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Abstract: Sensor-based fall risk assessment (SFRA) utilizes wearable sensors for monitoring indi-
viduals’ motions in fall risk assessment tasks. Previous SFRA reviews recommend methodological
improvements to better support the use of SFRA in clinical practice. This systematic review aimed to
investigate the existing evidence of SFRA (discriminative capability, classification performance) and
methodological factors (study design, samples, sensor features, and model validation) contributing
to the risk of bias. The review was conducted according to recommended guidelines and 33 of
389 screened records were eligible for inclusion. Evidence of SFRA was identified: several sensor
features and three classification models differed significantly between groups with different fall risk
(mostly fallers/non-fallers). Moreover, classification performance corresponding the AUCs of at
least 0.74 and/or accuracies of at least 84% were obtained from sensor features in six studies and
from classification models in seven studies. Specificity was at least as high as sensitivity among
studies reporting both values. Insufficient use of prospective design, small sample size, low in-
sample inclusion of participants with elevated fall risk, high amounts and low degree of consensus
in used features, and limited use of recommended model validation methods were identified in the
included studies. Hence, future SFRA research should further reduce risk of bias by continuously
improving methodology.

Keywords: fall risk; classification; assessment; older adults; inertial sensors; wearable sensors

1. Introduction

Falls are the second leading cause of accidental or unintentional injury resulting in
death worldwide [1]. Approximately 35% of all people aged 65 years or older fall every
year [2] and the incidence of falls increases with age [3]. Important risk factors include
impaired balance and gait performance, polypharmacy, and a history of previous falls [4].
Interventions combining fall preventive physical activities with strategies to increase safety
in home environments have proven to be the most effective in reducing the incidence
and risk of falls [5]. Technologies can improve fall prevention interventions’ efficiency
and effectiveness. Hence, fall prevention technologies are mainly used to assess and
decrease fall risk, to increase adherence to fall prevention training interventions or to detect
occurring falls and alarms in case of an accident [6].

Sensor-based fall risk assessment (SFRA) utilizes wearable sensors for monitoring
individuals’ motions during assessment tasks. The sensor signals are processed, and
specific features are extracted and incorporated into algorithms which aim at predicting
fall occurrence or classifying individuals into risk categories [7]. Several reviews of state-
of-the-art of SFRA research were published during 2012–2019.

In 2012, Shany et al. discussed the practicalities and challenges associated with the
use of wearable sensors for the quantification of older people’s fall risk [7]. They identified
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several study design elements that need to be fulfilled in order to support future real-life
use of SFRA. These include: (1) prospective design, (2) larger validations of higher quality
enabling meta-analyses, (3) rigorous testing including reliability of test-retest and rater-
effects, (4) validation of SFRA-tools on different samples and by research groups other
than those suggesting/developing the tool, and (5) an increased focus on SFRA supporting
clinical staff in supervised assessments [7].

The following year, Howcroft et al. (2013) made a systematic review of SFRA in
geriatric populations using inertial sensors. The review was based on 40 articles published
2003–March 2013 and confirmed the need of prospective design in SFRA research [8].
Moreover, Howcroft et al. emphasized the need to use separate datasets in training and
validation of classification models, and more appropriate intelligent computing methods,
such as neural networks and Bayesian classifiers, instead of regression [8]. The use of
separate datasets had been neglected in 50% of the studies involving classification models
included in the review [8]. Howcroft et al. also identified a need for: (1) systematically
assessing which combinations of body locations of sensors and sensor-based variables
result in high reliability, (2) investigating long-term user compliance to SFRA methods,
(3) using SFRA in specialized populations, systematic matching of predictive variables and
specific fall risk factors, and (4) comparing accuracies of SFRA methods with accuracies of
clinical assessments, both obtained by prospective studies [8].

In 2015, Shany et al. published a review of articles including features extracted
from sensor signals in statistical models intended to estimate fall risk or predict falls
in older people [9]. This review, which was based on 31 articles published 1997–2015,
identified problems with publication bias, inadequate sample sizes, inadequate number of
fall events in samples, misuse and lack of model validation, deficiencies in model selection
and feature extraction procedures, and insufficient use of prospective fall occurrence as
serious issues [9]. Shany et al. (2015) pointed out that some of the included studies
reported classification accuracies exceeding the estimated theoretical maximal accuracy
(0.81) in predicting the occurrence of a fall during a one-year period [10]. They concluded
that the prediction performance was overestimated in the literature, mainly due to small
samples, large feature pools, model overfitting, lack of validation, and misuse of modelling
techniques [9]. Therefore, Shany et al. suggested that sample bias should be prevented
by recruiting cohorts ensuring that an adequate number of falls occur and by considering
the recommendations of 1:10 features/event [11] during feature selection [9]. They also
suggested improvements in feature selection by tightening the significance thresholds,
removing redundant features, and selecting the correct statistical methods [9]. Finally, the
need for appropriate model validation methods, preferably by external validation of the
final model, was stressed [9].

Roeing et al. [12] conducted a review on the use of mobile health applications for
assessment of balance, i.e., one of the fall risk factors. The article included 13 articles
published 2011–2016. Several of the articles included young samples, while others lacked
information on the studied group of participants. Five articles assessed the validity of
mobile health applications by comparing the data collected with data collected using 3D
motion capture measurement, an accelerometer or a force platform.

Three systematic reviews were published in 2018 [13–15]. Sun and Sosnoff [13] re-
viewed the use of novel sensing technology in fall risk assessment in 22 articles published
2011–May 2017. Their recommendations for future research included the use of: (1) prospec-
tive fall occurrence of at least 6 months to label subjects, (2) a reduced number of variables,
selection of variables based on previous research, and (3) appropriate model validation [13].

Montesinos et al. [14] presented a systematic review and meta-analysis of the use of
wearable inertial sensors for fall risk assessment and prediction in older adults. The review
included 13 articles published up until 2016. Montesinos et al. [14] identified strong/very
strong associations between fall risk assessment outcomes and nine triads (combinations
of a sensor feature category, a task, and a sensor placement). The recommended and
not-recommended triads were found to be task-dependent when analyzing the tasks quiet
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standing, sit-to-stand/stand-to-sit, Timed Up and Go (TUG) test and walking. For both
quiet standing and sit-to-stand/stand-to-sit, the recommended feature category and sensor
location were linear acceleration and lower back. For TUG, the recommended sensor
category and sensor location were temporal and shins. For walking, there existed both
recommended and not-recommended triads. The recommended combinations of sensor
feature category and sensor location for walking task were: (1) angular velocity-shins,
(2) frequency-upper back, and (3) frequency-lower back. The not-recommended combi-
nations of sensor category and sensor location during walking were: (1) angular velocity-
lower back, (2) frequency-shins, and (3) linear acceleration-shins. Hence, the sensor location
recommended by [14] varies depending on the feature category, particularly for walking.

Rucco et al. [15] reviewed the type and location of wearable sensors for monitoring
falls during static and dynamic tasks in healthy elderly. The review was based on 42 articles
published 2002–2017. Rucco et al. concluded that the majority of studies used a maximum
of two sensors with accelerometers and gyroscopes being the most common, and that the
majority of studies presented preliminary results [15]. The trunk was identified as the
most studied body segment. The most frequently used tasks varied depending on whether
the task was static or dynamic. For measuring static stability, a quiet standing test with
eyes opened/closed was most common. For dynamic evaluations, the most common tasks
were walking and stand-sit tests [15]. Finally, Rucco et al. [15] stated that information on
performance, i.e., accuracy, sensitivity, and specificity, was too diverse and did not allow
for evaluating the impact of different system characteristics. Therefore, they identified the
need for golden standards in terms of sensors (types, position) and tasks.

In 2019, Bet et al. made a systematic review on fall detection and fall risk assessment
in older persons using wearable sensors [16]. The review, which was based on 29 different
articles published 2002–2019, presented performance metrics and reported on number
of sensors, sensor types, sensor location and assessment tasks. It should be noted that
20 of the articles included only accelerometer features. The use of other sensors was sparse,
one article used only gyroscope features, five used a combination of accelerometer and
gyroscope features, two used a combination of accelerometer and barometer features, and
one used a combination of accelerometer, gyroscope, and magnetometer features. Bet et al.
also analyzed sensor locations and found that the most common location was the waist
(8 articles), followed by the lumbar region (7), ankle (4), pelvis (4), and head (3) [16].

It is worth noticing here that different terminologies have potentially been used to denote
the same sensor location in previous review articles. For example, Montesinos et al. [14], who
identified recommended and not-recommended triads, used the notation shins in their
triads, while Bet et al. [16] identified four articles with sensors located on the ankle. Further,
the most frequently used locations in [16] were the waist and lower back (lumbar spine)
whereas [14] stated that the most common placement was the lower back (approximately
L3). Rucco et al. [15] used the notation trunk for sensors located at L3, L5, sternum, waist,
pelvis, neck, and chest. Hence, comparing the results obtained in this review with results
from the previous reviews is not straightforward.

The aim of this systematic review was to analyze the characteristics and performance
of wearable sensor systems used to assess older people’s fall risk by classifying individuals
according to fall risk or by discriminating between groups of older people with different
fall risk. The following research questions were in focus:

RQ1 What is the evidence of SFRA in terms of (a) discriminative capability, and (b) classifi-
cation performance?

RQ2 Which of the previously identified risk factors for study bias can be identified among
the included studies? The risk factors analyzed included: (a) low use of prospec-
tive study design, (b) use of small study samples with low amounts of fall events,
(c) low consensus in features used in SFRA models; and (d) misuse of model validation
methods.
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2. Materials and Methods
2.1. Literature Search

The systematic literature review was conducted according to the PRISMA guide-
lines [17]. The review elements (aim including PICO elements, eligibility criteria and
outcomes) are defined in Table 1.

Table 1. Review elements.

Objective/Aim Inclusion Criteria Exclusion Criteria

To make a systematic review of the
performance of wearable sensor systems
in discriminating/classifying older adults
according to their fall risk.
The following PICO elements [18] were
used:
Population of interest: Persons being 60
years and older without severe cognitive
impairment.
Investigated test result: Person classified
as faller according to SFRA
Comparator test result: Person classified
as non-faller according to SFRA
Outcome: Person classified as faller (or
equivalent, e.g., high risk) according to
Retrospective falls history (RE),
Prospective fall occurrence (PRO) or
Clinical assessment methods (CLIN)
Study design: Prospective and
Cross-Sectional studies

1. Original, peer-reviewed journal
articles/conference papers published and
indexed during Jan 2010–April 2020 in
English language.
2. Participants labelled as
(single/multiple-) fallers/non-fallers or
high/low risk based on:

a. RE data
b. PRO data
c. CLIN data
d. A combination of a–c

3. Sample: N ≥ 10, age ≥ 60 years
4. Wearable or mobile inertial sensors
used to characterize movements by
extracting features from sensor signals.
5. Evidence of SFRAs in terms of
(a) discriminative capacity (statistically
significant discriminatory features)
and/or
(b) classification performance (accuracy,
sensitivity, specificity).
Inclusion criteria 2–4 were based on a
previous systematic review of SFRA [14].

Papers must not include participants
with severe cognitive impairment, e.g.,
dementia.
Papers must not only include
measurements of total physical activity
by activity monitors.

Outcomes

(a) Qualitative data on features with
statistically significant discriminative
capacity (p < 0.05).
(b) Quantitative data on classification
performance (accuracy, sensitivity,
specificity).

The systematic literature search was done in four databases: Web of Science Core
Collection (i.e., SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH and ESCI), IEEE Xplore,
Pubmed, and Medline. Search phrases and search dates for each database are presented in
Table 2. Web of Science and IEEE Xplore were searched twice with modifications made in
search phrases.

2.2. Study Selection

The systematic literature search in the four databases identified 614 records. After
removal of 225 duplicates, 389 publications were screened for eligibility according to
the inclusion and exclusion criteria in Table 1. The titles and abstracts of potentially
relevant articles were screened independently by two researchers (ME and AK). Eligibility
assessments of full text records were performed independently by the same two researchers.
In both steps, disagreement was resolved through discussions until consensus was reached.
A total of 304 articles were excluded in the screening. Full text copies were downloaded for
the remaining 33 articles included in this review (Figure 1).

2.3. Data Extraction

Data from the full text articles was extracted to a study specific template with defined
variables (Table A1 in Appendix A). Data extraction was performed independently by
three researchers (ME, AK, and JD). All reported data/results were discussed by at least
two researchers until consensus was reached.
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Table 2. An overview of databases, search phrases used during article retrieval, and information on search dates. The
numbers indicate the number of identified articles in each search.

Database Search Phrase Search Date Number of
Articles

Web of Science Core
Collection

TOPIC: (fall AND risk AND assessment) AND
TOPIC:(inertial sensors) AND TOPIC:(geriatric OR older
OR senior) AND TOPIC: (clinical)

20 September 2019 31

IEEE Xplore
TOPIC: (fall AND risk AND assessment) AND
TOPIC:(inertial sensors) AND TOPIC:(geriatric OR older
OR senior) AND TOPIC: (clinical)

30 October 2019 21

Web of Science Core
Collection

TOPIC: ((fall AND risk AND assessment) AND (inertial
sensors OR wearable OR technology OR device OR
accelerometer OR gyroscope OR magnetometer) AND
(geriatric OR older OR senior OR old) AND (clinical))

6 March 2020 129

IEEE Xplore

TOPIC: fall AND risk AND assessment AND clinical AND
(“inertial sensors” OR wearable OR technology OR device
OR accelerometer OR gyroscope OR magnetometer) AND
(geriatric OR older OR old OR senior)
Filters Applied: Conferences Journals

12 March 2020 32

Pubmed

((((fall[All Fields] AND (“risk”[MeSH Terms] OR “risk”[All
Fields])) AND (“Assessment”[Journal] OR “assessment”[All
Fields])) AND clinical[All Fields]) AND (geriatric[All
Fields] OR older[All Fields] OR old[All Fields] OR
senior[All Fields])) AND (“inertial sensors”[All Fields] OR
wearable[All Fields] OR (“technology”[MeSH Terms] OR
“technology”[All Fields]) OR (“equipment and
supplies”[MeSH Terms] OR (“equipment”[All Fields] AND
“supplies”[All Fields]) OR “equipment and supplies”[All
Fields] OR “device”[All Fields]) OR accelerometer[All
Fields] OR gyroscope[All Fields] OR magnetometer[All
Fields])

27 March 2020 120

Medline

fall AND risk AND assessment AND clinical AND (“inertial
sensors” OR wearable OR technology OR device OR
accelerometer OR gyroscope OR magnetometer) AND
(geriatric OR older OR old OR senior)
Expanders
Limiters: Apply equivalent subjects
Journals: Scholarly (Peer Reviewed) Journals
Source Types: Academic Journals
Language: English

3 April 2020 281

2.4. Research Questions and Data Analysis

The study’s two main research questions were:

RQ1 What is the evidence of SFRA in terms of (a) discriminative capacity, and (b) classifi-
cation performance?

RQ2 Which of the previously identified risk factors for study bias can be identified
among the included studies? The risk factors analyzed included: (a) low use of
prospective study design, (b) use of small study samples with low amounts of fall
events, (c) low consensus in features used in SFRA models, and (d) misuse of model
validation methods.

In order to guide the analysis of the collected data, a larger number of more de-
tailed research questions were formulated. These questions guided how the data, col-
lected in the study specific data collection template (Appendix A), were summarized
and presented in eight tables. Table 3 and Section 3.1 present data on study character-
istics; Tables 4–6 and Sections 3.2 and 3.3 present data on fall risk assessment system
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characteristics. Table 4 presents articles performing discrimination by feature selection.
Tables 5 and 6 present articles performing classification methods/models with and without
machine learning algorithms. Section 3.4 presents the results of an analysis on whether
Montesinos et al.’s triads [14] can be identified in the included articles and whether
the triad theory applies also on articles using classification models. Tables 7–10 and
Section 3.5 present data on the evaluation methodology and fall risk discrimination/
classification performance.
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Qualitative data were analyzed according to content and quantitative data were
analyzed using descriptive statistics if possible.

3. Results

The presented results include study characteristics (Section 3.1), wearable sensors
used for fall risk assessment (Section 3.2), signal processing (Section 3.3), the identifi-
cation of triads and assessment of their applicability on classification methods/models
(Section 3.4), and statistical analysis on the sensor-based methods’ capabilities to assess fall
risk (Section 3.5).

The studies were published between January 2010 and December 2019. The number
of articles per year was highest in 2017 (n = 8) followed by 2011, 2016, 2018, and 2019
(n = 5), and 2014 (n = 3). Only one article from 2013 and 2015 respectively is included. None
of the included articles were published in 2010, 2012, or 2020.

3.1. Study Characteristics

The characteristics of the 33 included studies are presented in Table 3.
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Table 3. Characteristics of included studies. ADL = activity in daily life, FoF = Fear of Falling, FTSS = 5 times Sit-to-stand
test, SEMI-SUP = Semi-supervised, SUP = Supervised, 6MWT = Six-Minutes Walking Test, UEF = Upper extremities’
function, UNSUP = Unsupervised, Val = Validation, VR = Virtual reality.

First Author,
Year Ref No. Study

Population
Faller/Non-Faller
Labelling Method

Classification
Outcome

Participants
(% Fallers)

Assessment
Task

Degree of
Supervision

Bautmans,
2011 [19] Other

Retrospective falls
(6 months) and
Clinical assessment
(Tinetti, TUG)

non-faller/faller 81 (49%) Walking
(2 × 18 m) SUP

Caby, 2011 [20] Hospitalized
patients

Retrospective falls
(12 months) and
Clinical assessment
(Tinetti, Mini
Motor Test)

non-faller not at
risk/faller at risk
of falling

20 (75%) Walking (25m) SUP

Doheny, 2011 [21] Community-
dwelling

Retrospective falls
(60 months) and
Clinical assessment
(FoF and
Cardiovascular
risk factors)

non-faller/faller
(≥2 falls/1 fall
seeking
medical care)

39 (49%) FTSS SUP

Greene, 2011 [22] Community-
dwelling

Retrospective falls
(60 months) non-faller/faller 114 (47%) Walking (30 m

continuous) SUP

Marschollek,
2011 [23] Patients,

geriatric
Prospective falls
(12 months) non-faller/faller 46 (41%) TUG test

Walking (20 m) SUP

Doi, 2013 [24] Community-
dwelling

Prospective falls
(12 months) non-faller/faller 73 (22%) Walking

(15 m) SUP

Cui, 2014 [25] Community-
dwelling

Retrospective falls
(12 months)

non-faller/faller
(≥2 falls) 81 (49%) Walking

(3 conditions) SUP

Ejupi, 2014 [26] Community-
dwelling

Retrospective falls
(12 months) non-faller/faller 104 (35%)

Choice
Stepping
Reaction Test

SUP

Greene, 2014 [27] Community-
dwelling

Retrospective falls
(60 months)
and
Prospective falls
(24 months)

non-faller/faller
RE: 909 (NA)
PRO: 259 (NA)
Val: 55 (0%)

TUG test SUP

Brodie, 2015 [28] Community-
dwelling

Prospective falls
(12 months)

non-
faller/faller/multi-
faller

52 (42% single,
17% multi) Stair ascent

SEMI-SUP
at research
facility

Howcroft, 2016 [29] Other Retrospective falls
(6 months) non-faller/faller 100 (24%)

Walking
(7.62 m, single-
and dual-task
condition)

SUP

Ihlen, 2016 [30] Community-
dwelling

Retrospective falls
(12 months)

non-faller/faller
(≥2 falls) 71 (45%)

4 FTSS at home
for
1 day

SUP
at home

Ihlen, 2016 [31] Community-
dwelling

Retrospective falls
(12 months)

non-faller/faller
(≥2 falls) 71 (45%) Walking

(daily life)

UNSUP
3 days at
home

Iluz, 2016 [32] Other Retrospective falls
(12 months)

non-faller/faller
(≥2 falls) 71 (46%)

ADL
(identified
sit-to-walk and
walk-to-sit
transitions)

UNSUP
3 days
at home

Mancini, 2016 [33] Other

Retrospective falls
(12 months)
and
Prospective falls
(6 months)

non-
faller/faller/multiple-
faller (RE)
non-faller (PRO)

35 (RE: 34%
single, 20%
multi; PRO:
20%)

ADL
UNSUP
1 week
at home
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Table 3. Cont.

First Author,
Year Ref No. Study

Population
Faller/Non-Faller
Labelling Method

Classification
Outcome

Participants
(% Fallers)

Assessment
Task

Degree of
Supervision

Alqahtani,
2017 [34] In residential

care
Retrospective falls
(12 months) non-faller/faller 29 (66%) Standing

balance test SUP

Brodie, 2017 [35] Community-
dwelling

Retrospective falls
(12 months) non-faller/faller 96 (34%) ADL

UNSUP,
1 week at
home

Greene, 2017 [36] Community-
dwelling

Retrospective falls
(12 months) non-faller/faller 22 (50%) TUG test SUP

Joseph, 2017 [37]
Patients,
bedbound in
hospital

Clinical assessment
(UEF index) frail/non-frail 101 (52%) UEF

assessment SUP

Saldana, 2017 [38]
In continuing-
care retirement
community

Clinical assessment
(Questions including
retrospective falls
and FoF)

low-risk/at-risk 13 (38%)

Standing
balance with
VR room
rotation

SUP

Sample, 2017 [39] Other Retrospective falls
(12 months) non-faller/faller 148 (40%) TUG test SUP

Smith, 2017 [40] Community-
dwelling

Retrospective falls
(12 months) non-faller/faller 37 (43%)

TUG test
(single-, motor-
and cognitive
dual task)

SUP

Wang, 2017 [41] Community-
dwelling

Prospective falls
(12 months)

multiple-
faller/non-
multiple-faller

81 (14%)
Walking (flat
surface
and stairs)

SEMI-SUP
at research
facility

Bizovska, 2018 [42] Other Prospective falls
(12 months)

non-faller/faller/
multiple-faller

131 (27%,
multi 11%) Walking (25 m) SUP

Ehsani, 2018 [43] Other

Clinical assessment
(Questions including
retrospective falls,
12 months)

high fall-risk/low
fall-risk 20 (50%)

Upright
standing
balance (eyes
open/closed,
with/without
vibration)

SUP

Genovese, 2018 [44] Patients Determined by
clinical partners

high fall-risk/
age matched low
fall-risk

50 (50%) 6MWT SUP

Ghahramani,
2018 [45] Community-

dwelling

Retrospective falls
(time period
not presented)

non-
faller/multiple-
faller

45 (49% multi) Turning test SUP

Qiu, 2018 [46]
Community-
dwelling
females

Retrospective falls
(60 months) non-faller/faller 196 (42%)

Battery of
clinical tests
including
assessment of
standing
balance,
stability,
sit-stand-
transitions,
walking, motor
function,
reaction
and FoF

SUP

Del Din, 2019 [47] Other

Retrospective falls
(6 months (≥2 falls to
identify fallers) and
18 months
(0 falls to identify
non-faller))

non-faller/faller 172 (71%) Free living gait
UNSUP,
1 week
at home
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Table 3. Cont.

First Author,
Year Ref No. Study

Population
Faller/Non-Faller
Labelling Method

Classification
Outcome

Participants
(% Fallers)

Assessment
Task

Degree of
Supervision

Ghahramani,
2019 [48] Community-

dwelling
Retrospective falls
(12 months)

non-faller/faller/
multiple-faller

86 (21% single,
44% multi)

Standing
balance tests SUP

Greene, 2019 [49] Stratified
sample

Retrospective falls
(12 months) non-faller/faller

6295 (14%
single, 12%
multi)

TUG test SUP

Misu, 2019 [50] Community-
dwelling

Retrospective falls
(12 months)

RE-12
non-faller/faller 378 (17%) Walking (15 m) SUP

Yang, 2019 [51] Community-
dwelling

Retrospective falls
(3 months)

non-faller/faller/
multiple-faller

40 (20% single,
40% multi) ADL

UNSUP,
1 week
at home

3.1.1. Authors Involved and Places Where the Research Was Conducted

The 33 included articles were authored by 145 authors affiliated in 16 countries on
four continents (Asia, Europe, North America, and Oceania). Five authors were affiliated
with organizations in two different countries. Most authors (116/145) authored one article.
However, 21 authored two articles and eight authors were in the author list of at least four
articles (number of articles in parenthesis): Brodie (4), Caulfield (4), Delbaere (4), Greene
(6), Hausdorff (5), Lord (4), Redmond (4), and Weiss (4).

Most articles (25/33) were written by authors affiliated in the same country. The
distribution per continent was as follows: Asia: Israel (n = 1), Japan (n = 2), South Korea
(n = 1); Europe: Belgium (n = 1), Germany (n = 1), Ireland (n = 4), Italy (n = 1); North
America: Canada (n = 2), United States (n = 6): and Oceania: Australia (n = 6). Eight
articles had authors affiliated in different countries: Australia–Ireland (n = 1), Ireland–USA
(n = 1), Israel–Taiwan-USA (n = 1), Israel–Norway (n = 1), Germany–Israel-Norway (n = 1),
Czech Republic–France–Italy (n = 1), Belgium–Netherlands (n = 1), Belgium–Israel–Italy–
Netherlands–UK–USA (n = 1). It is worth noting that the Australian articles were authored
by two groups, one group authoring [45,48], and another group authoring [25,28,35,41].
Greene was on the author list of all articles from Ireland and on the author list of the
Australia–Ireland and Ireland–USA articles. The USA articles were almost exclusively
written by different research groups although two authors were on the author list for
2/6 articles from USA. The articles including authors from Israel were mostly authored in
collaboration with authors from other countries.

3.1.2. Study Populations

The study participants were classified as community-dwelling (18 articles), patients
(four articles), residential care/continuing-care retirement community (two articles), and
other (eight articles) if none of the aforementioned labels matched the reported population
(e.g., “people from cohort,” or “convenience sample”). In addition, one study [49] had a
large, stratified sample including subgroups of community-dwelling, residential care, and
patients (neurological and rehabilitation). The populations of all studies per publication
year are presented in Figure 2. Community-dwelling was the most studied population,
and none of the other populations were studied in publications from 2013–2015. No other
clear trends could be identified among the included studies in study population.

3.1.3. Faller/Non-Faller (or Equivalent) Labelling Method

The studies generated outcomes to compare SFRAs by labelling the participants accord-
ing to their fall risk. Although the most common outcome was non-faller/faller, other labels,
namely frail/non-frail [37], low risk/at-risk [38,43,44] were also used. Moreover, [42,48,51]
used three labels (non-faller/faller/multiple-faller).
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The most common method to label a participant as faller or a non-faller (or equivalent)
was RE data alone (n = 18) or in combination with CLIN data (n = 4). Three of the included
studies solely used CLIN data (formulas or functional tests) to label participants. However,
two of these studies used clinical formulas which included RE data. Five studies used PRO
data alone and two studies combined RE and PRO data (one of them compared performance
of retrospective and prospective classification models [27]). Finally, one study [44] stated
that clinical partners determined whether a participant was labelled as high fall risk or age
matched low fall risk. This technique was categorized as “other” in the current review
(Figure 3 and Table 4). Figure 3 presents the number of studies per publication year that
applied the respective faller/non-faller (or equivalent) labelling method. As can be seen
here, the use of PRO data (alone or in combination with RE data) had not increased during
2011–2019. In total, seven studies used PRO data, either alone or in combination with RE
data, to label participants. PRO data was mainly followed up for 12 months (5/7 studies),
although 6- and 24-months periods were also used. In total, 25 studies used RE data to
label participants (either alone, in combination with PRO and CLIN data, or as part of CLIN
data). RE data was mostly retrieved from the past 12 (16/25 studies), 60 (5/25 studies), 6
(2/25 studies), 3 (1/25 studies) or 18 months (1/25 studies). Moreover, one study did not
specify the length of the period to collect RE data.
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Table 4. Characteristics of SFRA methods which performed discrimination by feature selection. accel = accelerometer, AP = anterior-posterior, DTW = Dynamic Time Warping, EM
= Expectation Maximization, GMM = Gaussian Mixture Models, gyro = gyroscope, HR = harmonic ratio, IMF = Intrinsic Mode Function, ML = medio-lateral, MML = Minimum
Message Length, PLS-DA = Partial least square discriminatory analysis, RMS = root mean square, ROC = receiver operating characteristic, SEF = Spectral Edge Frequency, VRHMD = VR
head-mounted display, VT = vertical.

Ref No. Assessment Task No. and Type of
Wearable Sensor(s) Sensor Position(s) No. of Sensor

Features Feature Selection Methods
Wearable Sensor Features Able to
Discriminate Significantly
between Fallers/Non-Fallers

[19] 2 × 18 m walking 1 3D accel
Pelvis (sacrum between
the spinae ilaca posterior
superior)

6

ANOVA and t-test,
Wilcoxon-signed-rank,
Kruskall–Wallis tests, stepwise
logistic regression with forward
likelihood ratio and ROC curve

Gait speed

[21] FTSS 2 inertial sensors (3D
accel data used)

Anterior of right thigh,
sternum 19 ANOVA and one-way ANOVA

Mean sit-stand-time, total jerk, total
SEF, Mean sit-stand-sit SEF,
Mean-stand-sit SEF, Mean sit-stand
SEF

[24] 15 m walking 2 3D accel
Upper trunk (C7 spinous
process) and lower trunk
(L3 spinous process)

6

Independent t-tests or χ2 tests,
stepwise logistic regression with
forward stepwise selection and
ROC curve

HR in VT direction in Upper trunk

[25] Walking under 3 different
conditions

1 inertial sensor (3D
accel data used) Lower back (belt) 1 1 Wilcoxon Signed Rank and Mann

Whitney test SSI

[26] Choice stepping Reaction
Test (in exergame) 1 3D accel Around neck (sternum

height) inside clothes 6 Two-sided Student’s t-test Reaction time, Total stability time

[30] 4 FTSS at home for
1 day

1 inertial sensor (3D
accel data used)

Lower back (belt
around waist) 1 2

Univariate logistic regression and
stepwise multivariate logistic
regression with stepwise backward
feature selection

LDS calculated by the Ihlen
algorithm (Equation (2)) [52] with
optimal identified parameter setting

[31] Daily life walking 1 inertial sensor (3D
accel data used) Lower back (belt) 60 PLS-DA with a backward

feature selection
RCME and RMPE for trunk
acceleration and trunk velocity
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Table 4. Cont.

Ref No. Assessment Task No. and Type of
Wearable Sensor(s) Sensor Position(s) No. of Sensor

Features Feature Selection Methods
Wearable Sensor Features Able to
Discriminate Significantly
between Fallers/Non-Fallers

[33] ADL 3 inertial sensors (3D
gyro data used)

Posterior trunk at about
L5 (belt) and on the top
of each foot (on shoes)

6 One-way ANOVA

RE-12: turn duration, mean peak
speed of turning, mean number of
steps/turns, Coefficient of Variation
of turn angle;
PRO-6: Coefficient of Variation of
steps per turn

[34] Standing balance test 1 2D accel and 1D
load cell Pelvis (Iliac crest) 16

Friedman test, Wilcoxon signed
ranks test, Spearman rank
correlation and Mann-Whitney
U test

RMS sway acceleration in ML
direction during
semi-tandem stance

[35] ADL 1 3D accel + barometer Pending around neck 7
ANOVA, ANCOVA, Pearson’s
correlation and Partial
Pearson’s correction

Gait endurance and within walk
variability in daily life

[37] UEF assessment 2 3D gyro Upper arm (near the
biceps and to wrist) 8

ANOVA, Logistic regression (for
nominal health outcomes) and
ANOVA regression (for continuous
health outcomes)

UEF index including speed, power
and speed reduction

[38] Standing balance with VR
room rotation

1 VRHMD (6D inertial
sensor + camera) and a
force plate

Head 10 under each
condition

One-sample t-test, signed rank test,
paired t-test and
Pearson’s correlation

VRHMD AP velocity while eyes
open in VR module “balance”

[39] TUG test
4 inertial sensor (3D
accel and 3D gyro) and a
force plate

Chest, lower back,
each foot

8 (plus 9
post-urography
parameters)

Stepwise logistic regression and
Pearson correlation

Combination of Sit-to-Stand
Duration, Stand-to-Sit Duration,
Turn Peak Velocity, AP Sway
Range, Height

[40]
TUG test under single-
motor- and cognitive
dual task

2 inertial sensors (3D
accel and 3D gyro) Anterior of shank (shin) 10 MANCOVA and ANCOVA Cadence, stride velocity, stride time
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Table 4. Cont.

Ref No. Assessment Task No. and Type of
Wearable Sensor(s) Sensor Position(s) No. of Sensor

Features Feature Selection Methods
Wearable Sensor Features Able to
Discriminate Significantly
between Fallers/Non-Fallers

[41] Walking on flat surface
and stairs

2 inertial sensors (3D
accel data used)

Lower back and
right ankle 15

Two-sample t-test, Fisher’s exact
test, Mann-Whitney-U test,
Wilcoxon’s signed-rank test,
Benjamini-Hochberg adjustments,
and logistic regression

Stair descent rate

[42] 25 m walking 3 3D accel
Trunk (near L5) and on
both shanks (15 cm
above malleolus)

6 (plus 3
Tinetti scores)

Mann-Whitney U test, logistic
regression, and ROC curve

Only combined with Tinetti balance-
and Tinetti total score ML trunk
short term Lyapunov exponent was
able to predict falls

[43]
Upright standing balance
(eyes open/closed,
with/without vibration

2 3D gyro Lower back and shin 8 ANOVA, Friedman test, linear
Pearson correlations

Local-controlslope, for eye-closed
when vibration stimuli were applied

[44] 6MWT 1 3D accel, 3D gyro, 3D
magneto- and barometer

Lower trunk (L3
spinous process) 8 t-test Walked distance, cadence, RMS of

vertical acceleration, stride time

[45] Turning test 4 inertial sensors (3D
gyro used)

Chest, pelvis, and
upper legs 1 3 ANOVA, DTW algorithm BST

[47] Free living gait 1 3D accel Lower back 21
Shapiro–Wilk test, Levene’s Test of
Equality of Variances, general linear
modelling, and Tukey’s test

Step velocity variability

[48] Standing balance test 1 inertial sensor
(3D gyro data used)

Lower back
(above pelvis) 4 GMM, EM, and MML algorithm,

ANOVA and ROC-curve

Standing with feet together sway
index, standing with one foot in
front sway index

[50] 15 m walking 2 inertial sensors (3D
accel and 3D gyro)

Right heel (posterior
surface) and trunk (L3
spinous process)

10

Unpaired t-tests/χ2 tests,
unweighted least squares as
extraction method and Cronbach’s
alpha coefficient

C-GAITS score

1 Calculated from 12 IMFs where 8 IMFs from accel signals. 2 Generated from 4 different algorithms using optimal setting of lag size and sensor data. 3 Generated based on 4 sensor features.
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3.1.4. Size and Proportion of Participants Labelled as Fallers of Study Samples

The studies’ sample sizes ranged from 13 to 6295 participants (mean 289, median 73,
standard deviation (SD) 1041). One study used three different datasets [27], which were
counted as three separate samples in our analysis. One study published in 2019 [49] had
an exceptionally large sample of 6295 participants. The studies were categorized into eight
categories according to sample size. The distribution of studies for each categorized sample
size is presented in Figure 4. Approximately one third (12/35) of the studies had a sample
of at least 100 participants.
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The proportion of participants labelled as having elevated fall risk (faller, frail or at risk)
according to RE data (recorded during periods of 3–60 months) and/or PRO data (during
periods of 6–24 months) and/or CLIN data ranged from 14% to 71% (mean 44%, median
46%, SD 14.7%), see Table 3. The threshold used to define a person with elevated fall risk
(faller, frail or at risk) varied between the studies. For example, while most studies required
at least one previous fall to label a participant as a faller in some studies, a few studies
(pointed out in Table 3) required at least two falls. Moreover, most studies performed binary
classification of participants (faller/non-faller) while a few studies classified participants
into three groups (faller/once-faller/multiple faller). One of the study samples in [27]
did not specify the percentage of fallers in sample, the sample was therefore omitted in
the analysis. Moreover, one study used both RE and PRO data to label participants and
obtained different proportion of fallers depending on method. Both values were included
in the analysis.

3.1.5. Sensor-Based Fall Risk Assessment Tasks and Degree of Supervision

Most of the studies (25/33) performed supervised SFRAs where assessment tasks
tested walking (n = 9), sit-to-stand transitions in combination with walking (mostly in TUG)
(n = 6), standing balance function (n = 4), sit-to-stand transitions (n = 2), turning balance
(n = 1), choice stepping reaction time (n = 1), upper extremity function (n = 1), and TUG in
combination with other clinical tests (n = 1). Two of the supervised tests were performed
in a home setting. In two of the 33 studies, the SFRAs tasks (walking on flat surface and
stairs and stair ascent) were performed in semi-supervised conditions at research facilities.
Six of the 33 studies analyzed sensor data from unsupervised assessment tasks in a home
environment, either ADL or free-living daily gait.

The number of different fall risk assessment tasks identified in this review was higher
than the four tasks (quiet standing, sit-to-stand/stand-to-sit, TUG and walking) included
in the triads identified in by [14].
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Studies basing SFRA on classification methods/models with machine learning used
fewer assessment than studies basing SFRA on feature selection and on classification mod-
els without machine learning. In addition, the use of unsupervised and semi-supervised
assessments was higher among studies using classification methods/models with machine
learning (50% supervised, 33% unsupervised and 17% semi-supervised) than among stud-
ies performing discrimination by feature selection (77% supervised, 18% unsupervised and
5% semi-supervised) and studies using classification models without machine learning
(100% supervised).

3.2. Wearable Sensor Used for Fall Risk Assessment

This section provides an overview of trends in the number of wearable sensors and
sensor types used, as well as the distribution of wearable sensors at different body locations.
The identified differences between studies performing discrimination by feature selection
and studies using classification methods/models with and without machine learning
algorithms are presented.

3.2.1. Number of Wearable Sensors

The average number of sensors per study varied between 1 and 5 among the articles.
Most studies (26/33) used 1–2 sensors. As shown in Figure 5, the variation in average
number of sensors used per article and year was higher for studies using classification
methods/models (i.e., studies in Tables 5 and 6 where the number varied between 1 and
10) than for studies not using classification methods/models (i.e., the studies in Table 4
where the number varied between 1 and 4). However, the difference in average number
of sensors per publication year was not statistically significant between the two groups
of studies.
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Table 5. Characteristics of fall risk assessment systems using classification models without machine learning algorithms. CV = cross-validation, MGC = Minimum ground clearance,
SagAngVel = Angular velocity in the sagittal plane.

Ref No. Assessment Task No. and Type of
Wearable Sensor(S) Sensor Position(s) No. of Sensor

Features Feature Selection Methods
Models Able to Discriminate
Significantly between
Fallers/Non-Fallers

[22] 30 m continuous walk 2 inertial sensors (3D
accel and 3D gyro)

Mid-point of
anterior shank 10 Mann–Whitney Wilcoxon rank

sum and Pearson’s correlation

MGC estimation by regression models
(MGC model and MGC variance model)
using the features mean SagAngVel at
mid-swing points, mean absolute
valued SagAngVel and min SagAngVel

[23] TUG test and 20 m walk 1 3D accel Lower back (belt
around waist) 14

Wrapper feature selection
algorithm (wrapper subset
evaluator employing the simple
logistic algorithm)

Logistic regression models CONV
(using conventional clinical assessment
data) and SENSOR (using sensor data
from TUG and overall physical activity)

[27] TUG test 2 inertial sensors (3D
accel and 3D gyro)

Anterior of each shin,
shank bone (tibial bone) 52 Sequential forward

feature selection

Regularized discriminant classifier
models using 52 temporal, spatial,
turning, and rotational features
from TUG

[36] TUG test 2 inertial sensors (3D
accel and 3D gyro)

Mid-point of left and right
anterior shank (shin) 44 Nested CV

Classification model FREcombined which
combines FREsensor (regularized
discriminant model using QTUG
parameters during standing walking
and turning) and FREclin (logistic
regression model using clinical data on
fall risk factors

[49] TUG test 2 inertial sensors (3D
accel and 3D gyro)

Mid-point of left and right
anterior shank (shin) 71 One-way ANOVA

FREcombined (i.e, the weighted average
of the two FRE models FREsensor
(regularized discriminant model using
IMU-data from TUG +
anthropomorphic data) and FREclinical
(logistic regression model using clinical
questionnaire data)
Each mobility score (speed, turn,
transfers, symmetry, variability) in
mobility impairment score was
significantly associated with
falls history
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Table 6. Characteristics of SFRA methods using classification methods/models with machine learning algorithms. F1-score = harmonic mean of precision and Sens, MCC = Matthew’s
Correlation Coefficient, POM = Proportional odds models.

Ref No. Assessment Task No. and Type of
Wearable Sensor(s) Sensor Position(s) No. of Sensor

Features Feature Selection Methods
Methods/Models Able to
Discriminate Significantly between
Fallers/Non-Fallers

[20] 25 m walking 10 3D accel Mid-point of
anterior shank 10

t-test using Holm correction,
Behrens-Fisher test, forward
wrapper selection
algorithm family

RBNC, SVM, KNN, NB

[28] Stair ascent 1 3D accel + 1 barometer Lower back (belt
around waist) 14 Spearman’s rank correlations,

Kruskal–Wallis Wavelet DT with adaptive threshold

[29] Walking 7.62m under
single and dual tasks

4 3D accel + 2 pressure
sensing insoles

Anterior of each shin,
shank bone (tibial bone) 146 Acc, F1-score, MCC SVM, NN, NB

[32]
Identified sit-to-walk
and walk-to-sit
transitions in ADL

1 inertial sensor (3D
accel data used) Low back (belt) 72

4 machine learning algorithms
in Matlab), linear regression
analysis

Ada Boost, SVM, bag, NB

[46]

Battery of 5 clinical tests
including assessment of
standing balance,
stability,
sit-stand-transitions,
walking, motor function,
reaction, and FoF

5 inertial sensors (3D
accel, 3D gyro and 3D
magnetometer)

Low back, upper and
lower legs 155 Two-sample t-tests, ROC

analysis
Logistic regression, NB, DT, RF,
BT, SVM

[51] ADL
1 3D accel + 1
photoelectric heart rate
sensor

Wrist 38 1

One-way and two-way
ANOVA, Kruskal–Wallis H
test, multicollinear test,
recursive feature algorithm in
Caret R package

Three-class classification:
POM and two machine learning
algorithms (DT and RF)
Binary classification:
Three machine learning algorithms
(logistic regression, DT, RF)

1 Combined with 210 variables in RAI-HC.
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3.2.2. Sensor Types

This section provides information on different types of wearable sensors identified
in the included articles, differences between article categories, and identified trends in
sensor types.

The following sensor types were identified among the included studies (number
of articles given in parenthesis): accelerometers (13), gyroscopes (5), a combination of
accelerometers and gyroscopes (6), a combination of accelerometers, gyroscopes and
magnetometers (3), a combination of accelerometers and barometer (2), a combination
of accelerometers, gyroscopes, magnetometers and barometer (1), a combination of a 2D
accelerometer and load cell (1), a combination of accelerometers and photoelectric heart
rate (1), and a combination of accelerometers and pressure (1).

During 2011–2019, the number of different sensor types used, i.e., their dimensionality,
increased after 2016. As shown in Figure A1a (in Appendix B), all articles published during
2011–2015 used one or two different sensor types: accelerometers (7/10 articles), accelerom-
eters and gyroscopes combined (2/10), as well as accelerometers and barometers (1/10)
combined. Starting from 2016, the number of different sensor types has increased: articles
published in 2016 used 3D accelerometers (3 articles), 3D gyroscope (1 article), as well as
a combination of a 3D accelerometer and pressure sensor (1 article). During 2017–2019,
the number of different sensor types continued to increase, and the dimensionality of the
sensor systems increased to 9D (i.e., 3D accelerometers, 3D gyroscopes, 3D magnetometers)
and even to 10D by adding barometer data as well.

The variation in number of different sensor types used was higher among the studies
performing discrimination by feature selection (Table 4) than among studies using classi-
fication methods/models (Tables 5 and 6). However, the difference was not statistically
significant. As shown in Figure A1b (in Appendix B), 1–5 different sensor types were
used per publication year among the articles performing discrimination by feature selec-
tion. Only 1–2 different sensor types were used per publication year among the studies
using classification methods/models with or without machine learning (see Figure A1c
in Appendix B). Moreover, the use of 3D accelerometers was higher among the studies
performing discrimination by feature selection (see Table 4) than among the studies using
classification methods/models (Tables 5 and 6). None of the studies in Tables 5 and 6 that
were published during 2017–2019 used 3D accelerometers.

Among the identified studies performing discrimination by feature selection
(Table 4), gyroscopes started to be used in 2016. In this period, gyroscopes were used
to an equal extent as accelerometers. During 2018–2019, two studies using a combination
of accelerometer, gyroscope, and magnetometer features were identified, one of them also
combined with barometer features.

3.2.3. Distribution of Wearable Sensors at Different Body Locations

This section provides information on how wearable sensors were distributed between
body locations, whether there were differences between article categories, as well as trends
in distribution.

Starting with the studies performing discrimination by feature selection (i.e., the
articles in Table 4), Figure A2 in Appendix B shows that a total of three sensors were used
in the two articles from 2011. Two sensors were located on the upper body (pelvis and
sternum) and one on the lower body (thigh). In 2013–2014, three articles used a total of four
sensors, all located on the upper body (two on the lumbar spine, one on the cervical spine
and one on sternum). In 2016, all five articles included sensors located on the upper body
(lumbar spine) and one of them also included sensors located on the top of the feet. In 2017,
seven articles used a total of nine different sensor body locations. Four of them had sensors
located only on the upper body (pelvis, sternum, biceps, wrist, head). Two had sensors
located both on the upper and lower body (in [39] at the sternum, lumbar spine, and on the
feet, while in [41] on the lumbar spine and one of the ankles) and one [40] positioned the
sensors on the shanks/shins. In 2018, all four articles used a sensor located on the upper
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body (three on the lumbar spine and one on the sternum and pelvis). In addition, two
of them used sensors located on at least one shin/shank, and one of them used sensors
located on the thighs. All three articles published in 2019 also used sensors located on the
upper body (lumbar spine). In addition, one of them [50] used a sensor located on one of
the heels.

To summarize, 64% of the wearable sensors used in the studies performing discrimi-
nation by feature selection were located on the upper body (Figure 6a). Figure 6b shows
that the most common body location on the upper body was the lumbar spine (13 sensors).
Other upper body locations used more than once include sternum (5), and pelvis (3). Lower
body locations used more than once include shin/shank (5), top of foot (4), and thigh (3).
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Continuing with the studies using classification methods/models (with or without
machine learning algorithms (i.e., the articles in Tables 5 and 6), Figure A3 in Appendix B)
shows that most articles reported on sensors located on the lower body with the exception
for the publication years 2011 and 2015. However, in 2011, 6/7 of the reported upper body
sensors were used in one of the articles where a total of ten sensors were used [20], and only
one article was included from 2015. The two articles published in 2014 [27] and 2017 [36]
have the same main author and report on the use of sensors located at the shin/shank.
The two included articles from 2016 use five different sensor locations, and 6/7 of the
sensors were used in one article [29] where most of them were located on the lower body
(shins/shanks and under the feet soles), and two of them on the upper body (head and
pelvis). The other article from 2016 [32] used a sensor located on the upper body (lumbar
spine). Only one article from 2018 [46] used sensors located both on the upper (lumbar
spine) and lower body (thighs, and shins/shanks). In 2019, [51] used a sensor combining a
3D accelerometer and a photoelectric heart rate sensor located on the wrist, while the other
study [49] positioned the sensors at the shins/shanks.

To summarize, 61% of the wearable sensors used in studies using classification meth-
ods/models (with or without machine learning (Figure 7a) were located on the lower
body. Figure 7b shows that the most common body location on the lower body was the
shin/shank (12 sensors). Other lower body locations used more than once include thigh (4),
under foot (2), and ankle (2). Upper body locations used more than once include lumbar
spine (3), wrist (3), biceps (2), and shoulder blade (2). Hence, the body locations used in
studies using classification methods/models with or without machine learning, are quite
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different from the body locations used in the studies performing discrimination by features
where 64% of the sensors were located on the upper body.
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3.3. Signal Processing

The analysis of methods used for signal/data processing and analysis in the 33 studies
identified that the used signal processing approaches could be classified according to
three main categories: discrimination by feature selection (22 studies presented in Table 4),
classification by use of classification methods/models with and without machine learning
algorithms (5 studies without machine learning algorithms presented in Table 5, and
6 studies with machine learning algorithms presented in Table 6).

3.3.1. Sensor Features

The number of sensor features selected for fall risk assessment analysis (either dis-
crimination or classification) varied from one to hundreds between different studies.

Among studies discriminating by feature selection, i.e., performing statistical anal-
ysis directly on selected features (Table 4), most of the studies (14/21) used up to 10
(4–10) sensor features and four studies used 15–21 sensor features [21,34,41,47]. The
highest number of sensor features used among the studies was 60 [31]. However, this
number differed significantly from the other studies discriminating fall risk by feature selec-
tion. Some studies evaluated the discriminatory capabilities of generated sensor features,
e.g., Step Stability Index (SSI) [25], Local Dynamic Stability (LDS) [30], and Biometric
Signature Trajectory (BST) by [45].

In the studies using classification models without machine learning algorithms
(Table 5), three articles from the same main author [27,36,49] used over 40 (44–71) sensor
features in regularized discriminant classifier models. The other two studies [22,23], which
both used regression models, utilized 10 and 14 sensor features respectively.

The studies using classification methods/models with machine learning algorithms
(Table 6) used more sensor features than studies assessing fall risk based on feature
extraction (Table 4) and on classification models without machine learning (Table 5).
Two studies [29,46] used approximately 150 sensor features, while two other studies [20,32]
used approximately 70 sensor features for four different machine learning algorithms.
One study [28], which built on the machine learning classification algorithm decision tree
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(DT), used only seven sensor features. A total of 38 sensor features were combined with
210 variables in Resident Assessment Instrument—Home Care (RAI-HC) and analyzed
using machine learning algorithms [51].

3.3.2. Feature Selection

All studies employed feature selection, regardless of whether they used statistical
analysis directly on the selected features to assess fall risk or used the selected features in
classification methods/models which used machine learning algorithms or other types
of classifiers.

Most studies used statistical tests in the feature selection process. Some articles stated
that the Shapiro–Wilk test had been used to identify whether data was normally distributed
prior to feature selection [43,47,51]. In studies where the data met requirements for paramet-
ric tests, those were used. Here, comparison tests including Analysis of variance (ANOVA)
(10/33) and t-test (9/33) were mostly used. Analysis of co-variance (ANCOVA) was used
together with ANOVA in [35] and combined with Multivariate ANCOVA (MANCOVA)
in [40]. Moreover, correlation tests using Pearson’s correlation were employed in some
studies [22,35,38,39,43]. When data did not fulfil requirements for parametric tests, non-
parametric tests including Wilcoxon-signed-rank [19,25,34,41], Kruskall–Wallis tests [19],
χ2 tests [24,50], Mann–Whitney test [22,25,34,41,42], Friedman test [34,43], Fisher’s exact
test [41], and Tukey’s test [47] were used.

In Table 4, these feature selection methods were mostly used for assessment of in-
dividual difference and significance, i.e., which of the features to be included in fall
discrimination analysis. However, in Tables 5 and 6, the methods mostly tended to prepare
data for classification models and machine learning algorithms, catering for the prediction
and assessment of the classification ability or performance.

3.3.3. Fall Risk Assessment

The 22 studies in Table 4 employed selection and comparison of features by performing
statistical tests to discriminate between fallers and non-fallers or to classify individuals as
fallers or non-fallers. The majority of these articles (17/22) compared the features between
groups by performing different statistical tests with the aim of identifying features with
significant discrimination ability. Some articles (5/22) proposed novel or valid measures
from sensor measurements and analyzed the feasibility of those, i.e., a novel measure of
SSI [25], LDS [30], refined composite multiscale entropy (RCME) and refined multiscale
permutation entropies (RMPE) [31], BST [45], and Comprehensive Gait Assessment using
Inertial sensor (C-GAITS) score [50].

In total, 11 studies employed classification methods/models with and without ma-
chine learning to discriminate between groups with different fall risk or to classify indi-
viduals as according to fall risk. Five of those studies (presented in Table 5) employed
classification models without machine learning algorithms for fall risk assessment. Most
commonly used models were regression models (4 studies) and discriminate classifier
models (3). In addition, six studies (presented in Table 6) used machine learning classifica-
tion algorithms, including adaptive boosting (Ada Boost) (1 study), boosted tree (BT) (1),
bootstrap aggregation (bag) (1), DT (3), k-nearest neighbors’ classifier (KNN) (1), logistic
regression (2), naïve Bayes (NB) (4), neural network (NN) (1), radial basis function network
classifier (RBNC) (1), random forest (RF) (2), and support vector machine (SVM) (4) to
assess fall risk

3.4. Identification of Triads and Assessment of Applicability on Classification Methods/Models

As described in Section 3.1.5, the current review reports on SFRA performed under
supervised, semi-supervised, and unsupervised conditions (such as ADL or free-living
gait) and the degree of supervision varied between article categories. For example, all
studies using classification models without machine learning were supervised while only
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50% of the studies using classification methods/models with machine learning algorithms
were supervised.

A previous systematic review and meta-analysis of best available evidence of optimal
combinations of sensor locations, tasks and feature for fall risk assessment [14] discussed
discriminating sensor features of four certain tasks while wearing sensors. The six rec-
ommended triads were: (1) angular velocity—walking—chins, (2) frequency—walking—
lower back, (3) frequency—walking—upper back, (4) linear acceleration—quiet standing—
lower back, (4) linear acceleration—quiet standing—lower back, (5) linear acceleration—
sit-to-stand/stand-to-sit—lower back, and (6) temporal—TUG—shins. The three not-
recommended triads were: (1) angular velocity—walking—lower back, (2) frequency—
walking—shins, and (3) linear acceleration—walking—shins [14]. In the current review,
it was not possible to outline the aforementioned triads for the 11 studies performing
classification methods/models, i.e., the studies in Tables 5 and 6. The main reason for this
is the fact that they present methods rather than sensor features. Further, the current review
identified several assessment tasks that were not included in [14], for example reaction tests,
stair ascent and decent, ADL, balance tests in different conditions, and an UEF test. Most
of these newer tasks were used in studies performing discrimination by feature selection.
Therefore, rather than trying to identify triads like the ones in [14] or counting sensor
types/sensor locations for all studies, Sections 3.2.1–3.2.3 present information on number
of sensors, sensor types, and sensor locations, differences between article categories as well
as trends during 2011–2019. Nevertheless, an analysis relating to the previous systematic
review by Montesinos et al.’s triads [14] has been conducted.

Starting with the studies performing discrimination by feature selection (i.e., the
studies in Table 4), most sensors were located on the upper body and most of them were
located on the lumbar spine. The lower back was included in the triads recommended
by [14] for quiet standing and stand-to-sit/sit-to stand tasks but not TUG. For TUG, the
recommended triad included temporal-shin. Only the studies [39,40] used TUG as an
assessment task, [40] used the recommended sensor location, i.e., the shin. However, none
of them presented results that distinguished fallers from non-fallers by using temporal
sensor features. Four studies included standing balance tests at different conditions, VR
included. Excluding the VR study [38], the three other studies [34,43,48] used sensors
located on the lower back or pelvis. Hence, while not being assessment tasks listed in [14],
the sensor location mimics the one in the recommended triad (4) above.

Regarding the walking task, [14] identified both recommended and not-recommended
triads with respect to the lower back. Eight studies used different walking tasks. These
included also walking in different conditions, daily life walking, walking in stairs, 6MWT
and 15 m walking tests. The sensor was located on the lower back in seven studies, and on
a nearby location (pelvis) in one study. However, the dimensionality of the collected sensor
data varied. In the studies [19,24,25,31,41,42], features from one or more 3D accelerometers
were used. A combination of 3D accelerometer and 3D gyroscope features was used
in [50], and an even more complex combination (3D accelerometer, 3D gyroscope, 3D
magnetometer, and barometer features) was used in [44]. Several of the studies using
walking as the assessment task also used more than one sensor but the location of them
varied. We note that the triad linear acceleration—walking—lower back was not identified
as a recommended triad in [14].

The triad angular velocity—walking—lower back was identified as not-recommended
in [14]. Nevertheless, gyroscope features were included in the C-GAITS score [50]. Finally,
Table 4 includes two studies [21,30] including the sit-to-stand assessment task. Both used one
or more sensors providing 3D accelerometer features. For sit-to-stand, the in recommended
triad (4) above includes linear acceleration—lower back. This sensor location was used in [30]
but the sensors were positioned on one of the thighs and sternum in [21].

The triads by [14] are not directly applicable for the studies using classification mod-
els/methods. The majority of the sensors used in the studies presented in Tables 5 and 6
were located on the lower body with shin/shank being the most common location. Three
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of the studies in Table 5 [27,36,49] used TUG as the assessment task. All of them posi-
tioned the sensors on the shin/shank, i.e., the same location as in the recommended triad
(6) above for TUG which included temporal-shins. One study, [22] was conducted by
the same research group but used walking as an assessment task with sensors located
on the shins/shanks. It should be acknowledged here that although the Shimmer sensor
(i.e., a combination of 3D accelerometer and 3D gyroscope features) was used during the
assessment, the research has resulted in a commercial quantitative TUG assessment tool
called QTUG which is provided by the company Kinesis Health Technology.

One article [23] used both walking and TUG as assessment tasks. The location chosen
for a 3D accelerometer was the lower back. Also, this triad was not identified by [14].

None of the recommended triads for walking (1–3 above) include linear acceleration,
neither does the recommended triad for TUG (6 above). Hence, the studies in Table 5 show
that it is possible to use also other triads when using classification models/methods. The
assessment tasks vary significantly between the studies in Table 6, therefore, no further
analysis on body locations and identification of triads is provided here.

3.5. Statistical Analyses on the Sensor-Based Methods’ Capabilities to Assess Fall Risk

Statistical analyses were performed on the SRFA methods’ capabilities to assess fall
risk, either to discriminate between groups with different fall risk or to classify individuals
as faller/non-faller. Methodological data and main findings on discriminatory capabilities
of sensor features and classification methods/models are presented in Tables 7 and 8.
Methodological data and classification performance of sensor features, and classification
methods/models are presented in Tables 9 and 10.

Table 7. Statistical analyses on the sensor-based features’ abilities to discriminate groups with distinct levels of fall risk.
BMI = Body Mass Index.

Ref No.

No. of Fallers/No. of
Participants
(Faller/Non-Faller
Labelling Method)

Sensor Features’ Performance in Discriminating Groups
with Different Level of Fall Risk (Fallers/Non-Fallers)

No. of Features and Type
of Assessment Task Able
to Discriminate Groups
with Different Level of Fall
Risk (Fallers/Non-Fallers)

[21] 19/39 (RE-60, CLIN)

Fallers took significantly longer time to complete sit-stand
transitions than non-fallers; Fallers exhibited increased jerk
over the complete assessment than non-fallers; SEF was
significantly higher for fallers than non-fallers for the total
test, sit-stand-sit components, sit-stand and
stand-sit transitions

6, sit-stand and
stand-sit transitions

[25] 39/81 (RE-12)
The SSI was significantly higher for fallers than non-fallers
under all three walking conditions (baseline with and without
harness, obstacle negotiation with harness)

3, gait

[26] 36/104 (RE-12)
Significantly longer times to regain balance after movement
initiation and slower stability time for fallers than for
non-fallers.

2, stability/balance

[33] 19/35 (RE-12)
7/35 (PRO-6)

RE-12: Mean turn duration, mean peek speed of turning and
mean number of steps/turn and the coefficient of variance of
the turn angle were significantly different between
multiple-fallers and non-fallers. Multiple-fallers had a longer
turn duration, slower mean peak speed of turning, a higher
number of steps/turn, and showed a lower coefficient of
variance of turn angle than non-fallers. Multiple-fallers took a
significantly higher number of steps/turn and showed a
lower coefficient of variance of turn angle than fallers.
PRO-6: 7/35 fell during the 6-month period. The coefficient of
variance of steps per turn was significantly larger for fallers
and multiple-fallers than for non-fallers.

RE-12: 4, turning and gait
PRO-6: 1, gait
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Table 7. Cont.

Ref No.

No. of Fallers/No. of
Participants
(Faller/Non-Faller
Labelling Method)

Sensor Features’ Performance in Discriminating Groups
with Different Level of Fall Risk (Fallers/Non-Fallers)

No. of Features and Type
of Assessment Task Able
to Discriminate Groups
with Different Level of Fall
Risk (Fallers/Non-Fallers)

[34] 19/29 (RE-12) RMS sway acceleration for ML direction during semi-tandem
stance was significantly higher among fallers than non-fallers. 1, stability/balance

[35] 33/96 (RE-12)
After adjusting for demographics, fallers had significantly
lower gait endurance and higher within walk variability in
daily life than non-fallers.

2, gait

[37] 53/101 (UEF I)

The UEF index (adjusted for age, gender, BMI, age, discharge
disposition) was a predictor for 30-day prospective falls. The
UEF index, which assesses frailty, was higher in the frail
group than in the non-frail group.

1, upper extremity

[38] 5/13 (CLIN incl. RE)

People at-risk of falling changed their head tilt in the AP
direction significantly faster than people not at risk. Only
reliable variables (identified from test-retest reliability
evaluations) were included in the analysis.

1, stability/balance

[40] 16/37 (RE-12) Fallers had a significantly higher cadence, higher stride
velocity and shorter stride time than non-fallers. 3, gait

[41] 11/81 (PRO-12) Stair descent rate was significantly higher among
multiple-fallers than non-multiple-fallers 1, stair negotiation

[43] 10/20 (CLIN incl. RE)
When vibration was induced in the eyes-closed condition, the
people with a high fall risk changed the local-controlslope
significantly less than people with a low fall risk

1, stability/balance

[44] 25/50 (determined by
clinical partners)

People with a high fall-risk had a significantly shorter walked
distance, lower cadence, lower RMS (vertical acceleration)
and higher stride time than people with a low fall-risk.

4, gait

[45] 22/45 (RE)
The DTW difference between the reference BST and each
participant’s BST was significantly higher among elderly
multiple fallers than non-fallers.

1, balance/stability

[47] 122/172 (RE-18/RE-6) Step velocity variability was significantly lower among older
adult fallers than older adult non-fallers. 1, gait

[50] 65/378 (RE-18) Statistically significant lower C-GAITS score among fallers
than non-fallers. 1, gait:
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Table 8. Statistical analyses on the sensor-based methods’/models’ abilities to discriminate groups with distinct levels of fall risk. FRE = Fall Risk Estimate.

Ref No.

No. of Fallers/No. of
Participants
(Faller/Non-Faller
Labelling Method)

Classification
Models/Algorithms Included in
Discrimination Method

Model Validation Method
Methods’/Models’ Performance in
Discriminating Groups with Different Level
of Fall Risk (Fallers/Non-Fallers)

No. of Features and Type of
Assessment Task Able to
Discriminate Groups with
Different Level of Fall Risk
(Fallers/Non-Fallers)

[22] 54/114 (RE-60) 2 regression algorithms of
minimum ground clearance NA

Fallers had a significantly lower mean
SagAngVel at mid-swing points, mean
SagAngVel absolute value and min SagAngVel
than non-fallers.

3, gait

[28] 31/52 (PRO-12)

Machine learning algorithms
(wavelet DT with adaptive
threshold) using barometer and
Accel features for classifying stair
negotiation

Annotated video and 4-fold
CV (x4 times)

PRO significantly correlated with reduced stair
ascent stability (HR-AP, r = −0.35). 1, stair negotiation

[49] 1637/6295 (RE-12)
Regularized discriminant model
(sensor data), logistic regression
model (clinical data)

Validation of models
previously reported

FREcombined significantly associated with RE (F
= 214.19, ρ < 0.0001). Each mobility score (speed,
turn, transfers, symmetry, variability) in
mobility impairment score was significantly
associated with falls history.

NA
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Table 9. Statistical analyses on the sensor-based features’ performance in classifying older individuals according to their risk of falling. Acc = Accuracy, BBS = Bergs Balance Scale, Err =
Error, Sens = Sensitivity, Spec = Specificity.

Ref No. No. of Fallers/No. of Participants
(Faller/Non-Faller Labelling Method)

Sensor Features’ Performance in Discriminating Groups with Different
Level of Fall Risk (Fallers/Non-Fallers) Comment

[19] 40/81 (RE-6, CLIN) Gait speed (cut-off 1.158 m/s): Acc = 77%; Sens = 78%; Spec = 78%;
AUC = 0.83

[24] 16/71 (PRO-12) UT HR-VT: AUC = 0.81 (95% CI: 0.69–0.83; p < 0.001). Sens = 68.8% and
Spec = 84.2% at cutoff value 1.89 based on the Youden index.

95% CI for AUC presented (as suggested in
previous reviews)

[30] 32/71 (RE-12)

Kantz’ algorithm [53] with the best performing parameter: AUC = 0.73 (95%
CI:0.60–0.85; p = 0.003)
Ihlen’s algorithm [52] with the best performing parameter: AUC = 0.75
(CI:0.60–0.82; p > 0.001)
Rosenstein’s algorithm [54] with the best performing parameter:
AUC = 0.59 (CI:0.44–0.71; non-significant)

95% CI for AUC of as well as pairwise
comparison of AUC of models presented (as
suggested in previous reviews)

[31] 32/71 (RE-12)

Mean (Equation (1)) RCME for trunk acceleration: Sens = 0.84; Spec = 0.85;
AUC = 0.81; Err = 0.15
Mean (Equation 1) RCME for trunk velocity: Sens = 0.78; Spec = 0.90;
AUC = 0.83; Err = 0.15
Mean (Equation (1)) RPME for trunk acceleration: Sens = 0.88; Spec = 0.90;
AUC = 0.88; Err = 0.11
Mean (Equation (1)) RPME for trunk velocity: Sens = 0.75; Spec = 0.87;
AUC = 0.82; Err = 0.18

[39] 59/148 (RE-12) Height, sit-to-stand duration, stand-to-sit duration, turn peak velocity, AP
sway range: Sens = 54.3%, Spec = 82.7%; max re-scaled R2 = 0.3244

[42] 50/131 (PRO-12)

Combination of Tinetti balance score, Tinetti total score and ML trunk short
term Lyapunov exponent: AUC = 0.760, Sens = 0.80, Spec = 0.7
ML trunk short term Lyapunov exponent alone is found insufficient for
distinguishing groups. ML trunk short term Lyapunov exponent comparing
non-fallers and multiple-fallers. AUC = 0.673; Sens: 0.53; Spec: 0.85

Performance metrics for Tinetti scores
presented as suggested in previous reviews.

[48] 56/86 (RE-12)

Standing with feet together sway index: Sens = 78.6%; Spec = 75.7%;
AUC = 0.84 (95% CI: 0.75–0.92)
Standing with one foot in front sway index: Sens = 82.1%; Spec = 77.7%;
AUC = 0.90 (95% CI: 0.82–0.97)

95% CIs for all AUCs presented. Performance
metrics of CLIN BBS presented (both aspects
suggested in previous reviews)
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Table 10. Statistical analyses on the sensor-based classification models’ performance in classifying older individuals according to their risk of falling. NPV = Negative Predictive Value,
PPV = Positive Predictive value.

Ref No.
No. of Fallers/No. of
Participants (Faller/Non-Faller
Labelling Method)

Classification
Models/Algorithms Included in
Discrimination Method

Model Validation Method
Methods’/Models’ Performance in Discriminating
Groups with Different Level of Fall Risk
(Fallers/Non-Fallers)

Comment

[20] 15/20 (RE-6, CLIN) 4 machine learning algorithms:
NB, RBNC, KNN, SVM Leave-one-out CV

NB: Sens = 1; Spec = 1; Err = 0 for 4 combinations of
selected features
RBNC: Sens = 1; Spec = 0.8; Err = 0.05 for 1 selected feature
KNN: Sens = 0.93; Spec = 0.8; Err = 0.05 for 1 selected
feature combination
SVC: Sens = 1; Spec = 0; Err = 0.25 for 1 selected
feature combination

Small sample
Very high-performance metrics
(authors conclude that NB
probably is over fitted)

[23] 19/46 (PRO-12) Logistic regression models
(SENSOR, CONV) Ten-fold CV (x10 times)

SENSOR: Acc = 70%; Sens = 58%; Spec = 78%; NPV = 72%;
PPV = 65%; Brier score = 0.21; AUC = 0.72
CONV: Acc = 72%; Sens = 68%; Spec = 74%; NPV = 77%;
PPV = 65%; Brier score = 0.20; AUC = 0.74

Small sample
Performance metrics of clinical
assessment tools provided (as
suggested in previous reviews)

[27]

Number of fallers not reported in
RE-60 and PRO-24 data
samples/RE-60: 909
PRO-24: 259
Val: 55 (non-fallers)

Regularized discriminant
classifier algorithms
(Cross-sectional, prospective)

Ten-fold CV (x10 times) and
validation using independent
data set with healthy
control subjects

1. Ten-fold CV (×10 times)
Cross-sectional model (RE dataset): Acc = 70.02%;
Sens = 47.73%; Spec = 84.72%; PPV = 70.14%;
NPV = 69.19%; AUC = 0.67
Prospective model (PRO dataset): Acc = 76.27%;
Sens = 57.20%; Spec = 83.63%; PPV = 59.86%;
NPV = 82.54%; AUC = 0.69
2. Validation using independent datasets with healthy
older adults
Cross-sectional model (CS1 + CS2 non-faller):
Acc = 94.11%
PRO-model (CS1 + CS2 non-faller): Acc = 79.38%

Validation both by CV and by
use of independent datasets (as
suggested in previous reviews)
Validation with independent
dataset: Cross-sectional single
task Acc > 81%

[29] 24/100 (RE-6)
3 machine learning algorithms:
multi-layer perceptron NN, NB,
SVM

Hold-out method (75% training
set and 25% test set). Derived
using either single task data or
dual task data

Best fall risk classification model based on single task i.e.,
walk without cognitive load:
4 models with identical performance (SVM degree
2—using data from insoles-pelvis. SVM degree 3—using
data from insoles-head-pelvis, NN 9 nodes—using data
from insoles-pelvis, and NN 20—using data from
insoles-head-pelvis-left shank): Acc = 84.0%; F1-score =
0.600; MCC = 0.521
Best fall risk classification model based on dual task (DT),
i.e., walk with cognitive load:
1 SVM degree 1 model using data from insoles and pelvis:
Acc = 80.0%; Sens = 100.0%; Spec = 73.7%; PPV = 54.5%;
NPV = 100.0%; F1 = 0.706; MCC = 0.634
Comparison of 10 best ST models and 10 best DT models,
all but one ST model outperformed the DT models.

Hold-out method used for
model validation (preferred
over CV
in [9].)
Single task data models: Best
Acc > 81%



Sensors 2021, 21, 5863 28 of 46

Table 10. Cont.

Ref No.
No. of Fallers/No. of
Participants (Faller/Non-Faller
Labelling Method)

Classification
Models/Algorithms Included in
Discrimination Method

Model Validation Method
Methods’/Models’ Performance in Discriminating
Groups with Different Level of Fall Risk
(Fallers/Non-Fallers)

Comment

[32] 33/71 (RE-12, at least 2 falls) 4 machine learning algorithms
(Ada Boost, SVM, bag, NB)

Stratified two-fold CV
(×20 times)

Machine learning algorithms using features from
Daily-Living Transitions:
AdaBoost (mean number of (no) features = 18.25):
Acc = 87.90%; Sens = 88.84%; Spec = 87.22%
SVM (mean no features = 25.50): Acc = 90.64%;
Sens = 89.23%; Spec = 91.66%
Bag (mean no features = 10.25): Acc = 87.09%;
Sens = 83.84%; Spec = 89.44%
NB (mean no features = 19.10): Acc = 87.74%;
Sens = 78.46%; Spec = 94.44%
Machine learning algorithms using features from
Daily-Living Transitions and functional laboratory tests:
Ada Boost (mean no features = 13.55): Acc = 90.16%;
Sens = 87.50%; Spec = 91.94%
SVM (mean no features = 22.60): Acc = 91.00%;
Sens = 88.75%; Spec = 92.50%
Bag (mean no features = 16.05): Acc = 87.16%;
Sens = 85.41%; Spec = 88.33%
NB (mean no features = 15.65): Acc = 90.66%;
Sens = 83.33%; Spec = 95.50%
Machine learning algorithms using features from
functional laboratory tests:
AdaBoost (mean no features = 2.60): Acc = 70.00%;
Sens = 56.66%; Spec = 78.88%
SVM (mean no features = 1.70): Acc = 70.66%;
Sens = 42.90%; Spec = 89.16%
Bag (mean no features = 2.60): Acc = 72.50%;
Sens = 68.75%; Spec = 75.00%
NB (mean no features = 2.05): Acc = 70.66%;
Sens = 44.16%; Spec = 88.33%

Authors find that features
extracted from daily life can
distinguish better between
fallers and non-fallers than
features from functional
laboratory tests. The
discrimination was only
slightly improved by
combining the features.
Acc for model using data from
Daily Living transitions > 81%
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Table 10. Cont.

Ref No.
No. of Fallers/No. of
Participants (Faller/Non-Faller
Labelling Method)

Classification
Models/Algorithms Included in
Discrimination Method

Model Validation Method
Methods’/Models’ Performance in Discriminating
Groups with Different Level of Fall Risk
(Fallers/Non-Fallers)

Comment

[36] 11/22 (RE-12)

FREsensor—regularized
discriminant model (sensor data)
FREclin—logistic regression
model (clinical data)
FREcombined—classifier combined
theory

Classification performance:
Leave-one out CV
FREsensor features and model
selection: Ten-fold CV
(×10 times)
Validation of FREsensor using
independent dataset

Classification performance using leave-one-out CV:
FREcombined: Acc = 68.48%; Sens = 68.36%; Spec = 68.57%;
PPV = 61.11%; NPV = 75.00%
FREsensor: Acc = 66.82%; Sens = 74.01%; Spec = 61.63%;
PPV = 58.22%; NPV = 76.65%
FREclin:: Acc = 58.53%; Sens = 35.93%; Spec = 78.90%;
PPV = 54.55%; NPV = 63.61%
Validation of FREsensor using independent dataset with
community-dwelling older adults with 95% CI in []:
Acc = 72.70 [54.12–91.34] %; Sens = 90.91 [78.90–100.0] %;
Spec = 54.50 [33.69–75.31] %; PPV = 66.67 [46.97–86.37] %;
NPV = 85.71 [71.09–100.0] %

Independent validation of
clinical, sensor and combined
FRE classifier models:
FREsensor model validated on
independent dataset and 95%
CIs for performance metrics
provided (as recommended in
previous reviews)

[46] 82/196 (RE-60)
6 Machine learning algorithms:
SVM, BT, RF, DT, NB,
logistic regression

Ten-fold CV (×10 times)
Two sample t-test for
comparing overall
classification Acc.

SVM: Acc = 89.42 ± 4.82%; Sens = 92.67 ± 6.17%;
Spec = 84.90 ± 8.68%
BT: Acc = 87.09 ± 5.56%; Sens = 91.23 ± 6.71%;
Spec = 81.37 ± 9.37%
RF: Acc = 86.39 ± 5.41%; Sens = 92.23 ± 5.49%;
Spec = 78.06 ± 10.63%
DT: Acc = 81.64 ± 6.09%; Sens = 87.25 ± 7.56%;
Spec = 73.29 ± 10.62%
NB: Acc = 80.05 ± 6.11%; Sens = 87.91 ± 6.60%;
Spec = 69.16 ± 11.80%)
Logistic regression: Acc = 79.70 ± 6.37%;
Sens = 87.24 ± 6.75%; Spec = 69.23 ± 11.94%

95% CIs provided for each
performance metrics (as
recommended in previous
reviews). Two sample t-tests on
overall classification Acc
showed that a significantly
higher Acc was achieved using
SVM.
Best Acc > 81%
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Table 10. Cont.

Ref No.
No. of Fallers/No. of
Participants (Faller/Non-Faller
Labelling Method)

Classification
Models/Algorithms Included in
Discrimination Method

Model Validation Method
Methods’/Models’ Performance in Discriminating
Groups with Different Level of Fall Risk
(Fallers/Non-Fallers)

Comment

[51] 24/40 (RE-3, non/once/multi)

Three-class classification model
using features from wearables
and/or RAI-HC: POM, and the
machine learning algorithms DT
and RF
Binary classification model using
features from wearables and/or
RAI-HC: logistic regression, DT
and RF

Leave-one-out CV

1. Three class classification (non-fallers, fallers,
multiple-fallers):
(a) best performance RF: Acc = 0.838 ± 0.199;
Recall = 0.775 ± 0.233; Precision = 0.730 ± 0.259;
F1 = 0.748 ± 0.248
(b) DT: Acc = 0.757 ± 0.221; Recall = 0.703 ± 0.254;
Precision = 0.643 ± 0.275; F1 = 0.662 ± 0.266
(c) worst performance POM: Acc = 0.676 ± 0.170;
Recall = 0.626 ± 0.195; Precision = 0.593 ± 0.195;
F1 = 0.584 ± 0.191
2. Binary classification (non-fallers + fallers vs.
multiple-fallers):
(a) best performance RF: AUC = 0.894 ± 0.155;
Acc = 0.892 ± 0.160; Recall = 0.908 ± 0.135;
Precision = 0.928 ± 0.106; F1 = 0.888 ± 0.166
(b) DT: AUC = 0.858 ± 0.160, Acc = 0.838 ± 0.200;
Recall = 0.869 ± 0.154; Precision = 0.851 ± 0.226;
F1 = 0.829 ± 0.218
(c) worst performance logistic regression:
AUC = 0.838 ± 0.234; Acc = 0.703 ± 0.172;
Recall = 0.676 ± 0.200; Precision = 0.657 ± 0.281;
F1 = 0.626 ± 0.231
3. Binary classification (non-fallers vs. fallers +
multiple-fallers):
(a) best performance RF: AUC = 0.865 ± 0.125;
Acc = 0.865 ± 0.132; Recall = 0.865 ± 0.125;
Precision = 0.908 ± 0.094; F1 = 0.853 ± 0.139
(b) DT: AUC = 0.842 ± 0.229, Acc = 0.865 ± 0.192;
Recall = 0.851 ± 0.213; Precision = 0.886 ± 0.202;
F1 = 0.849 ± 0.214
(c) worst performance logistic regression:
AUC = 0.743 ± 0.251; Acc = 0.784 ± 0.224;
Recall = 0.766 ± 0.232; Precision = 0.778 ± 0.255;
F1 = 0.755 ± 0.246

95% CI provided for each
performance metrics (as
recommended in previous
reviews). Pruning used in
training of DT models to avoid
overfitting.
Acc > 81%
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3.5.1. Capability in Discriminating Groups with Varied Level of Fall Risk

Eighteen (18/33) studies analyzed the SFRA methods’ capabilities to discriminate
between groups of older adults with different fall risk, mostly fallers/non-fallers. Most
of them (15/33, see Table 7) evaluated the discriminative capability of sensor features
and a few (3/33, see Table 8) evaluated the discriminative capability of classification
methods/models.

The 15 studies evaluating capabilities of sensor features to discriminate between
groups (presented in Table 7) included 5–122 fallers (mean 31, median 20.5, SD 28). Only
2/15 studies identified fallers based on PRO data, one for 12 months and one for 6 months.
Each study identified 1–6 sensor features which differed significantly between groups of
participants with different fall risk levels. Almost half (7/15) of the studies identified sensor
features related to gait, both more complex measures [25,50] and specific gait characteristic
features such as within walk variability [35]. Moreover, one study identified that stair
descent rate significantly differed between multiple- and non-multiple-fallers [41]. Five
studies identified that features related to balance were significantly different between
groups, for example during tandem stand [34], in regain of balance after movement
initiation [26] and upon external stimuli [43].

The three studies evaluating the capabilities of classification models/algorithms to
discriminate between groups (presented in Table 8) included 31-1637 fallers (mean 574,
median 54, SD 752). One of the studies used an exceptionally large sample to validate a
model that had been previously reported [49]. One of the studies [28] identified fallers based
on PRO data, and a period of 12 months was used. Both classification methods/models
with [28] and without [22,49] machine learning were evaluated. Two of the articles stated
that model validation was performed.

3.5.2. Capability in Classifying Individuals as Fallers/Non-Fallers (or Equivalent)

Fifteen (15/33) studies analyzed the SFRA methods’ performance in classifying older
adults as fallers/non-fallers or equivalent. Seven of them evaluated classification per-
formance of sensor features directly (Table 9) and eight evaluated classification meth-
ods/models which used sensor derived features (Table 10).

The seven studies evaluating performance of sensor features to classify individuals
(presented in Table 9) included 16–50 fallers (mean 41, median 40, SD 14). Only two of
them identified fallers based on PRO data, both for 12 months. Some studies analyzed
features selected from sensor signals, e.g., gait speed [19] or HR derived from upper trunk
accelerometry [24]. Others analyzed generated features, e.g., SSI [25], LDS [30], RCME, and
RMPE [31].

Six (6/7) studies reported Area Under Curve (Operating Characteristics-curve) (AUC)-
values (range 0.67–0.90), half of them reported 95% confidence intervals (CIs) of the average
AUCs and four of them reported AUC-values of 0.81 and higher. These six studies also
reported values of sensitivity, i.e., the probability of classifying a true faller as faller, (range
53–88%) and specificity, i.e., the probability of classifying a true non-faller as non-faller
(range 72–90%). As shown in Figure 8, 5/6 of these studies reported a specificity that was at
least as high as the sensitivity. This indicates that the methods’ performance in classifying
non-fallers was as least as high as their performance in classifying fallers. For example,
ref [39,42] reported sensitivity values of 53% and 54.3%, respectively (see values marked
with (1) and (2) in Figure 8). Ihlen et al. [31] reported the highest sensitivity (88%, see value
marked with (3) in Figure 8).
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Eight studies evaluated classification performance of sensor-based classification meth-
ods/models. One of them did not report on number of fallers in their sample but the other
seven studies, presented in Table 10, included 11–33 fallers (mean 21, median 22, SD 7), all
identified based on RE data.

Type of metrics used to report on classification performance varied between stud-
ies: most studies (7/8) reported classification accuracy with best performance values
in the range 70–91%. In addition, values on sensitivity (best values of studies in range
36–100%), specificity (best value of studies in range 55–100%) and AUC-values (best value
of studies in range 0.67–0.93) were reported. Three of the eight studies presented CIs for
the reported values and three studies [23,42,48] reported performance metrics of clinical
fall risk assessment methods for comparison.

More than 60% of the studies (5/8) evaluated the performance of models using
machine learning algorithms. Each study evaluated the performance of three to six models
such as NB, SVM, and multi-layer perceptron NN. Three of the four studies that included
SVM-based models in their comparisons identified that this type of machine learning
algorithm resulted in the best performance [29,32,46]. The remaining 40% of the studies
(3/8) evaluated classification models based on logistic regression algorithms [23] and
regularized discriminant classifier algorithms [27,36].

Accuracy values reported from studies using classification models with machine
learning (79.7–91%) were higher than accuracy values reported from studies that used
classification models without machine learning (70–72.7%) (see Table 10). It should be noted
though that only the highest achieved accuracy value per classification model is reported
in this review. Moreover, studies employing models with machine learning reported higher
sensitivity and specificity values compared to classification methods/models using other
types of classifiers (see Figure 9). Here, the lowest sensitivity value, presented by [27], was
below 50% (see data point marked with double asterisks in Figure 9). However, the study
by Caby et al. [20], which compared four different machine learning algorithms, reported
sensitivity values of 0 and 1 (see data points marked with one asterisk in Figure 9).
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All studies validated their classification models, mostly by cross validation (CV).
However, one study used a hold-out method with 75% of the data in the training set
and 25% in the validation set [29], and one study used an independent dataset for model
validation [36]. In both cases, the reported specificity was lower than the sensitivity (see
data points marked with arrows in Figure 9), and this indicated that their performance
in classifying fallers were at least as high as their performance in classifying non-fallers.
Moreover, one of the studies which used CV reported that pruning was used in the model
training to avoid overfitting [51].

4. Discussion

This article presents a systematic review of evaluations of SFRA methods in peer
reviewed literature published 2010–2020. A total of 389 publications were screened for
eligibility and 33 articles were included in the final assessment.

The current review identified that the most studied population was community-
dwelling older adults. Although sample sizes varied widely between studies, 33% (12/35)
of the samples in the 33 included studies had at least 100 participants. This percentage
was higher than what had been identified in the review by Rucco et al. [15] which re-
ported that only 10% (4/42) of their included studies had more than 100 participants. The
review by Shany et al. [7] pointed out the need for high-quality validations of concepts
that had been established as proof-of-concept in previous research. The current review
identified one example of a large-scale validation published in 2019 [49] with a sample of
6295 participants.

RE data was identified as the most used comparator in the included studies. This
result is in accordance with previous reviews which have identified RE data alone [14]
or in combination with CLIN data [8,9,13] as the most common methods for generating
outcomes to compare SFRAs. Although the need for using PRO data has been emphasized
in previous reviews [7–9,13], and that a positive trend of increased use of PRO data was
identified by Shany et al. [9], the current review could not identify an increase in prospective
studies over the publication period.
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The proportion of fallers (or equivalent outcomes indicating increased fall risk) in
study samples varied between 14 and 71% with an average of 44%. The same range
was reported in [15]. However, thresholds used to define a person with increased fall
risk (at least one or two falls) varied. Most of the included studies based the SFRA on
supervised assessment tasks. This is positive with regards to the need for research to
support supervised SFRA and not only focus on unsupervised SFRA which was described
in [7].

The number of different sensor types used in the included articles increased over
time: while only 1–2 sensor types were used in the 10 articles published during 2011–2015,
the number of sensor types increased from 2016. A higher number of sensor types was
used among studies performing discrimination by feature selection than by those using
classification methods/models. Moreover, the accelerometer, commonly used according to
Bet et al. [16], was not used at all in the studies using classification methods/models that
were published during 2017–2019.

This review identified that studies performing discrimination by feature selection
and studies using classification methods/models differed in sensor locations used: while
studies using classification methods/models mostly used sensors located on the lower
body (shin/shank was the most common location), studies using feature selection mostly
used sensors on the upper body (lumbar spine was the most common position). Another
review by Bet et al. [16] also analyzed sensor locations and found that the most common
location was the waist (8 articles), followed by the lumbar region (7), ankle (4), pelvis
(4), and head (3). It is worth noticing here that different terminologies may possibly be
used to denote the same sensor location. For example, [14] identified recommended and
not-recommended triads including the shins but lists no articles including features from
the ankle, while [16] identified four articles with sensors located on the ankle but none
on the shin. Further, while [16] reported that the most frequently used locations were
the waist and lower back (lumbar spine), [14] stated that the most common placement
was the lower back (approximately L3). In addition, Rucco et al. [15] used the notation
trunk for sensors located at L3, L5, sternum, waist, pelvis, neck, and chest. Hence, a direct
comparison of results obtained in this review with results from the previous reviews is not
straightforward.

The review by Sun and Sosnoff [13] focused on four major sensing technologies (iner-
tial sensors, video/depth camera, pressure sensing platform and laser sensing) for SFRA in
older adults. The authors presented outcome measures related to different assessment tasks
(steady state walking, TUG test, standing postural sway, and dynamic tests) [13]. Howcroft
et al.’s review [8] focused solely on inertial sensors. The current review included studies
using wearable or mobile inertial sensors used to characterize movements by extracting
features from sensor signals. Hence, the range of sensors used in the included studies was
more limited in this review compared to the range reported in [13] but somewhat broader
than the range reported in [8].

In accordance with the review by Shany et al. (2015) [9], selected features, methods
for selecting/extracting them, as well as the number of features incorporated into each
model varied substantially between studies. Shany et al. presented both numbers of
features subjected to analysis and numbers of sensor features. In addition, they highlighted
uncertainty of numbers by using the symbol “?” [9].

Montesinos et al. [14] identified strong/very strong associations between fall risk
assessment outcomes and nine triads (combinations of a feature category, a task, and
a sensor placement). In the current review, it was not possible to outline triads for the
11 studies performing fall risk assessment using classification methods/models. Further,
several assessment tasks not included in Montesinos et al.’s [14] analysis were identified in
the current review. Most of these newer tasks were used in studies performing discrim-
ination by feature selection. Rather than trying to identify triads like the ones outlined
by Montesinos et al. [14] or counting sensor types/sensor locations for all studies, the
current review has instead presented information on sensor locations and sensor types
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used for studies performing discrimination by feature selection and classification methods/
models, respectively.

Previous reviews have categorized SFRA signal processing methods differently com-
pared to this review. For example, Howcroft et al. [8] claimed that regression models were
employed to predict fall risk in 65% of their included studies. Other methods employed
were mathematical classifiers (25%), DT (15%), NN (15%), SVM (10%), and cluster analysis
(10%). Some of the studies (30%) employed more than one method. In addition, Sun
and Sosnoff [13] presented a diverse collection of quantitative models/methods including
logistic regression, linear regression, RBNC, SVM, NB, multi-layer perceptron NN, Lo-
cally Weighted Learning, DT, Cluster analysis, kNN, NN, neuro evolution of augmenting
topologies (NEAT), and discriminate analysis employed to predict fall risk [13]. Both
mentioned reviews categorized regression model as a classification method [8,13]. On the
contrary, Bet et al. [16] used two main categories of data processing (feature extraction
and machine learning techniques) in their analysis of included articles. They classified
only data processing methods that carried out fall risk assessment by feature comparisons
using statistical tests as “feature extraction” [16]. Notably, the current review categorized
signal processing methods based on both the type of methods and on the results that the
methods produced. In Table 4, seven articles employed logistic regression, i.e., logistic
regression [41]; logistic regression and ROC curve [42]; logistic regression and ANOVA
regression [37]; stepwise logistic regression [39]; stepwise logistic regression and ROC
curve [19,24]; and univariate logistic regression [30]. In these articles, logistic regressions
are used with the purpose to identify individual significant features associated with fall
risk but not directly for classification. Therefore, these signal processing methods are
categorized as “feature selection” in this review. Moreover, single linear regression, which
was employed only in one article to assess the correlation between C-GAITS score and
walking speed [50], was not characterized as a classification method. In Table 5, four
articles employed logistic regression as a classification model [22,23,36,49]. These articles
developed classification models based on regression models with related data. Moreover,
in Table 6, a logistic regression model was employed as a machine learning classification
model in one article by Yang et al. [51].

The included studies evaluated either the SFRA methods’ capabilities to discriminate
groups of older adults with different fall risk (55% of the studies) or their performance in
classifying individuals according to fall risk (45% of the studies). The SFRA methods were
either using sensor features or classification methods/models (with and without machine
learning) for discrimination/classification. This review identified a large number of sensor
features (47% of them related to gait) and three classification models were identified to
differ significantly between groups with different fall risk levels. Moreover, the review
identified that classification performance was mainly reported using accuracy (highest
values per feature/model 70–91%), sensitivity (highest values per feature/model 36–100%),
specificity (highest values per feature/model 55–100%) and AUC (highest values per
feature/model 0.67–0.93). The review by Sun and Sosnoff [13] presented data on full
ranges of accuracy, sensitivity and specificity reported in their included articles while
the current review only reported the highest values identified for each of the evaluated
SFRA methods. Moreover, the review by Sun and Sosnoff [13] and the current review
had only four studies [19,20,23,24] in common. Hence, Sun and Sosnoff [13] present lower
values in the minima of ranges for accuracy, sensitivity and specificity than the current
review. In general, the methods’ Specificity (performance in classifying non-fallers) was
higher that their Sensitivity (performance in classifying fallers) in the current review. In
accordance with the previously identified need to compare accuracies of SFRA methods
with accuracy of CLIN data [8], the current review identified three studies [23,42,48] that
reported performance metrics of clinical fall risk assessment methods for comparison.
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Howcroft et al. [8] have previously pointed out that the reported accuracy values
exceed the theoretical maximal accuracy (81%) for SFRA prediction of at least 1 fall in
the upcoming year calculated by [10]) and concluded that prediction performance is over-
estimated in current literature, mainly due to small samples, large feature pools, model over-
fitting, lack of validation, and misuse of modelling techniques. The current review identi-
fied one study which reported an idealistic model performance
(Error = 0, Sensitivity = 1, Specificity = 1) [20] and five studies that reported model classifi-
cation accuracy values exceeding 81% [27,29,32,46,51]. All these studies, except [27], used
machine learning algorithms. The current review identified that all the studies presenting
fall risk classification performance also reported on model validation methods. Although
CV was used in most cases, one study performing validation with an independent sam-
ple [36] was also identified. This is a validation method that has been recommended by [9].
In addition, one example of the hold-out method was identified, data from 75 participants
was included in a training set and data from 25 participants was used in a test set [29].
The identified use of model validation among the included studies in the current review is
higher than the levels identified by Sun and Sosnoff [13]. Only 50% of their included studies
had applied the recommended model validation techniques (including leave-one-out CV,
ten-fold CV, 0.632 bootstrap technique and hold-out method).

5. Conclusions

This review identified evidence of SFRA, both in terms of discriminative capacity and
classification performance:

(1) A large number of sensor features (almost 50% related to gait) and three classifica-
tion (one with machine learning) models using sensor features (related to gait and stair
descent) differed significantly between groups of older adults with different fall risk level.

(2) Six studies reported on sensor features (1–5 features per study, in one study
combined with the Tinetti balance score) being able to classify individuals as fallers/non-
fallers (or equivalent) with AUCs of at least 0.75. Five of these six studies used only 3D
accelerometers and one used only gyroscope data. Assessment tasks monitored were
walking (4/6 studies), TUG test (1/6), and standing balance (1/6).

(3) Seven studies reported on classification models (four with machine learning and
three without) being able to classify individuals as fallers/non-fallers (or equivalent)
with accuracies of at least 84% and/or AUCs of at least 0.74. All these studies used
accelerometers, either alone (1 study) or in combination with 1–5 other sensors including
gyroscopes (4 studies), magnetometers (1), pressure sensors (1) and heart rate sensor
(1). The number of sensor features analyzed in these studies ranged between 38 and
155. Although more than half of the studies (4/7) used clinical tests (mainly TUG test) as
assessment task, ADL (2 studies) and walking (1) were also used.

However, the review also identified several factors previously reported to increase
risk of bias [7–9,12–16]:

(1) The use of prospective study design was limited among the included studies
and no positive trend over the publication period could be identified. Two thirds of the
included studies used cross-sectional design with RE and/or CLIN data as outcomes to
compare SFRA with. Potential sources of biases associated with RE data include limited
accuracy of recall of falls in the elderly [55] and risk of altered motion patterns due to
history of falls [9]. Moreover, clinical assessments can introduce study bias since they are
often assessed subjectively and do not achieve 100% clinical accuracies [7,13].
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(2) Approximately one third (12/35) of the samples in the included studies had at
least 100 participants. Although this proportion was higher than the 10% identified in [15],
this indicated that most of the included samples were limited. Inadequate sample size has
been identified as an important risk of bias in SFRA research [9]. Moreover, 14–71% (44%
in average) of the participants in the included samples had elevated fall risk (i.e., were
labelled as fallers, frail, at risk, etc.), the same range was reported in [15]. Insufficient raw
numbers of events can contribute to small-sample bias [56] and samples with very few fall
events relative to the total sample size can lead to distorted models [9,57]. Our comparison
of sensitivity and specificity identified that the SFRA methods’ performance in classifying
non-fallers (or persons not at risk) was at least as high as their performance in classifying
fallers (or percentage). This might be a consequence of low in-sample proportions of
persons with elevated fall risk.

(3) Low consensus was identified among the included studies in number and type
of sensor features used in SFRA. Moreover, the number of features was highest among
studies using classification models with machine learning. This result illustrated that
the previously highlighted “curse of dimensionality” remains a challenge in the model
selection process of SFRA which might contribute to sample bias [9].

(4) Although all included studies using classification models performed model valida-
tion, the most common validation method was CV which has been identified to increase
the risk of bias in estimated performance [9], especially for small data sets [58]. However,
this review also identified model validation using independent datasets [23] and hold-out
technique [29] which, according to [9], are preferred over CV.

Hence, future SFRA research should continue to reduce risk of bias by further imple-
menting methodological improvements.

6. Limitations

The search terms used, specifically the required combination of “risk” and “assess-
ment” may have limited the search results of this review. However, the number of articles
included in the current review (n = 33) is in the same range as previous reviews (n = 22
in [13], n = 40 in [8], n = 24 in [9], n = 13 in [14], n = 42 in [15] and n = 29 in [16]). Interestingly,
only 9/33 of the included studies [19–25,27,41] overlapped with previous reviews.
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Abbreviations
The following abbreviations have been used in the article:

Acc Accuracy MML Minimum Message Length
accel Accelerometer NEAT Neuro evolution of augmenting topologies
Ada boost Adaptive boosting NB Naïve Bayes(ian)
ADL Activity in daily life NN Neural networks
ANOVA Analysis of variance NPV Negative Predictive Value
ANCOVA Analysis of co-variance PLS-DA Partial least square discriminatory analysis
AP Anterior-posterior POM Proportional odds models
AUC Area Under Curve PPV Positive Predictive Value

(Operating Characteristics-curve)
Bag Bootstrap aggregation PRO Prospective falls occurrence

(followed number indicating period in months
for prospective falls occurrence)

BBS Bergs Balance Scale QTUG Quantitative TUG (a commercial tool)
BMI Body Mass Index RAI-HC Resident Assessment Instrument—Home care
BST Biometric Signature Trajectory RBNC Radial basis function network classifier
BT Boosted tree RCME Refined composite multiscale entropy
C-GAITS Comprehensive Gait RE Retrospective falls history

Assessment using Inertial sensor (followed number indicating time period
in months for falls history)

CI Confidence intervals RF Random forest
CLIN Clinical assessment methods RMPE Refined multiscale permutation entropies
COG Center of gravity RMS Root Mean Square
CS Cross-sectional ROC Receiver operating characteristic
CV Cross validation SagAngVel Angular velocity in the sagittal plane
DT Decision tree SD Standard Deviation
DTW Dynamic Time Warping SEF Spectral Edge Frequency
EM Expectation Maximization SEMI-SUP Semi-supervised
Err Error Sens Sensitivity
F1-score Harmonic mean of precision and Sens SFRA Sensor-based fall risk assessment
FoF Fear of Falling 6MWT Six-Minutes Walking Test
FRE Fall risk estimate Spec Specificity
FTSS 5 times Sit-to-stand test SSI Step Stability Index
GMM Gaussian Mixture Models SSQ Simulator Sickness Questionnaire
gyro Gyroscope SUP Supervised
HR Harmonic Ratio SVM Support vector machine
ICC Intra-class correlation coefficient TUG Timed Up and Go
IMF Intrinsic Mode Function UEF Upper extremities’ function
KNN K-nearest neighbor UNSUP Unsupervised
LDS Local Dynamic Stability UT Upper trunk
MANCOVA Multivariate ANCOVA Val Validation
MCC Matthew’s Correlation Coefficient VR Virtual reality
MGC Minimum ground clearance VRHMD VR head-mounted display
ML Medio-lateral VT Vertical
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Appendix A

The appendix provides details to text provided in Section 2.3 Data Extraction.

Table A1. Template for data extraction.

Variables Type of Collected Data

1. First author Free text

2. Title Free text

3. Journal Free text

4. Publication year 2010–2020

5. Population of older people in sample Patients/Community-dwelling/Residential home
(or similar)/Other

6. Faller/non-faller labelling method
RE and/or PRO and/or CLIN or other.
For CLIN and PRO, the number of months used for
collection of RE and PRO was collected.

7. Number of participants 60 years in sample Number

8. Proportion of single fallers in sample Percentage (0–100%)

9. Proportion of multiple fallers in sample Percentage (0–100%)

10. Assessment task monitored by wearable sensors Free text

11. Degree of supervision during task SUP/SEMI-SUP/UNSUP

12. Number of wearable sensors Number

13. Type of wearable sensors Free text

14. Wearable sensor position(s) Free text

15. Number of sensor features Number

16. Feature selection methods Free text

17. Signal processing methods used to discriminate/classify older adults according to fall risk
(a) Wearable sensor features or
(b) Models/algorithms able to discriminate significantly between fallers/non-fallers with
machine learning
(c) Models/algorithms able to discriminate significantly between fallers/non-fallers without
machine learning

(a) Free text or
(b) Free text or
(c) Free text

18. Number of fallers/number of participants Number/Number

19. Discrimination/classification performance, either
(a) Sensor features’ performance in discriminating groups with different level of fall risk
(fallers/non-fallers)
(b) Methods’/model’s performance in discriminating groups with different level of fall risk
(fallers/non-fallers)
(c) Sensor features’ performance metrics in classifying individuals as fallers/non-fallers.
Only the highest performance metrics are reported.
(d) Model’s performance metrics in classifying individuals as fallers/non-fallers. Only the
highest performance metrics for each model are reported.

(a) and (b) Free text
(c) and (d) Free text including performance metrics
values

20. For studies using classification methods/models (performance extracted in 19 b and d):
(a) Classification models/algorithms included in discrimination method
(b) Model validation method
(c) Comments (of study methodology in relation to recommendations of previous review)

Free text (if used)

21. For studies analyzing discriminatory performance (performance extracted in 19 (a)–(b):
Number and type of features able to discriminate groups with different level of fall risk
(fallers/non-fallers)

Free text
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Appendix B

This appendix provides complimentary graphs to the information provided in
Section 3.2.
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Appendix C

This appendix provides complimentary information for the feature selection methods
in Tables 4–6.

Table A2. Complimentary information for the feature selection methods in Table 4. COG = center of gravity, ICC =
Intra-class correlation coefficient, SSQ = Simulator Sickness Questionnaire.

Ref No. Feature Selection Methods

[19]

1. Assessment of intra-and inter- observer reliability for gait parameters (ICC, CV of standard error of measurement)
2. Assessment of whether each parameter differed significantly between fallers/non-fallers and between walks
(ANOVA and t-test, Wilcoxon-signed-rank and Kruskall–Wallis tests for step time asymmetry)
3. Analysis of each gait parameters’ predictive value (Stepwise logistic regression: forward likelihood ratio)
4. Analysis of discriminate capacity (ROC curve)

[21] 1. Assessment of whether each parameter differed significantly between repetitions for each participant (ANOVA)
2. Assessment of whether each parameter differed significantly between fallers/non-fallers (One-way ANOVA)

[24]

1. Assessment if whether characteristics and gait variables differed significantly between fallers/non-fallers
(independent t-tests or χ2 tests)
2. Analysis of each variable and falls incidence (Stepwise logistic regression: forward stepwise selection from all
variables that were significantly associated with falling),
3. Estimation of cut-off values for gait variables significantly associated with falling in logistic regression to predict
falls (ROC curve)

[25]

1. Assessment of whether SSI differed significantly between obstacle negotiation and baseline for controls/fallers
(Wilcoxon Signed Rank)
2. Assessment of whether SSI differed significantly between fallers/controls under s different walking conditions
(Mann–Whitney test)

[26] Assessment of whether each parameter differed significantly between fallers/non-fallers (Two-sided Student’s
t-test)
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Table A2. Cont.

Ref No. Feature Selection Methods

[30]

1. Assessment of the abilities of median LDS of each individual parameter setting to distinguish fallers/non-fallers
(Univariate logistic regression with a 10-fold CV and AUC) and testing significant discrimination ability of each
parameter setting (bootstrapping with 2000 resamples)
2. Comparison the 3 algorithms’ ability to distinguish fallers/non-fallers of best performing parameter setting
(Univariate logistic regression with a 10-fold CV and AUC)
3. Selection of the best performing model for the 3 algorithms (Stepwise multivariate logistic regression with
stepwise backward feature selection)

[31] Selection of RCME/RMPE metrics with highest discriminatory ability (PLS-DA with a backward feature selection)

[33]

1. Assessment of whether each turning parameter differed significantly between non-fallers, single fallers, recurrent
fallers based on RE-12 (One-way ANOVA)
2. Assessment of whether turning parameters differed significantly between non-fallers/fallers based on PRO-6
(One-way ANOVA)

[34]

1. Assessment of significant differences in postural sway (RMS and NPL sway in both AP and ML directions)
between balance tasks (Friedman test, Wilcoxon signed ranks test for post hoc pairwise comparisons)
2. Assessment of test-retest reliability of lower extremity muscle strength (ICC)
3. Analysis of association between postural sway and muscle strength with gait speed, number of comorbidities,
grip strength and frailty index (Spearman rank correlation)
4. Assessment of whether body sway and lower extremity strength differed significantly between fallers/non-fallers
(Mann–Whitney U test)

[35]

1. Assessment of univariate group difference in the demographics and the walking patterns of fallers and non-fallers
and further to adjust significant demographic differences between fallers/non-fallers (ANOVA, ANCOVA)
2. Assessment of associations between demographic, health, sensorimotor, psychological, and cognitive factors with
the gait/mobility assessments (Pearson’s correlation and Partial Pearson’s correction (after adjusting for sex, age))

[37]

1. Assessment of whether each demographic parameter and adverse health outcomes differed significantly between
the UEF index defined groups (non-frail/frail) (ANOVA)
2. Analysis of the association between the UEF index with each health outcome (Logistic regression (for nominal
health outcomes) and ANOVA regression (for continuous health outcomes))

[38]
1. Assessment of the SSQ-score pre-and post-exposure (one-sample t-test and signed rank test)
2. Assessment of variable-module’s test-retest reliability for in identifying differences between 5 experimental
conditions and baseline conditions (Paired t-test and Pearson’s correlation)

[39] Identification of key outcome measures with significant impact on faller status (faller/non-faller) (Stepwise logistic
regression, Pearson correlation to check multi-collinearity between all outcome measure pairs)

[40]

1. Assessment of performance difference for TUG parameters between single task (ST), motor task (MT) and
cognitive dual-task (CT) conditions (MANCOVA)
2. Assessment of the difference in individual parameters from the three TUG conditions between groups of
fallers/non-fallers (ANCOVA)

[41]

1. Assessment of differences between fallers and non-multiple fallers (two-sample t-test, Fisher’s exact test (for
gender), Mann–Whitney-U test (for age and BMI), Wilcoxon’s signed-rank test (for pairwise differences in the gait
parameters from two contrasting terrains), Benjamini-Hochberg adjustments (to control for multiple
comparisons))
2. Logistic regression, Benjamini-Hochberg adjustments on p-values (to identify individual gait parameters that
were associated with multiple falls)

[42]
1. Assessment of differences between fallers/non-fallers/multiple fallers in demographics and clinical and basic
gait assessment (Mann–Whitney U test)
2. Analysis of each significant variable’s strength to predict falls (Logistic regression and ROC curve)
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Table A2. Cont.

Ref No. Feature Selection Methods

[43]

1. Assessment of differences in socio-demographic parameters and subjective questionnaires among three balance
groups (One-way ANOVA model)
2. Assessment of differences in balance parameters between groups (ANOVA models for normally distributed data
according to Shapiro–Wilk test, Friedman test with calculation of Cohen’s effect size for data not normally
distributed according to Shapiro–Wilk test)
3. Analysis of association between changes in COG sway body sway and changes with local-control(slope) and
central-control(slope-log) changes due to vibration (linear Pearson correlations)

[44] Assessment of differences in gait parameters between low-risk/high-risk patients (Independent samples t-test)

[45]
Assessment of whether the amount of DTW difference between reference and elderly fallers differed significantly
from DTW differences of elderly non-fallers and reference (ANOVA)
(DTW measures similarity in BST between elderly fallers and a reference BST)

[47]

1. Assessment of normality of data (Shapiro–Wilk test) and of homoscedasticity (Levene’s Test of Equality of
Variances)
2.Assessment of falls history (faller/non-faller) on Micro and Macro gait characteristics (General linear modelling)
3. For gait characteristics with a fall history interaction: Post hoc secondary analysis (Tukey’s test) to identify
subgroups (fallers/non-fallers among OAs) that are significantly different from each other.

[48]

1. Calculation of sway index (GMM, EM and MML algorithm)
2. Assessment of differences between non-fallers/fallers/multiple fallers in standing sway indices and BBS
(ANOVA)
3. Assessment of the performance of 4 sway indices and BBS in predicting (once- and multiple) fallers (ROC-curve)

[50]

1. Assessment of differences in demographics and gait parameters between genders (unpaired t-tests/χ2 tests)
2. Assessment of structural validity and sub-domain construct validity of the C-GAITS score (exploratory factor
analysis using Unweighted least squares as extraction method)
3. Assessment of the internal consistency of the C-GAITS score (Cronbach’s alpha coefficient)
4. Assessment of correlation between C-GAITS score and walking speed (Single linear regression)
5. Assessment of association of C-GAITS score and subscale scores with variables (Unpaired t-tests)

Table A3. Complimentary information for the feature selection methods in Table 5.

Ref No. Feature Selection Methods

[22]

1. Assessment of significant differences between fallers and non-fallers in gait velocity and SagAngVel variables
(Mann–Whitney Wilcoxon rank sum)
2. Assessment of correlation of each SagAngVel value with BBS score, manual TUG time, and gait velocity
(Pearson’s correlation)

[23]
Pre-processing of multi-parameter datasets prior to classification modelling using a wrapper feature selection
algorithm to exclude parameters with low information (wrapper subset evaluator, employing the simple
logistic algorithm)

[27] Sequential forward feature selection within CV procedure

[36] 1. FREsensor feature selection by using nested CV
2. Validation of FREsensor using an independent dataset

[49]
1. Assessment of whether FREcombined differed significantly between fallers/non-fallers (one-way ANOVA)
2. Assessment of whether mobility impairment scores (calculated from percentile scores of QTUG parameters
grouped in five functional categories) (one-way ANOVA)
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Table A4. Complimentary information for the feature selection methods in Table 6.

Ref No. Feature Selection Methods

[20]
1. Assessment of significant differences between fallers and non-fallers in each feature (t-test using Holm
correction, Behrens-Fisher test)
2. Feature selection (Method in the forward wrapper selection algorithm family

[28]

1.Assessment of associations between functional stair performance and participants characteristics (Spearman’s
rank correlations)
2.Assessment of post-hoc medians and interquartile ranges (IQR) of stair climbing performance for subgroups with
different stair-ascent strategies (Kruskal–Wallis)

[29]
1. Assessment of the ability of models to classify fallers/non-fallers based (Acc, F1-score, MCC)
2. Ranking analysis for each model type: (a) NB models (n = 62), (b) SVM models (n = 155), (c) NN models (n = 155)
3. Ranking analysis of best performing models for NB, SVM, NN models (15 of each) and ClinAsses models (5)

[32]

1. Assessment of the ability of the entire feature set to discriminate between the groups of older fallers/non-fallers
(4 machine learning algorithms in Matlab)
2.Assessment of the ability of the individual features to distinguish between older fallers/non-fallers (Linear
regression analysis)

[46]

1. Assessment of whether each of the 155 outcome measures differed significantly between faller/non-faller groups
(two-sample t-tests)
2. Assessment of discriminative power of each of the 38 measures (ROC analysis)
3. Building models to classify faller/non-faller by use of 6 supervised machine learning models incorporating the 38
significant measures as predictor variables and fall status as response variable
4. Validation of classification models (10-fold CV): Acc
5. Statistical analysis of overall classification accuracy of SVM and the 5 other models (two-sample t-test)

[51]

1. Wearable data tested for normality (Shapiro–Wilks)
2. Assessment of whether means (or median) of each variable differed significantly between groups
non-fallers/once-fallers/multiple-fallers (one-way ANOVA or Kruskal–Wallis H test)
3. Assessment of differences between groups with repeated measurements of physical activity, heart rate, and night
sleep (two-way ANOVA)
4. Building models and evaluating their performance for three-class and binary fall risk classification (POM, logistic
regression, DT, RF) including (a) Removal of collinear variables (multicollinear test); (b) Ranking the variables
(predictors) importance in fall risk classification (recursive feature algorithm in Caret R package); (c) Training
models on wearable, RAI-HC, wearable + RAI-HC
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