Manufacturing environments have, to a large extent, been 
optimized for high-volume production to a low per-item cost. This has led to highly 
specialized and optimized factories with a high complexity. These factories are prone 
of being difficult and expensive to retro-fit for changing demands or requirements. 

Smart manufacturing [ 12, 47] and modular automation [ 30, 70] are design strate-
gies optimized for being adaptable and customizable, in order to easily ramp up 
or down production, adapt to new innovations or specific customer requirements, 
etc. The resulting systems are dynamic manufacturing environments, which exhibits 
different levels of dynamicity, e.g., for modular automation, as follows. 

1. Dynamic system composition–available processing modules and how they are 
interconnected change over time, due to changing high-level requirements. 

2. Dynamic production schemes–available and active recipes describing the produc-
tion workflow change on a daily basis, based on business requirements. 

3. Dynamic operations–during recipe execution, different steps of the recipe-
workflow are activated, implying different processing operations being executed. 

In order to follow the principle of least privilege, being one of the fundamental 
practices within the access control theory [ 56], the rules of access control should 
adapt to the current system state. One difficult challenge arises on how to formulate 
access control policies to be sufficiently close to the least-privilege principle, while 
keeping the engineering effort related to policy formulation on a manageable level. 

To investigate this challenge for dynamic manufacturing systems, we performed a 
study looking at five access control strategies, where three are currently being used, 
and two progressively aim towards a thought ideal. 

All the strategies were implemented and evaluated in a simulation experiment 
with a number of attack scenarios, clearly showing each strategies relative effective-
ness toward different attacks. As part of the study we also developed a method to 
automatically generate access control policies based on already available engineer-
ing data, targeting the challenge of minimizing the management effort of upholding 
policies close to the least-privilege principle. Details on the strategy evaluation and 
developed methods are available in [ 35]. 

Policy models [ 57] are focusing on the primitives and logic used for describing 
access control rules. As important are policy enforcement models, which describe 
the components needed, and their interactions, in order to ensure that the formulated 
policies are followed. 

Our study [ 37] looked into how an access control enforcement architecture apt for 
dynamically changing access control scenarios of dynamic manufacturing systems 
could be constructed. Dynamic access control is not widely used in IACS, but it is 
highly relevant for the evolving system types which are inherently dynamic. Four dif-
ferent enforcement architecture models are investigated and evaluated based on three
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important metrics: resource server workload, network, load, and flexibility. The two 
most promising models required policy delegation mechanisms using access tokens. 
Four different variations on how to encode policy decisions into access tokens are 
provided and discussed with regards to available support in the Open Process Com-
munication Unified Automation (OPC UA) standard [ 49]. Finally an implementa-
tion is performed, using a combination of one of enforcement models and delegation 
mechanisms, e.g., detailing the authorization protocol, access token encoding logic, 
and policy decision logic in the resource server. Separate studies [ 38, 52] are per-
formed evaluating quality metrics on different aspects of the proposed OPC UA 
authorization protocol. 

3.2 Intrusion Detection Systems 

One of the biggest challenges in the network security research area is identifying 
malicious activities on time and mitigating them promptly. The process of analyzing 
network traffic to identify signs of malicious activity is called intrusion detection [ 41] 
and a system that automates this process is called the Intrusion Detection System 
(IDS) [ 8]. There are two common methodologies that IDSs use to identify threats: 
signature-based and anomaly-based [ 59]. A signature-based IDS monitors network 
packets and searches for patterns that correspond to known network attack types. 
Anomaly-based IDS learns the general behavior of normal network traffic and raises 
an alarm when significant deviations are detected. 

In recent years, Machine Learning (ML) has become a popular and effective 
method for developing new anomaly-based IDS [ 9, 17, 46, 60, 65]. 

ML is the part of AI where algorithms learn patterns from datasets without explicit 
instructions [ 55]. It can be divided into the following areas:

• Supervised Learning (SL): algorithms within the SL category use input-output 
pairs to learn a function that maps from inputs to outputs;

• Unsupervised Learning (UL): algorithms within the UL category learn patterns 
within the input data without any output information given in the training phase;

• Reinforcement Learning (RL): algorithms within the RL category learn by trial 
and error. A specific “reward” or “punishment” is given depending on their actions 
and consequences. 

Various ML algorithms were applied to existing datasets either to separate normal 
traffic for the malicious one (binary classification problems) or to detect specific 
attack types (multiclass classification problems). Buczak et al. [ 10] did a focused 
literature survey of ML methods used in IDSs and recognized some of the most 
commonly used methods such as Random Forest (RF), Decision Trees, density-based 
clustering algorithms (e.g., DBSCAN), Support Vector Machine (SVM), Artificial 
Neural Networks (ANN), Naive Bayes (NB), association rules, etc. Many studies in 
this area analyze the accuracy of different ML algorithms on different benchmark
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datasets. Revathi et al. [ 53] presented an evaluation of supervised ML algorithms (RF, 
J48, SVM, Classification and regression trees and NB) for multiclass classification on 
one dataset (NSL-KDD) and derived the conclusion that RF has the highest accuracy 
compared to all other algorithms. Abedin et al. [ 4] worked on the same problem by 
applying NB, J48, NBTree, Multilayer Perceptron (MLP), and RF and their findings 
were that J48 and RF had the best performance. Tuan et al. [66] evaluated SVM, ANN, 
NB, Decision Tree, and unsupervised ML on the UNBS-NB 15 and KDD99 datasets. 
This paper considered only the Distributed Denial of Service (DDoS) attacks and 
unsupervised ML was the best at differentiating between DDoS and normal network 
traffic, but it was not specified which unsupervised ML algorithms were used. There 
are several papers that evaluate a single ML algorithm on one or more benchmark 
datasets, such as different types of neural networks [ 9, 24, 28, 54, 68], RF [ 16], 
SVM [ 50], K-means [ 29], etc. 

Most of existing works focus on evaluating ML algorithms on a single dataset or 
on evaluating single ML algorithm on multiple datasets. Also, most of the papers 
focused only on binary or multiclass classification. 

Our research efforts in the EU-funded InSecTT project with respect to intrusion 
detection had the following overall objectives:

• Apply multiple methods on multiple datasets and compare their performances.
• Extend the SOTA anomaly classification problem.
• Extend the SOTA and SOP for the realization of federated learning in industrial 
contexts with resource constraints.

• Study the pros and cons of existing datasets and design new more realistic datasets 
and simulators to suit the manufacturing and networking domains. 

In this section, we briefly present our results on the first three objectives, while 
the fourth one is addressed in Sect. 3.3. 

As previously mentioned, AI is used as an IDS by many authors on different 
datasets, but the test results are usually limited in terms of algorithms, datasets or 
problem that was solved (anomaly detection or anomaly classification). 

In [ 39], we made a more complete comparison including a total of 5 supervised 
learning algorithms (ANN, SVM, KNN, LDA, RF) and 3 unsupervised learning 
algorithms (K-means, mean-shift and DBSCAN) tested for anomaly detection and 
anomaly classification on 4 datasets (KDD99, NSL-KDD, UNSW-NB15 and CIC-
IDS-2017). The results showed that RF, KNN, and SVM were the algorithms that 
performed the best in terms of accuracy. If in addition training and testing time are 
considered, RF emerges as the best option. 

Now we know which ML method is more suitable for the desired problem. How-
ever, we believe that more layers of security are needed. For this reason, we proposed 
a Federated Learning (FL) framework that increases the security of data [ 44]. The 
framework is used on different clients (i.e., routers) that receive packages. On each 
client, a different RF is implemented and trained on the edge. RF is selected because 
of the various reasons that are proved by the experiments presented in the previous 
paragraph: the best performance and a reasonable time to be implemented in a real-
time scenario. On top of that, RF is the algorithm with a high degree of explainability.
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Fig. 2 Architecture of the Federated Learning Framework based on RF [ 44] 

After training the models on different clients, these are sent to the server where a 
new super RF is created as a combination of them. Then, this final model is sent back 
to the clients to perform anomaly detection and classification. An overview of the 
framework is presented in Fig. 2. The results of the experiments clearly showed that 
combining the different RF algorithms is beneficial for the algorithm performance, 
increasing the detection rate. With this framework, we avoid distributing the data 
through the network to create the model in the server with all the data available, 
which protects the data in a sense, since after training the models, these data can be 
deleted and the risk of an intruder accessing the data is eliminated. 

Subsequently, we proposed a second framework in which data, in this case, could 
be shared between different entities, because the data are encoded [ 40]. This frame-
work uses an autoencoder (type of ANN [ 19]) to encode the data used by the ML 
algorithm to detect or classify anomalies. The novelty lies in the use of an optimiza-
tion algorithm called Differential Evolution (DE) [ 61] to train the autoencoder. It 
uses two objectives to find the best model: (a) the error of the autoencoder when 
trying to decode the encoded features, and (b) the accuracy of a ML algorithm. The 
results show that for the algorithms that obtained the best performance in our first 
comparison [ 39], the performance is reduced by a small amount. On the other hand 
for the algorithms that could not perform high-quality anomaly detection or classifi-
cation, performance increased significantly. Furthermore, the method is compared to 
the principal component analysis [ 3] obtaining better results for anomaly detection. 
An overview of the presented framework is given in Fig. 3. With this method, we can 
send the encoded data through the network with the certainty that no intruder will be 
able to decode the data since the model is needed for decoding. An additional benefit 
of this method is that by using autoencoder, we are able to recover the original data, 
which is not possible by the majority of the well-known encoding methods.
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Fig. 3 Proposed framework for feature encoding [ 40] 

3.3 Tools, Simulators and Datasets 

The majority of experiments in the area of intrusion detection were conducted 
using one or more benchmark datasets [ 18]. Some of the well-known IDS datasets 
are: KDD99, NSL-KDD, UNSW-NB 15, CIDDS-001, CICIDS2017, CSE-CIC-
IDS2018, etc. All of those datasets consist of a combination of normal and malicious 
traffic. Data about network packets were preprocessed to create the features, and 
every entry was labeled as normal activity, or as some type of network attack. 

The impossibility of testing in operational industrial systems due to security issues 
leaves a gap in the environment for testing and measuring the impact of cyber threats 
and the development of defense systems. There are some real ICS testbeds in the 
world, such as the national SCADA testbed or Swat, a small-scale water treatment 
center. However, these testbeds are not accessible by all researchers. Building such 
an environment is also a pretty time-consuming and expensive process. Besides, 
scientists should deal with a vast range of unrelated technical problems that needs 
HW knowledge. These barriers have led many security researchers, especially those 
who want to use AI and ML methods for attack detection, to use available datasets for 
their experiments. Intrusion detection using prepared datasets prevents researchers 
to define customized test conditions or change the type of attack on the industrial 
systems. Therefore, a tool to create a virtual industrial control system cable to perform 
cybersecurity research will be a great asset for researchers. 

3.3.1 ICSSIM–A Framework for Building Industrial Control Systems 
Security Testbeds 

The importance of studying cyberattacks, testing ICSs, and creating defense mech-
anisms cannot be overstated. However, due to safety concerns, conducting these
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studies on operational ICSs is often not allowed. One solution is to use a small-
scale pilot ICS as a test environment, but these testbeds are not widely accessible, 
can be time-consuming and expensive to build, and require hardware knowledge to 
overcome various technical issues [ 20], as mentioned in Sect. 3.3. As a result, many 
security researchers, particularly those using machine learning methods for attack 
detection, resort to using existing datasets for their experiments. But using these 
datasets limits the ability to customize test conditions or change the attack type on 
industrial systems. Thus, a tool to create a test environment for ICS security would 
be valuable for researchers and practitioners alike. 

After thorough analysis, we have reviewed numerous publications introducing 
various testbeds and simulation tools for ICS [ 6, 11].  Based on this review,  we  have  
compiled a list of essential features for a testbed. As a significant contribution to 
the EU-funded InSecTT project, we introduce ICSSIM [ 13], a framework designed 
to facilitate the creation of virtual testbeds for in-depth exploration of diverse cyber 
threats and network attacks within ICSs. ICSSIM has a set of base classes for model-
ing ICS components and communication. Notably, this framework allows deploying 
its simulated components onto hardware such as Raspberry Pi and containerized plat-
forms like Docker. Furthermore, ICSSIM offers comprehensive support for physical 
process modeling, incorporating both software and hardware-in-the-loop simulation 
techniques. 

The primary objective of ICSSIM is to expedite the development of ICS com-
ponents, resulting in the creation of versatile, reproducible, and cost-effective ICS 
testbeds that capture real-world details. The efficacy of ICSSIM becomes readily 
apparent through the practical demonstration of its capabilities. In this context, we 
have leveraged ICSSIM to construct a testbed, showcasing its versatility in simulat-
ing various cyberattacks. We have implemented several attack scenarios within this 
environment, including Man in the Middle attack (MITM), DDoS attack, reconnais-
sance attack, false data injection using MITM, replay attack, and command injection 
by considering various attack scenarios. 

We also published the ‘ICS-Flow’ dataset [ 15], created through sample security 
experiments in this environment. We presented the ICS-Flow dataset for ML-based 
IDS evaluation through supervised and unsupervised methods. The dataset was gen-
erated using the ICSSIM simulator, which emulates the ICS of a bottle-filling fac-
tory in a ‘Hardware in the Loop’ simulation and utilizes realistic industrial protocols 
such as Modbus. Network data and process state variable logs were recorded dur-
ing normal operations and during four common cyberattacks. The ICS-Flow dataset 
includes raw network data, network flow data, process variable logs, and attack logs 
for ML-based anomalous record detection and sequence detection. We demonstrate 
the effectiveness of the ICS-Flow dataset by applying decision tree, random forest, 
and artificial neural network models for anomaly and attack detection, showing that 
the dataset can be effectively utilized for training ML models for intrusion detection.
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Fig. 4 User interface of simulation environment for modular ice cream factory example, including: 
production process visualisation, anomaly injection and anomaly detection [ 33] 

3.3.2 Modular Ice Cream Factory Simulator and Anomaly Injections 

ABB and MDU developed a simulation environment to represent a modular manu-
facturing system [ 33, 34]. This environment is composed of simulated sensors and 
actuators and was built using the modular automation design strategy [ 30, 48, 69]. 
It allows easy configuration and combination of simple modules into complex pro-
duction processes. Sensor and actuator signals are exchanged with controllers using 
the Message Queue Telemetry Transfer (MQTT) protocol [ 1]. Synchronization of 
the overall process is performed using high-level recipe orchestration, utilizing OPC 
UA [ 49] client/server communication. The simulation environment is presented in 
detail in [ 34]. Visualisation of the current state of the simulated process is provided as 
a simple Graphical User Interface (GUI) that contains visual representations of mod-
ules, their interconnections, and current values of the parameters. Additionally, there 
is functionality that enables users to manually inject different types of anomalies into 
analog sensors during the production process. 

An example of the use of the simulation environment is a modular ice cream 
factory, in which, as shown in Fig. 4, the simulation engine is configured to simulate 
the behavior of six separate modules: a mixer, a pasteurizer, a homogenizator, an 
ageing and cooling module, a dynamic freezer, and a packaging module. 

This setup was used to create an open dataset named Modular ice cream factory 
Dataset on Anomalies in Sensors (MIDAS) [ 45] that contains various anomalies in 
analog sensors and can be used for ML research in modular manufacturing systems. 
The anomalies were injected using a script that automatises the anomaly injection pro-
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cess, injecting anomalies to modify values of different sensors during different stages 
of the simulated process, with different values of parameters for a specific anomaly 
that is injected. The anomaly injection occurs in a randomly selected moment, either 
with an increasing or a decreasing trend, when the sensor value changes. The dataset 
contains a separate CSV file for each of 1000 runs, where 258 runs represent normal 
behaviour and 742 runs contains anomalies, with three different types of anomalies 
(Freeze, Step, and Ramp). It has 36,124,859 instances, where 49.67% instances that 
represent normal behaviour, and 50.33% instances contain anomalies. The distribu-
tion of instances between normal behaviour and each anomaly were Normal (50%), 
Freeze (15%), Ramp (17%), and Step (18%). 

The generated dataset was used to evaluate different supervised ML algorithms 
(Logistic Regression, Decision Tree, Random Forest, and MLP, as well as a time-
series ML algorithm (Long-Short Term Memory–LSTM)) for two different prob-
lems: anomaly detection and anomaly classification. Experiments showed that using 
the temporal information into LSTM network performed better than the non-temporal 
ML algorithms [ 43]. We decided to integrate the LSTM model into the demonstrator 
to provide reliable anomaly detection functionality. 

3.3.3 Virtualization and Emulation of Industrial Network 
Topology–Westermo 

Many of Westermo’s products–switches and routers for harsh industrial settings–run 
the Westermo operating system (WeOS). In order to verify that WeOS is operating 
as expected after code changes and extensions, a significant effort has been invested 
in automated software testing of the devices [ 63]. 

In the ideal case, software has a low fail rate and high reliability once it is devel-
oped, see blue curve in Fig. 5. However, in reality, there are typically updates during 
the useful life of the software (red curve) [ 5, 51]. There is thus a strong need for 
quality assurance, software testing and preferably automated software testing. 

When testing embedded systems, at some point one has to run it on physical 
hardware to verify timing and other non-functional characteristics related to hardware 
and the software-hardware integration. For this purpose, several physical test systems 
have been constructed at Westermo. There is a significant amount of physical test 
equipment, it weighs more than a tonne, requires redundant air conditioning and fills 
several large rooms. Since some years, many of the pure software parts of WeOS 
can run in a virtual environment, which enables testing of significant parts of WeOS 
without any hardware. There are thus a number of test systems constructed where 
the physical devices have been replaced with purely virtual digital twins, QEMU has 
been an important enabler. 

A challenge that may occur when developing new software is to get access to 
hardware that supports it, in particular when new hardware models are developed 
in parallel with the software development. In Fig. 6 the timing of one software 
development sub-project from Westermo is illustrated. In blue, we see the trend of 
failing tests when running WeOS on virtual test systems, and in red the same trend on
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Fig. 5 Typical curve for software reliability (image from [ 5], used with permission) 

Fig. 6 Ratio of tests that fail, from an experimental development branch, over more than three 
months. Blue curve illustrates virtual test systems, and red physical test systems (image from [ 5], 
used with permission) 

test systems with physical devices. There are two relevant observations to be made. 
First, testing on physical hardware is postponed, in this case only by two weeks– 
anecdotally, we know that this can be much more. Second, some bugs in the software 
are only visible on physical hardware (red peak at about 40 days). For this reason, we 
wished to explore hybrid test systems, where some if not most parts of a test system 
were virtualized whereas one or a few devices were physical. An overview of how 
this could be implemented is illustrated in Fig. 7.
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Fig. 7 Example of how a hybrid test system could be created (image from [ 5], used with permission) 

During the InSecTT project, such hybrid test systems were explored with different 
activities followed by a standardisation and refinement phase. The results indicate 
that testing software modifications could start earlier, that certain software issues 
could be reproduced more reliably, when compared with testing in a purely virtual 
environment, in particular with respect to the reality gap and timing issues. Further-
more, some of the challenges with pure hardware environments are reduced (e.g., the 
need for hardware is reduced, which has become a problem due to the chip crisis). 
On the other hand, one can expect test systems with only hardware to more reli-
ably mimic customer settings, therefore, hybrid systems can be expected to be less 
reliable. Furthermore, industry practitioners expressed concern that virtual-only test 
systems may lead to false positives when testing, but how more reliable hybrid test 
systems are when compared to virtual test systems remains to be explored [ 5]. 

A second technology Westermo have worked on during the EU-funded InSecTT 
project, is to run an AI inside a container in a Westermo router, see Fig. 8. For this 
work, Westermo developed a container feature in some WeOS versions on some 
hardware products (see A in Fig. 8). Thanks to InSecTT project activities, Westermo 
now has a rather mature container support based on cgroups which is a common 
container technology (though not as well known as Docker). Towards the end of 
InSecTT, we started implementing an AI for our containers (B in Fig. 8). The first 
step was to explore how well this worked in practice, and the limitations of the 
resources in the hardware. Preliminary results were mixed, hardware restrictions 
were acceptable, and many but not all anomalies were detected [ 23]. In future work, 
we could explore distributed or federated AI (C), or if a fog or cloud-based AI is 
better for this industrial context (D). 

A third track of work from Westermo in InSecTT is collecting a realistic dataset for 
supporting AI research. To achieve this, Westermo teamed up with partners (MDU, 
RISE and TietoEVRY), to define and implement a data collection scenario. In our 
previous experience, when releasing a dataset [ 64] from the parallel research project 
AIDOaRt, we set up information security risk workshops. This practice was also 
used in InSecTT, and the network traffic dataset has now been published for the 
general public on GitHub [ 64].
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For the data collection, a test system with six Westermo devices, five Raspberry Pi 
devices and two laptops has been built. On the Raspberry Pi devices, we ran ICSSIM 
(see Sect. 3.3.1), two had the role of HMIs, two were PLCs, and the fifth simulated 
the physical world, see Fig. 9. Using port forwarding we redirected all network traffic 
from three Westermo devices to a PC where it was collected with tcpdump. During the 
data collection we conducted seven types of changes, misconfigurations or attacks, 
intermixed with periods where the network was not disturbed. The disturbances were: 

1. Misconfigured IP: a random WeOS device has its IP address changed. Instead of 
a correct one, like 192.168.0.1, we would swap the second and third octet, into 
192.0.168.1. After some time, the address would be corrected. 

2. Duplicated IP: a random WeOS device is given the same IP address as another 
WeOS device. After some time, the address is corrected.
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3. Acceptable SSH traffic: Using SSH with a correct username and password, we 
log in and check the contents of a log file, and log out. 

4. Password guessing: By using usernames and passwords based on the Mirai Mal-
ware 1 we generate many parallel attempts to log in over SSH. 

5. Port scan: Using nmap, we scan the ports of one or several devices in the network. 
6. MITM: Using the attack toolbox of ICSSIM, we launch a MITM attack and 

rewrite values in modbus packets. 

By including both human misconfiguration, attacks, as well as benign distur-
bances, we aim at supporting work on distributed AI and anomaly detection with 
this dataset. We speculate that it can also support work on where an anomaly detection 
system ought to be placed in the network (e.g., close to PLCs). 

The Westermo network traffic dataset was used to evaluate ML algorithms with 
centralized, local, and federated approach for anomaly detection in network data 
[ 14]. We used different supervised ML algorithms in local and centralized approach, 
including: Logistic Regression, SVM, ANN, KNN, Decision Tree and RF. RF and 
ANN exhibited superior performance and were implemented in a federated setup. 
The experiments showed that federated version outperforms the local models, and 
achieves comparable or even superior results compared to the centralized model, 
while ensuring data privacy and confidentiality of sensitive information. 

3.4 Safety and Security Analysis for AGV Platooning 

There is an increasing trend of Automated Guided Vehicles (AGVs) and platooning. 
AGVs are an integral part of the Industry 4.0 [ 26]. Their platooning tends to improve 
overall safety, security and operational efficiency of production site. The published 
studies on platooning focus mainly on the design of technical solutions of automotive 
domain, but not considered the AGV platooning in production sites and Industry 4.0. 
We presented a platooning strategy which not only provides a means to control 
overall traffic flow at production site and reduce resource usage but also manage 
transportation risks in a dynamic manner. However, the automation, digitalisation 
and connectivity of AGVs with each other or with the infrastructure significantly 
pose the safety and security issues [ 25, 26]. A security attack or a single failure 
in one AGV could lead to unsafe behaviour of whole platoon that can potentially 
harm humans (injuries or even deaths) or create damages to machines, property or 
the environment. The safety-critical systems can only be regarded as safe if they are 
also secure. The literature highlights a dearth of comprehensive research on different 
aspects of vehicle platooning including safety and security analyses [ 7]. There is 
a need for comprehensive studies to deal with the situations such as joining and 
leaving platoon in production sites, connectivity with fog and cloud servers, system 
or component failures, security attacks, and influencing environmental factors.

1 https://github.com/jgamblin/Mirai-Source-Code. 

https://github.com/jgamblin/Mirai-Source-Code
https://github.com/jgamblin/Mirai-Source-Code
https://github.com/jgamblin/Mirai-Source-Code
https://github.com/jgamblin/Mirai-Source-Code
https://github.com/jgamblin/Mirai-Source-Code
https://github.com/jgamblin/Mirai-Source-Code
https://github.com/jgamblin/Mirai-Source-Code
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Established safety and security analyses methods such as the hazard and threat 
analyses are performed during design and development phase by using the Hazard 
and Operability (HAZOP) and Threat and Operability (THROP) techniques, respec-
tively. We considered the interactions of collaborative autonomous systems with one 
another, and to the fog controller that, in-turn, interact with the cloud infrastructure. 
To perform the HAZOP and THROP analyses we establish a list of guide words (e.g., 
no/not, false/fake, incorrect, increase/exceed, unavailable, unintended, exploit, other 
than, etc.) and systems parameters/functions, such as sensors, actuators, communi-
cation and connectivity (e.g., WiFi, 4G/5G, IoT devices, fog) and type of messages 
(e.g., request, response, and command). As the collaborative autonomous systems 
underlie the need for dynamic risk management, the data is gathered to monitor sys-
tems operations, identify unexpected or incorrect behaviour, evaluate the potential 
implications and trigger control actions to resolve them. 

We presented the overall approach for a fault- and threat tolerant platooning for 
materials transportation in production environments with detailed analysis in [ 27]. 

4 Novelty and Applicability of Proposed Technologies 

Adaptable access control rule inference and enforcement are based on industrial 
standards. The technologies used for the enforcement architecture uses available 
standardized components, e.g., OPC UA for the communication stack, and JWT 
for access tokens, which makes the suggested solution applicable in any domain 
utilizing these standards. The publications both present novel material, and some of 
the enforcement architecture mechanisms developed are currently being evaluated 
for potential IP protection. 

We have proposed a structured approach for generation of datasets on sensor 
anomalies in manufacturing context (both manual and automatic injection of anoma-
lies supported). The architecture of the use case and the various simulation modules 
are following the modular automation principles, thus allowing easy evolution and 
adaption of the systems and related validation efforts. This also helps in quick security 
analysis through focused testing efforts. Our ML algorithms comparisons are based 
on a larger set of algorithms applied on multiple well-known anomaly datasets. 

The ICSSIM is built based on container technology, which means that ICS com-
ponents run on isolated operating system kernels. Moreover, simulated containerized 
components such as PLCs, HMIs, or HW in a loop (HIL) processes could be run on 
simulation engines such as GNS3 or emulation environments such as Docker con-
tainers, or they could totally be replaced with physical entities. It also has a stub for 
SW simulation of HIL to simulate the control process. Moreover, ICSSIM has inter-
faces to communicate with the HW through the file to use real HW for the process. 
ICSSIM can be used for simulation of any ICS. 

This creation of a virtual network topology by Westermo is enhanced by addition 
of their test framework that can be used to test any functionality in an industrial 
network topology, not limited to ICSs. This can also run automatically with follow
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up of test results. A true first step of a digital twin (DT) that can be valuable for 
ensuring network security in diverse manufacturing setups is to enable even online 
detections and mitigations. 

5 Conclusions and Future Perspectives 

In this chapter we have presented some of the research outputs and technology con-
tributions realised as part of the EU-funded InSecTT project. The presented works 
show fruits of extended industry-academia collaboration to solve important chal-
lenges related to safety and security in manufacturing environments. The industrial 
partners are keen on exploiting the above results as evidenced by patent applications 
and tools being inducted. We are currently continuing the work in several directions 
such as studies to include wider coverage of ML models, integrating federated learn-
ing model into resource-constrained network switches and further demonstrations in 
other contexts such as smart-cities. 
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