
Time Series Anomaly Detection using Convolutional
Neural Networks in the Manufacturing Process of

RAN

Cristina Landin∗, Jie Liu†‡, Katerina Katsarou‡, Sahar Tahvili†§∗School of Science and Technology, Örebro University, Örebro, Sweden

cristina.landin@oru.se
†Product Development Unit, Cloud RAN Development Support, Ericsson AB, Stockholm, Sweden

{anna.a.liu, sahar.tahvili}@ericsson.com
§ Innovation and Product Realisation, Mälardalens University, Eskilstuna, Sweden

‡Technical University of Berlin, Germany

a.katsarou@tu-berlin.de

Abstract—The traditional approach of categorizing test results
as ”Pass” or ”Fail” based on fixed thresholds can be labor-
intensive and lead to dropping test data. This paper presents
a framework to enhance the semi-automated software testing
process by detecting deviations in executed data and alerting when
anomalous inputs fall outside data-driven thresholds. In detail,
the proposed solution utilizes classification with convolutional
neural networks and prediction modeling using linear regression,
Ridge regression, Lasso regression, and XGBoost. The study
also explores transfer learning in a highly correlated use case.
Empirical evaluation at a leading Telecom company validates the
effectiveness of the approach, showcasing its potential to improve
testing efficiency and accuracy. Despite its significance, limitations
include the need for further research in different domains and
industries to generalize the findings, as well as the potential biases
introduced by the selected machine learning models. Overall, this
study contributes to the field of semi-automated software testing
and highlights the benefits of leveraging data-driven thresholds
and machine learning techniques for enhanced software quality
assurance processes.

Keywords–Software Testing, Test Optimization, Machine Learning,
Imbalanced Learning, Moving Block Bootstrap

I. INTRODUCTION

The concept behind anomaly detection in software testing

is examined, classified, and improved based on the belief that

software testing can be automated to a greater extent [1]. Real-

world applications and testing of these applications have been

emphasized throughout this study. In fact, wireless device

companies are facing fierce competition in the market, where

cost efficiency and innovative solutions play a critical role

in their success. To remain competitive, these companies

need to continually design and manufacture products that

meet the ever-increasing demand for high-quality wireless

connectivity. Additionally, telecom operators globally are

striving to optimize their network performance to enhance

testing efficiency and capacity. Despite significant research

efforts and industry advancements in recent decades, achieving

this common goal has proven challenging [2], [3]. In addition,

the radio access network (RAN) testing, data collection, and

debugging analysis, demand engineers to incorporate automatic

management algorithms to relieve data and help the Mobile

Networks operate. Typically, a software engineer (SE) will go

through several steps to ensure that the software complies with

specifications before releasing it to the clients [2]. However,

these processes demand engineers to incorporate automatic

management algorithms to relieve data and reduce manual

work [4]. Unfortunately, the interpretation of requirement

specifications by SEs can be either too strict or too open,

leading to inefficient testing sequences and wasting important

resources at the production stage. As software complexity

increases, software testing becomes more challenging for

the SEs. Semi-automatic and automatic software testing is

becoming increasingly necessary to address this issue. Although

some semi-automated tools have improved software testing

methodologies, many software tests are still executed manually

or use rule-based methods, which are ineffective, expensive,

and error-prone [5]. Besides, several issues remain unanswered,

including when to stop testing software is economically feasible.

Therefore, there is a pressing need to develop more efficient

and effective software testing solutions.

To overcome these challenges, companies need to optimize

their test processes and find possible anomalies early in the

development cycle. This can help to reduce costs, improve the

efficiency of the testing process, and ensure that the product

meets the quality standards before release. Moreover, with the

advent of new technologies such as machine learning (ML)

and deep learning (DL), it is now possible to automate some

parts of the testing process and improve the effectiveness of

the testing. By incorporating these new techniques into the

testing process companies can stay ahead of their competitors

and deliver high-quality products to their customers.

This study aims to improve the product test cycle by

optimizing the software test execution and finding possible

anomalies ahead of time. It introduces a new framework to

detect the divergent points which have potential risks of failing

on the final test results based on data-driven thresholds. Our

90

2023 IEEE International Conference On Artificial Intelligence Testing (AITest)

2835-3560/23/$31.00 ©2023 IEEE
DOI 10.1109/AITest58265.2023.00023

model predicts future outcomes using different AI techniques

and labels the inputs, where the test process raises the alarm if

a new point crosses these thresholds. Combining and enhancing

testing techniques using AI can improve effectiveness while

investigating how software testing results can be automated

increases efficiency and optimize production resources.

The manufacturing testing process of the latest products often

involves collecting data that is time-series in nature, making it

challenging to analyze and identify potential anomalies. This

paper proposes a solution that models the time-series data using

DL techniques and applies data-driven thresholds to predict

future outcomes and identify potential risks ahead of time.

Furthermore, as it is well known, in industrial applications, data

sets are often imbalanced due to the nature of the manufacturing

process, which leads to biased predictions and inaccurate results.

To address this matter, the paper discusses the use of data

augmentation techniques to balance the data and improve the

accuracy of the model. By incorporating DL solutions, data

augmentation techniques, and dynamic thresholds, the proposed

framework aims to improve the efficiency and effectiveness

of the manufacturing testing process and reduce the risk of

product failures.

Nevertheless, our proposed framework is not only applicable

to our company but can also be widely employed for similar

cases of anomaly detection for one-dimensional data with self-

correlations in time-series data, and for detecting potential

risks at an early stage. This study also aims to contribute to

the broader industry knowledge of DL and transfer learning

and to encourage the adoption of ML methods to address real

production problems in the telecommunication domain.

II. BACKGROUND

A. Test Optimization on the production process

Base stations (BSs) make possible mobile communication.

Since a BS radiates and receives electromagnetic waves,

it needs to comply with safety limits. Therefore, Telecom

companies adhere to national and international regulators

which influence directly the definition of the product’s test

requirements and dictate what is expected from the product.

The test requirements contain a set of test cases, which in turn

define what and how to test and the expected results out of fixed

thresholds. A test suite is a collection of test cases and describes

how these are being executed. The test suite can be executed

sequentially or in parallel, based on several conditions such

as test case dependencies or test infrastructure limitations. If a

test suite is executed sequentially, the total test time is assumed

to be the sum of all test cases. Furthermore, if a failure occurs,

(i.e., results fall beyond the fixed thresholds), the test case

should be either re-tested or the total test sequence needs to be

stopped for this unit and continues for another unit. However,

test outcomes based on fixed thresholds do not usually show

complete information on how the test results are distributed

within the fixed limits or how they are evolving through time as

long they fall within their specifications. Test optimization on

the test suite execution is desired due to the cost of production

steps. Therefore, early prediction of manufacturing outcomes

can help the testing team to avoid the waste of unnecessary

resources while still keeping the quality of the product. The

above-mentioned issue becomes a challenge to real applications

in the industry due to the multidimensional input data and the

different parameters involved in the production process of

different domains as described in the following subsections.

B. Time-series modeling

Time-series data is a sequence of observations of the same

source that are measured consecutively over time and can be

linear or nonlinear. In either case, historical data can be modeled

using regression models [6]. In the context of testing, the

execution of a unit in a software system is typically performed

as a sequence of test cases, and the output of each test case is

recorded over time. In our testing process, for each test case,

there are three pieces of data: the test case number, the test
unit, and the time stamp. When a new unit is introduced to the

testing infrastructure, it undergoes a series of test cases, and its

final outcome, i.e., the sum of the test case outputs, is saved

for future analysis. To simplify the time series modeling, we

can consider a single test case executed on different units over

time within the same infrastructure, in order to avoid external

influences on the data record [7].

C. Anomaly detection in time-series

Anomaly detection in time-series data has been extensively

studied using traditional statistical methods such as autore-

gressive integrated moving averages (ARIMA), exponentially

weighted moving averages (EWMA), and cumulative sum

(CUSUM). However, with recent advances in DL, there has

been growing interest in using deep learning-based methods

for anomaly detection in time-series data, such as recurrent

neural networks (RNNs) and convolutional neural networks

(CNNs). CNNs are particularly well-suited for processing

time series data with local patterns, as they can learn local

features through convolutional layers and capture long-term

dependencies through pooling layers. CNN-based anomaly

detection methods have been applied to various types of time-

series data, including sensor data, financial data, and medical

data. In the context of production testing, CNN-based anomaly

detection methods have been proposed to detect anomalies in

production test data, which might help improve product quality

and reduce production costs [8].

D. Time series data augmentation

It has been shown that learning systems exhibit lower

classification performance on imbalanced datasets due to the

limited amount of data in the minority class [9]. Experiments

demonstrate that over-sampling methods produce a better

classification performance than under-sampling, and for datasets

with a larger amount of positive samples, random over-sampling

can produce significant results [2], [10].

In this paper, each test case is considered as time-series

data and is classified using regression models with different

alarm levels depending on dynamic thresholds. Due to the

limited number of negative samples (which negatively affects

91

classification performance in most real applications), data

augmentation (DA) techniques are necessary. In this paper,

we employ the Moving Block Bootstrap (MBB) as a DA

technique suitable for dependent observations such as time-

series data. MBB creates new synthetic data by resampling and

replacing the original time-series data using defined blocks [11].

For instance, for a data set of n samples, the MBB split the

data into N = n− l + 1 overlapping blocks of length l. The

optimal block length can be found using Lahiri’s method at [12]

chapter 7. MBB allows the blocks to overlap, which is useful

for small samples. The interested reader can find more about

block bootstrap methods for time series in [13].

E. Classification using deep learning

Classification is the task of assigning input data to one of

several predefined categories or classes. Recently, deep learning

approaches have revolutionized the field of classification by

achieving state-of-the-art performance on various benchmark

datasets [14]. Deep learning models for classification typically

consist of multiple layers of interconnected artificial neurons,

which learn hierarchical representations of the input data. These

models are trained using large amounts of labeled data and an

optimization algorithm, such as stochastic gradient descent, to

minimize the difference between the predicted outputs and the

ground truth labels.

F. System fault tolerance in machine learning systems

Over the years, fault tolerance has been studied as part of

the system’s dependability and the capacity to recover from

errors [15]. As machine learning systems are non-deterministic

statistical approaches, fault prevention (model accuracy) is not

enough to avoid failures in the systems, also fault tolerance is

needed. In this context, fault tolerance occurs when the errors

are detected and the resulting errors will not propagate into the

systems [16]. Myllyaho et. al [17] study how fault tolerance

is used in practice regarding the dependability of machine

learning systems and they conclude that the term is still young

in the software engineering field. Using mean absolute error

(MAE) as a measure of fault tolerance implies assessing the

system’s resilience to errors or deviations in predictions or

estimations. By measuring the average magnitude of errors

between predicted and actual values, MAE can provide insights

into the system’s ability to maintain accuracy and robustness

even in the presence of uncertainties or faults. This perspective

aligns with the broader concept of fault tolerance, which aims

to ensure that a system continues to function effectively despite

the occurrence of faults or failures. By evaluating the accuracy

of predictions or estimations through MAE, one can indirectly

assess the system’s capability to tolerate and mitigate potential

faults, making it a relevant metric for evaluating fault tolerance.

III. RELATED WORK

In the past years, there has been increasing interest in the

application of machine learning algorithms in the industry,

particularly deep learning techniques, to the detection of

anomalies especially in time series data. In manufacturing,

anomaly detection can be used to identify defects or devia-

tions from expected production processes, which can lead to

improved quality control and reduced costs, including testing

and optimization of complex systems. Among other solutions,

anomaly detection can be performed by regression [18]. This

is accomplished by first predicting the relevant variable using

regression, and then comparing the predicted value to the actual

value to determine if it is anomalous or not. For instance,

Weiss et al. in [19] and [20] explained the advantages of

early predictions of final outcomes for the manufacture of

microprocessors. This will allow to apply correction actions

early in the production stage with the aim of a specific task,

e.g., microprocessor speed. The authors use regression to model

a stationary population of chips. However, the process is not

stationary which brings forward the challenges this approach

has and the need for specialized algorithms such as deep

learning. In a previous work [21], the authors developed a

prototype monitoring system to predict yield drop based on the

early prediction of manufacturing outcomes. They use support

vector machines (SVM) to classify and label the new inputs,

thus, if the new input will most probably produce a yield drop,

then actions must be taken. This approach makes the user

part of the decision-making process. Nevertheless, they do not

study the feature input dependencies as such, because they use

SMOTE for DA purposes. SMOTE is not applicable to all data

types, such as time-series data.

For test optimization purposes, the use of machine learning

and deep learning has also been investigated for time series

anomaly detection in various applications. To solve the data

sparsity issue proper of industrial applications, some studies

have explored the use of pre-trained networks and transfer

learning for the classification of anomalies. Kashiparekh et

al. [22] applied transfer learning to a one-dimensional CNN-

based approach for detecting anomalies in univariate time

series classification. They utilized pre-trained deep networks to

handle multiscale learning for varying time series, improving

the classification performance across domains. Likewise, Wen et

al. use CNN for time-series anomaly detection in three types of

anomalies: additive outliers, anomalous temporary changes, and

violations of cyclic patterns [23]. Additive outliers are one of

the most common anomalies found in univariate time series and

represent anomalies present in a very short time span, e.g., spike.

The authors discuss that there are challenges in the learning

process, such as the absence of anomalies ground truth and the

difficulties CNNs have to learn the anomaly features since they

are not as easily recognizable as image features. Moreover, in

anomaly detection, the learned features may overlap, which

makes it difficult to measure the goodness of the detection.

This paper grounded the principle of our study since we aim

to detect additive outliers from time-series data using CNNs

and use transfer learning to predict anomalies in unseen data.

However, our proposal uses dynamic thresholds to define the

class of anomaly importance during the training. As much as

we are aware, this is the closest research done regarding our

work. Moreover, we will explore the use of sliding windows to

identify patterns in the data, something the mentioned authors

92

Lag_i

Lag_i+1

Lag_n

Input feature

Data
smooth

Regression
model

outPut feature

dataset

Labeled data

class_0

class_1

class_2

.

.

.

......

Lag_i

Lag_i+1

Lag_n

......

Dynamic
threshold

Dynamic time series model and Auto labeling process Labeled data augumetation Classification

Manual label correction

Figure 1. An overview of the proposed solution in this study.

left as future work. While these approaches show promise in

the detection of anomalies, there are still limitations that need

to be addressed, such as handling imbalanced datasets and

real-time processing requirements. Thus, this study aims to

propose a new framework that addresses these limitations and

improves the effectiveness and efficiency of the testing process.

For a wider view of the latest deep learning techniques to

find anomalies in time-series data applied in real use cases,

the authors suggest the readers review the work done by Choi

in [24].

IV. PROPOSED SOLUTION

Fixed thresholds have several drawbacks, making it challeng-

ing to detect potential system failures and they are insensitive

to changes in time-series data. To address these limitations,

the proposed solution involves identifying dynamic thresholds

that can recognize data patterns, capture golden samples from

historical data, and detect new anomalies. Figure 1 provides an

overview of the proposed solution presented in this paper, which

consists of three primary components: a dynamic time series

model and auto-labeling process, data labeling augmentation,

and classification.

A. Dynamic time series model and auto labeling process

The input data is one-dimensional data recording the product

function test in values and in time series. A time lag is a

relatively long period of time between one event and the

subsequent occurrence of another related event. The original

data set is split into high-dimensional data with the same time

lags input to the system. The data is smoothed to remove

unwanted noise and to identify the data trend even better

than before. Then, the regression model is implemented to

make a prediction of the current value at time t. The dynamic

threshold can be considered as the error tolerance, which is

based on the different times of the mean absolute error in the

models. In this case, the actual measured value is compared

with different dynamic threshold values at the current time t to

make a labeling decision. For instance, if the value is within

the most inner dynamic threshold, a safe limit, it is labeled as
′class− 0′, and so on, as shown in the first part of Figure 1.

There are four labels in this study, class 0 representing no

anomaly present, class 1 warning, class 2 worse, and class 3
stop. All of them represent actions to take. However, manual

correction of the labeling is required at the beginning of the

whole system to obtain golden labeling for the later semi-

supervised models to obtain a more accurate result. Thus, the

process of manual labeling is necessary. The output of the

first part of the system will be a labeled data set representing

high-dimensional data based on time intervals with appropriate

labels after the dynamic thresholds.

B. Labeled data augmentation

The outliers or anomalies are minorities in most anomaly

detection tasks. Therefore, the labeled data set would be very

unbalanced after the labeling process. Transition data expansion,

such as SMOTE, duplicates the smaller labels to balance

the data set. However, this method does not work for time-

series data because the temporal dependencies in the data

set have to be preserved. Each dimension of the data is not

independent, but a data series with temporal relationships. This

is where the bootstrap data extension was introduced, using the

residuals between the different lags of the data. The original

93

data set to which these residuals are added establishes the same

dependencies of the data set as the original data set. To resolve

the labeling of the expanded data sets, a semi-supervised model

can be used to label these synthetic data. After the process

of expanding the labeled data set, the output is a balanced

data set ready for the classification task. For comparison, the

data set was divided into a training set and a test set, with the

training set containing 80% of the unique data points and the

test set containing 20% of the unique data points. This was

done because the performance of these models is motivated by

unseen data. In short, the classification is based on the balanced

data set from the second part of the system to produce the

output.

C. CNN for classification

Each trained model in the proposed system of work was

evaluated for its ability to detect anomalies at different dynamic

thresholds, and the regression models in the first part were

evaluated for their ability to estimate model accuracy. The

difference between the predicted values and the target values

was used to predict which data points were anomalous using

regression models. Various dynamic thresholds for anomalies,

e.g., class 0 to class 3, were used to evaluate anomaly detection.

The classification task was evaluated by accuracy, confusion

matrix, and the ROC curve which is also the final evaluation

of the whole system.

V. IMPLEMENTATION

The proposed system framework aims to monitor the

performance of test cases in the target system using a labeled

data set. Specifically, given a test case T and a time-series

data set D that records the system performance over time, the

framework starts by replacing the original timestamps in D
with standardized time intervals of 30 seconds, which is the

average execution time for the test cases. Before analyzing

D, the proposed method first checks if it conforms to the

characteristics of time-series data, using its p-value, and if

it exhibits white noise, using a combination of p-value and

rolling average value. If D is verified to be a non-white noise

time-series data, time-series models can be applied. However,

to reveal the underlying data pattern from the raw data set,

data smoothing is necessary. This can be achieved by rolling a

window over the data set, where the size of the window affects

the degree of smoothing. For example, wider windows produce

smoother trends, while narrower windows are more sensitive

to noisy data points.

A. Regression model

The regression model is based on the library Scikit-learn

version 0.24.2 (see: [25]). To get the best performance of

different regression models based on the test, linear regression,

LassoCV, RidgeCV, and XGBoost were implemented. D is

in data frame format with time series. To perform the split

between training and testing in terms of time-series structure,

a time lag is used to define a fixed period of time for the

time unit. That is, the xth lag represents the amount of time

that occurs from “k” time points before time x. For example,

Lag1(Y 2) = Y 1 and Lag4(Y 9) = Y 5. The lags are defined

by the data format integer. The lag start is the first step back in

time to intersect the target variable. In this work, the lag start

of 6 means that the model uses the values of the last 6 minutes

to predict the next minute. The lag end means the last step back

in time to intersect the target variable. The Lag end equals 25
means that the model will see up to 25 minutes in the time

series to predict the outcome of the current test unit. By using

the range function to separate the input data set D, D is split

into multiple “batches”. The input features, x, are vectors taken

from a list of historical values with predefined time delays,

while the labels, y, are based on the actual measured value at

the endpoint of the delay. The model prediction is compared

to the ground truth to calculate the score.

Creating lagged features by the time period defined from

LagStart to LagEnd:

Lagrange = range(LagStart, LagEnd+1) (1)

Then the lagrange formed a new data set, which will be put

into the regression models to be evaluated, e.g., linear, Lasso,

Ridge, and XGBoost regression models.

B. Dynamic threshold

Dynamic thresholds are inspired on the principle of fault

tolerance. This fault tolerance comes from the mean absolute

error (MAE) definition, i.e., it measures the absolute average

distance between the actual values and the predictions.

MAE =
1

n

D∑

i=1

|yi − ŷi| (2)

The dynamic thresholds are calculated by Equation 3,

DT = Estimated value ± margin of tolerance (3)

where DT is the dynamic threshold and the margin of
tolerance can be described as:

margin of tolerance = MAE + scale ∗ σMAE (4)

σMAE refers to the standard deviation of MAE, it measures

the amount of variation in the MAE across different samples

and scale is a constant that is used to adjust the margin of error

based on the sample statistical confidence level, i.e., 95% or 2
sigma, 99.7% or 3 sigma, and monitoring to define the dynamic

test limits for the classes 0 to 3 mentioned in Section IV.

C. Time-series data augmentation and label balancing

The goal of this process is to augment a data set using

the MBB technique, which preserves the time dependencies

of the original data set and then assigns the correct labels to

this augmented data. The augmented data combined with the

original labeled data set, creates a balanced data set for the

subsequent classification task. Time-series DA is illustrated

in Figure 3, where the block size and step size are set to

94

Figure 2. The CNN network visualization.

1. The original data set is split into Yn blocks of equal

length, each containing a fixed number of time lags. The

MBB method is then used to generate residuals by performing

successive subtractions between adjacent blocks, resulting in

n−1 residuals. The augmented data set is generated by adding

these residuals to the original data set.

D. Labeled data set re-sampling

The augmented data acquires the labels from the label

propagation. The test experts correct those labels for the

minority classes, i.e., ’Warning(1)’, ’Worse(2)’, and ’Stop(3)’.

To get a balanced data set for the classification task, the

implementation combines two random sampling techniques

and obtains better overall performance results compared to the

original data. The idea behind re-sampling in this section is to

use over-sampling of the minority class, and simultaneously

apply under-sampling to the majority class from the original

labeled data set, which reduces the bias toward the majority

class examples. The output results after re-sampling are shown

in Table I.

Label Quantity Sampling method Output
Normal 1953 Under-sampling 233
Warning 16 Over-sampling 177
Worse 41 Over-sampling 193
Stop 64 Over-sampling 195

TABLE I. A SUMMARY OF THE ORIGINAL AND AUGMENTED DATA

RESAMPLING.

E. CNN on classification

The CNN network diagram is depicted in Figure 2. The

input data is a one-dimensional time series with a shape of

246∗1. The data is first processed by two convolutional layers,

each consisting of 16 filters. Subsequently, a max pooling

layer is applied, resulting in a shape of 80 ∗ 16. Afterward, the

data passed through two additional convolutional layers, each

with 64 filters, followed by another max pooling layer. The

resulting data shape is 25 ∗ 64. This is then followed by two

more convolutional layers, each with 64 filters, and a final max

pooling layer, resulting in a data shape of 7 ∗ 64. The flattened

data is then converted into a one-dimensional format, resulting

in a data shape of 448 ∗ 1. Finally, the data passed through

a dense layer with softmax activation, which produces the

classification output, representing one of four possible classes.

VI. RESULTS

The project effort resulted in an implementation proposal

including a number of measures that could improve test

efficiency. Primarily, the actions include data-driven thresholds,

which detect the failures based on the data behavior and trend

from historical time-series data. The implementation plan also

provided a new solution for the data set with similar features

and properties.

A. Regression evaluation performance

All the regression models studied in this work show better

prediction results on the data set after smoothing. Table II is

an overall view of the performance of the regression models

implemented in this study. From the table, XG-Boost has the

largest MAE value, likely caused by the hyper-parameters

tuning did not reach the best scope of data in the built-

in cross-validation process. Furthermore, linear, Lasso, and

Ridge regression models have lower computational costs than

XGBoost given the accuracy results. However, linear regression

does not have a regularization item to improve the speed

performance as the Lasso regression nor help to avoid over-

fitting such as Ridge regression. Therefore, linear prediction

performance shows slightly worse results than Ridge regression

for this data set.

Corresponding to the model score, the Lasso and Ridge

have low MAE. However, the Ridge regression model has

the best RMSE which is the dynamic threshold impacted.

Furthermore, the Ridge regression model is very helpful when

there are dependencies between variables. The regularization

in the Ridge regression model helps reduce the dimensionality

of the training set to prevent the over-fitting issue. As the

time-series data studied here includes many lags of data as

input features, whereas, the Ridge regression simplifies the

features by regularization as well to lower the computational

cost. According to the result analysis on model scores and

model error rates, the Ridge regression is the best-fit model

chosen in this part of the work to fulfill the labeling on the

data set.

95

Figure 3. Data augmentation process.

Accuracy

Model Name RMSE MAE Training Testing

Linear Regression 0.032 0.0021 0.96 0.95
Ridge regression 0.032 0.0020 0.96 0.95
Lasso Regression 0.039 0.022 0.96 0.95
XGBoost 0.031 0.036 0.93 0.91

TABLE II. THE PERFORMANCE SUMMARY OF THE DIFFERENT

REGRESSION MODELS.

B. Classification performance

The CNN classifier was trained to recognize and classify

different test anomalies in real-time. The models performance

was evaluated on a dedicated test set consisting of a representa-

tive sample of test anomalies. The test set included a range of

test anomalies, including ones with varying degrees of failures.

The evaluation of the model’s performance was based on

its ability to accurately classify anomalies into one of four

categories: Normal (class label 0), Warning (class label 1),

Worse (class label 2), and Stop (class label 3). The classification

results were then presented as a confusion matrix, which shows

the number of correct and incorrect classifications for each

category as shown in Figures 4. The confusion matrix revealed

the dynamic thresholds used in the CNN classifier influenced

the classification of the ”Worse” category. The close proximity

of the dynamic thresholds for class ”Worse” to those of classes

”Warning” and ”Stop” created challenges for the model in

accurately distinguishing between them. As a result, there were

more misclassifications and confusion between the ”Worse”

category and the ”Warning” and ”Stop” categories. On the

other hand, the confusion matrix also showed that the model

performed well in classifying the ”Normal,” ”Warning,” and

”Stop” categories, suggesting that the dynamic thresholds for

these classes effectively differentiated them from one another.

To further evaluate the performance of the model, a re-

ceiver operating characteristic (ROC) curve was also plotted

in Figure 5, which displays the model’s true positive rate

(sensitivity) against its false positive rate (1-specificity) for

different classification thresholds. The ROC curve demonstrated

that all categories were well-classified, with a highest area under

the curve (AUC) of 0.94. This indicates that the model had

a high overall accuracy in classifying test anomalies into the

correct category.

Figure 4. CNN classification test set confusion matrix.

Figure 5. CNN classification test set evaluation visualization.

C. Transfer learning on a correlated data set

In the case of object recognition using a CNN, transfer

learning involves taking a pre-trained CNN model and adapting

96

it to recognize objects in a new data set. Typically, this

is achieved by freezing the early convolutional layers of

the network, which are responsible for identifying low-level

features in the image, and only training the final dense layer,

which is responsible for making predictions based on those

features. This approach can be effective because the low-level

features identified by the early layers are often useful for

recognizing objects in different data sets, while the final layer

can be fine-tuned to produce accurate predictions on the new

data set. In the context of evaluating transfer learning on another

data set, the ROC curve was used to assess the performance

of the adapted model as shown in Figure 6. The evaluation

of transfer learning on an industry data set revealed that the

adapted CNN model performed reasonably well, but not as

well as the pre-trained model on the original data set. The low

Pearson’s correlation coefficient between the two data sets, i.e.,

0.63, indicated that they were not highly correlated, which likely

contributed to the lower performance of the adapted model. The

class imbalance in the ’Stop’ class also presented a challenge

for the adapted model, as there were very few labeled examples

of this class compared to the other classes. This made it

difficult for the model to learn to recognize this class effectively,

resulting in lower classification accuracy for this class. Despite

these challenges, transfer learning still showed promise for

adapting pre-trained models to new data sets. However, careful

consideration of the similarities and differences between the

data sets is crucial to ensure effective knowledge transfer and

avoid negative transfer [26]. This includes taking into account

important factors such as class imbalance, differences in the

characteristics of the data sets, and the similarity (correlation)

between source task and target task [27]. In general, while

transfer learning can be a useful technique for adapting pre-

trained models to new data sets, it is important to approach

it with caution and to carefully evaluate the performance of

the adapted model to ensure that it meets the desired accuracy

and performance standards.

Figure 6. Transfer learning classification ROC curve on a correlated
data set.

VII. DISCUSSION AND CONCLUSIONS

Our study focuses on improving the test case efficiency and

effectiveness for radio access network testing by exploring

the potential of data-driven thresholds, anomaly detection, and

performance prediction. The proposed CNN-based anomaly

detection framework automatically labels the test inputs accord-

ing to the level of an anomaly on large amounts of data from

numerous sources and domains. Furthermore, the framework

has several potential applications, including real-time anomaly

detection, feature extraction, network diagnosis, and network

optimization/simulations. The study confirms that the proposed

framework represents a significant advancement in the field of

radio access network test optimization as it allows for quick

identification of potential issues beforehand and thus, lead to

faster, more efficient, and accurate test. However, the study

also revealed some challenges in transfer learning, such as

class imbalance and anomalies feature overlapping that can

affect the classification performance of the framework when

applied in cases of data scarcity. The final test results achieved

86% classification accuracy, and the transfer learning results on

correlated time-series data also achieved promising results on

input data with enough samples, i.e., up to 72%. Nevertheless,

further research is necessary to explore the full potential of the

proposed framework for test optimization purposes. The use of

machine learning and deep learning techniques can help identify

trends and patterns that may not be immediately apparent to

human testers, leading to more effective test execution than

using fixed thresholds without monitoring the changes till the

failure has occurred.

Overall, the proposed CNN-based anomaly detection frame-

work shows great potential to contribute to the test optimization

for radio access networks, but further research is necessary to

address the challenges and explore its full potential like the

training in larger data sets where different anomaly features

can be learned. Likewise, transfer learning is desirable in data

sets where there are not enough failures. Though, the unseen

data need to share the same data characteristics as the one used

for the training to avoid the negative transfer. Additionally,

more experimentation on different time lags of data series is

necessary to account for changes in time-series data, which

are expected to grow and shrink with the span between the

dynamic thresholds calculated from the regression model.

ACKNOWLEDGMENTS

This work has been supported by the Industrial Graduate

School Collaborative AI & Robotics funded by the Swedish

Knowledge Foundation (KKS) Dnr:20190128 and Swedish

Governmental Agency for Innovation Systems (VINNOVA)

D-RODS (2023-00244).

REFERENCES

[1] B. Lane, M. Poole, M. Camp, and J. Murray-Krezan, “Using machine
learning for advanced anomaly detection and classification,” in Advanced
Maui Optical and Space Surveillance Tech. Conf.(AMOS), 2016.

[2] S. Tahvili and L. Hatvani, Artificial Intelligence Methods for Optimization
of the Software Testing Process With Practical Examples and Exercises.
Elsevier, July 2022.

97

[3] S. Tahvili, Multi-Criteria Optimization of System Integration Testing.
PhD thesis, M
”alardalen University, December 2018.

[4] C. Landin, X. Zhao, M. Längkvist, and A. Loutfi, “An intelligent
monitoring algorithm to detect dependencies between test cases in the
manual integration process,” in 2023 IEEE International Conference
on Software Testing, Verification and Validation Workshops (ICSTW),
pp. 353–360, 2023.

[5] C. Kaner, J. Falk, and H. Q. Nguyen, “Automated software testing,”
Software testing and analysis: process, principles, and techniques,
pp. 173–206, 2002.

[6] D. Montgomery, E. Peck, and G. Vining, Introduction to Linear
Regression Analysis. John Wiley & Sons, 2015.

[7] I. Bessa, M. Valente, and F. Dantas, “Time series analysis in software
engineering: An empirical study on test suites,” Empirical Software
Engineering, vol. 22, no. 4, pp. 1884–1924, 2017.

[8] K. Yang, X. Yu, J. Wu, Q. Zhang, and X. Lu, “Deep convolutional neural
networks for industrial anomaly detection in the production of printed
circuit board assemblies,” in 2019 14th IEEE Conference on Industrial
Electronics and Applications (ICIEA), pp. 1830–1835, IEEE, 2019.

[9] H. He and E. Garcia, “Learning from imbalanced data,” IEEE Transac-
tions on Knowledge and Data Engineering, vol. 21, no. 9, pp. 1263–1284,
2009.

[10] N. Chawla, K. Bowyer, L. Hall, and P. Kegelmeyer, “Smote: Synthetic
minority over-sampling technique,” Journal of artificial intelligence
research, vol. 16, pp. 321–357, 2002.

[11] H. R. Kunsch, “The Jackknife and the Bootstrap for General Stationary
Observations,” The Annals of Statistics, vol. 17, no. 3, pp. 1217 – 1241,
1989.

[12] S. Lahiri, Resampling Methods for Dependent Data. Springer Science &
Business Media, 2013.

[13] J.-P. Kreiss and S. N. Lahiri, “1 - bootstrap methods for time series,” in
Time Series Analysis: Methods and Applications (T. Subba Rao, S. Subba
Rao, and C. Rao, eds.), vol. 30 of Handbook of Statistics, pp. 3–26,
Elsevier, 2012.

[14] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[15] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts
and taxonomy of dependable and secure computing,” IEEE Transactions
on Dependable and Secure Computing, vol. 1, no. 1, pp. 11–33, 2004.

[16] J. Knight, Fundamentals of dependable computing for software engineers.
CRC Press, 2012.

[17] L. Myllyaho, M. Raatikainen, T. Männistö, J. K. Nurminen, and
T. Mikkonen, “On misbehaviour and fault tolerance in machine learning
systems,” Journal of Systems and Software, vol. 183, p. 111096, 2022.

[18] S. Brahma, R. Kavasseri, H. Cao, N. Chaudhuri, T. Alexopoulos,
and Y. Cui, “Real-time identification of dynamic events in power
systems using pmu data, and potential applications-models, promises,
and challenges,” IEEE transactions on Power Delivery, pp. 294–301,
2016.

[19] S. Weiss, A. Dhurandhar, and R. Baseman, “Improving quality control by
early prediction of manufacturing outcomes,” KDD ’13, p. 1258–1266,
2013.

[20] S. Weiss, A. Dhurandhar, R. Baseman, B. White, R. Logan, J. Winslow,
and D. Poindexter, “Continuous prediction of manufacturing performance
throughout the production lifecycle,” J. Intell. Manuf., vol. 27, p. 751–763,
aug 2016.

[21] C. Landin, J. Liu, and S. Tahvili, “A dynamic threshold based approach
for detecting the test limits,” in The Sixteenth International Conference
on Software Engineering Advances, October 2021.

[22] K. Kashiparekh, J. Narwariya, P. Malhotra, L. Vig, and G. Shroff,
“Convtimenet: A pre-trained deep convolutional neural network for time
series classification,” in 2019 International Joint Conference on Neural
Networks (IJCNN), pp. 1–8, IEEE, 2019.

[23] T. Wen and R. Keyes, “Time series anomaly detection using convolutional
neural networks and transfer learning,” ArXiv, vol. abs/1905.13628, 2019.

[24] K. Choi, J. Yi, C. Park, and S. Yoon, “Deep learning for anomaly
detection in time-series data: Review, analysis, and guidelines,” IEEE
Access, vol. 9, pp. 120043–120065, 2021.

[25] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” Journal
of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[26] J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions
on Knowledge and Data Engineering, no. 10, pp. 1345–1359, 2010.

[27] D. Mahajan, R. Girshick, V. Ramanathan, K. He, M. Paluri, Y. Li,
A. Bharambe, and L. Van Der Maaten, “Exploring the limits of weakly
supervised pretraining,” in Proceedings of the European conference on
computer vision (ECCV), pp. 181–196, 2018.

98

