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Abstract—Highly accurate weather classifiers have recently
received a great deal of attention due to their promising applica-
tions. An alternative to conventional weather radars consists of
using the measured attenuation data in commercial microwave
links (CML) as input to a weather classifier. The design of
an accurate weather classifier is challenging due to diverse
weather conditions, the absence of predefined features, and
specific domain requirements in terms of execution time and
detection sensitivity. In addition to this, the quality of the data
given as input to the classifier plays a crucial role as it directly
impacts the classification output. However, the quality of the
measured attenuation data in the CMLs poses a serious concern
for different reasons, e.g. the nature of the data itself, the
location of each link, and the geographical distance between the
links. This mandates the adoption of a data preprocessing step
before classification with the purpose to validate the quality of
the input data. In this paper, we propose a data preprocessing
framework which employs a deep learning model to (i) detect
anomalies in the raw data and (ji) validate the measured CML
attenuation data by adding quality flags. Moreover, the feasibility
and possible generalizations of the proposed framework are
studied by conducting an empirical case study performed on
real data collected from CMLs at Ericsson AB in Sweden. The
empirical evaluation indicates that the average area under the
receiver operating characteristic curve exceeding 0.72 using the
proposed data preprocessing framework.

Index Terms—Microwave Link, Anomaly Detection, Artificial

Intelligence, Time Series, Deep Learning, Data preprocessing

I. INTRODUCTION

Many modern technological solutions rely upon an accurate
estimate of current weather conditions. Examples include (i)
the Internet of Things (IoT)-supported agriculture, in which ac-
curate weather information is used to predict when to adjust ir-
rigation systems, (ii) traffic management organizations, which
use real-time weather information to determine whether to
adjust speed limits and reroute traffic due to inclement weather
and (iii) mapping services such as Google Maps which might
incorporate current weather data to route vehicles in presence
of stormy conditions. The solutions for rainfall detection used
in industry can be categorized into three main approaches, i.e.
rain gauges, weather radars, and commercial microwave links
(CML). On one hand, rain gauges provide high accuracy but
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cover limited spaces. Although weather radars cover signifi-
cantly larger areas but at the cost of a lower spatial resolution
at the scale of 1 km?. Moreover, both rain gauges and weather
radars are costly due to extra equipment installation. On the
contrary, using data from already installed CMLs for weather
classification comes with the benefit of finer spatial resolution
at zero additional costs [1]. Hitherto, several research results
have shown the potential usage of CML attenuation data
for hydro-meteorological applications [2]-[4]. With the recent
development in the area of deep learning, many studies, such
as [4], [5], focus on predicting the weather phenomena using
deep neural networks. In particular, in [4] the authors use
CML data as input to a deep learning model for weather
classification. However, empirical evidence shows that CML
data can be affected by anomalies in the raw data. Therefore,
the CML data given as input to the weather classifier need to
be preprocessed and validated before classification, otherwise,
the output of the classifier is not to be trusted. In this paper,
we propose, apply, and evaluate a framework that consists of
a data preprocessing step which performs anomaly detection
and data quality flagging, before weather classification. The
proposed framework employs deep learning models and the
main idea consists of predicting the normal behavior of the
attenuation data and verifying whether the current attenuation
data deviate from it or not. We consider both convolutional
(CNN) and recurrent neural networks (RNN) as they are two
efficient and suitable algorithms for learning temporal corre-
lations in the data. For a better comparison of the mentioned
models, we apply both approaches to learn normal CML’s data
behavior. The proposed framework is evaluated on real data
collected at Ericsson. The results of our evaluation show that
existing anomalies in attenuation data measured from CMLs
can significantly impact the generalization performance of
weather classification technologies based on CML data, such
as the classifier proposed by Polz et al. [4]. In other words,
this study shows the relationship between existing anomalies
in the raw data and the number of wrong classifications
(misclassification) made by the classifier. The performance
improvement of the weather classifier after data prepossessing
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is left for future works. More specifically, this paper makes
the following contributions:

« Employs two deep learning models that provide fast
and accurate detection of anomalies in the measured
attenuation data from CMLs.

« Adopts a dynamic threshold for anomaly detection, in-
stead of relying upon static thresholds.

« Flags anomalous data as a quality warning before weather
classification.

« Applies the proposed preprocessing framework to real
data collected from CMLs.

II. RELATED WORK

Data preprocessing has a significant impact on the gener-
alization performance of supervised machine learning algo-
rithms [6]. Data preprocessing can be performed in different
forms of data cleaning, data integration, transformation, and
data reduction [7]. Moreover, the data type, size, and quality
can guide us to apply one or more of the mentioned data
preprocessing methods. Hitherto, several anomaly detection
techniques have been proposed, but as each technique is
developed specifically based on the nature of the input data,
providing a generic anomaly detection solution is challeng-
ing [8]. While anomaly detection approaches for indepen-
dent data samples have been extensively studied, less work
has been done on data samples with temporal correlation,
e.g. time series problems. Existing anomaly detection al-
gorithms that rely on distance-based measures, such as K-
nearest neighbors, clustering, and density-based, have shown
poor performance when applied to time series. Available
anomaly detection techniques suitable for time series are
divided into the following categories: similarity-based [9],
clustering-based [10], classification-based [11], and model-
based [12]. In the similarity-based algorithms, the resemblance
between different time series is computed based on a distance
function and an anomaly score is accordingly assigned [9].
In the cluster-based algorithms, time-series data are clustered
using an appropriate technique and the resulting cluster centers
are used to compute the anomaly scores of each data sample.
For instance, Chandola et al. [10] use a k-medoids clustering
method and use the inverse of a similarity measure to the clos-
est medoid as the anomaly score. In the classification-based
methods, a classifier is trained on an anomaly-free time series
and its output is used to score the anomalous data sets. As an
example, Hu et al. [11] compute the set of local measurements
of a time series, such as kurtosis, variability, oscillation, and
regularity, and use them as input features to a one-class support
vector machine (OSVM), which provides a decision boundary
to discriminate between anomalous and normal time series. In
the model-based algorithms, time series models such as autore-
gressive (AR) and autoregressive integrated moving average
(ARIMA) are used to estimate current values using previous
time instances [12]. These methods are used to predict the
normal behavior of time series and directly flag the data
points as anomalous if the prediction error is higher than the
threshold or report the error as the anomaly score. However,

978-1-7281-9279-6/20/$31.00 © 2020 IEEE

these traditional linear methods fail to capture the non-linearity
in the data. Therefore, with the recent developments in deep
learning, various neural network-based approaches started to
be adopted with the purpose to learn non-linearity in the data,
without the need to specify a model [13]-[16]. As a result,
both CNNs and RNNs have shown to successfully learn the
temporal correlation - whether linear or not - in the data.
In particular, Munir et al. [17] proposed an unsupervised
learning anomaly detection algorithm based on CNN. This
approach employs CNNs to predict the next sample based on
a time window and then compares the original value with the
predicted one to detect the anomalies in real-time. In [18]-
[20] a similar approach is used, but the learning algorithm is
supervised and the prediction is performed utilizing a type of
RNN, i.e. a long short-term memory (LSTM).

III. PROPOSED APPROACH

In this study, we propose a data preprocessing framework
which employs deep learning models to (i) detect hidden
anomalies and (ii) validate the measured CML attenuation data
by adding quality flags before the weather classification.

\
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Fig. 1: Flowchart of the proposed framework.

The proposed framework is designed to be connected to the
CMLs and to be used as a step prior to weather classification
based on CMLs data [4]. Generally, the weather is classified on
an hourly basis, therefore our purpose is to flag each hour as
normal or anomalous before performing weather classification.
However, our framework can be extended to time windows
of any length by setting the desired prefixed time window
in advance. Figure 1 gives an overview of the proposed
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framework by us. As can be seen, step 1 consists of the
currently measured attenuation data from the CMLs, which
is the input to the proposed framework. In step 2, a deep
learning model (CNN or LSTM) is employed to predict the
normal behavior of the measured attenuation data from the
current data in the next time window. Step 3 consists of
comparing, by means of a proper metric, the predicted normal
behavior, and the observed behavior of the attenuation data
in the time window. The output of this step consists of an
anomaly score which indicates how close the prediction and
the actual behavior are. Step 4 and 5 are focused on anomaly
detection. In this regard, an adaptive threshold needs to be
estimated. If the computed anomaly score in step 3 exceeds
the threshold, then the data in the time window need to be
flagged as anomalous in step 6, otherwise, the data is flagged
as normal. In other words, exceeding the threshold means that
in the time window the predicted normal behavior and the
actual behavior of the data deviate. As a result, in the end,
the entire data set is flagged as normal or anomalous. Then,
the flagged data set enters the weather classification model,
where the performance of the classifier can be measured
using a different confusion matrix. It must be noted that
such an approach guarantees robustness, as it relies on data
over a time window, rather than on each single data sample.
Moreover, the threshold used for anomaly detection is not
fixed but dynamically adjusted, leading to higher flexibility
and improved performance. Finally, the proposed framework
can be easily adapted and added as a preprocessing step prior
to weather data classification based on CML data, such as the
one presented in [4]. As can be seen, the proposed framework
serves as a validation process for the CML attenuation data
by setting the data quality flag. In this study, we consider data
points that do not follow normal behavior as anomalous. Thus,
outliers, attacks, extreme observations, temperature anomaly®
and obstacles? are considered as anomalies. In the upcoming
section, we provide more details for each step illustrated in
Figure 1.

A. The proposed solution for anomaly detection

We denote by z* € R the measured attenuation from CMLs
at time ¢ and we denote by X} 5 collection of measured
attenuation data from time ¢ — T to ¢ at a regular sampling
time of A, ie.,

Xt = {ot T, gt TH+A gt-T+28 gty N

Either a CNN or an LSTM is used to predict the attenuation
data sample at time ¢ + A under the assumption of normal
behavior from a window of past attenuation values from £ —T'
to ¢, i.e. X}_ (see Figure 2). This is achieved by training the
CNN or the LSTM in a supervised fashion using anomaly-
free data. The (raining set consists of fixed-size windows of
length T' of past attenuation measurements, paired with their

!Means a departure from a reference value or long-term average.
2When an obstacle stands in a signal’s way, the signal may pass through
the object or be absorbed by the object.
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immediately following measurement. Thus, a training sample
consists of the pair (X{_r.,z*+2). The predicted attenuation
data sample at time £+ A is denoted by #*+2. For the purpose
of anomaly detection, the squared error between the predicted
value and the actual value is computed, i.e.

erpn = (It+ﬂ _ £t+&)2 (2)

Then, the squared errors are aggregated over a time window
of length 7 and the mean square error (MSE), which we use
as the anomaly score, is computed for each time window of

length 7, i.e.
1
MSE = ; e 3

where N is the number of samples in each time window of

length 7.
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Fig. 2: Example of prediction performed by CNN. The past
observations are used to predict the next data point, which is
then compared to the actual captured value.

B. Adaptive threshold detection

The threshold on the prediction error (distance between
the forecasted attenuation value and the observed attenuation
value) is then used to flag observations as anomalous if the
error exceeds the threshold. The prediction error from a deep
learning model such as LSTM in anomaly detection follows
a Gaussian distribution as proposed by Malhotra et al [21],
where, they detected an optimal threshold in a supervised
setting by maximizing the Fz measure on a calibration data
set. In our case, we used an empirical approach Bayesian
FDR [22] to estimate the threshold for a given false discovery
rate parameter (i.e., alpha = 1%, 5%, and 10%). We first trans-
formed the prediction errors into Z — Score by standardizing
the errors i.e.,

7 — Score = % @)

The p-value for each data point i.e., its odds being anoma-
lous, is calculated based on its Z-Statistics for a 2-sided
Normal distribution test. The intuition behind this step is to
define a measure that can be assigned as a p-value to test its
significance.

To understand the intuition behind this, consider each data
point as an experiment of tossing a coin and test-statistics (Z —
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Frequencies

abs. prediction error
Fig. 3: A histogram of absolute prediction errors and a
threshold (as a red vertical line) is detected by the Bayesian
FDR approach [or a pre-specified value of FDR o = 0.01 in
this case.

Score in Equation 4) as a measure to decide a priori whether
or not it will be anomalous (testing of hypothesis) depending
on its position in unit normal. The success probability of the
coin represents the unknown fraction of normal data points,
and the outcome of each such experiment i.e., tossing a coin
can be observed only through p-values of prediction error Z —
Score of the predicated data point. If the prediction error of
a data point is high relative to its mean of observed error,
its odds being anomalous will also be higher. To estimate the
threshold on given probabilities and a pre-specified value of
alpha, the Bayesian FDR sort the p-values and find a threshold
that maximizes the fraction of null hypotheses (that data points
are normal). In Figure 3, we provided a threshold value of
62.174 on normalized prediction error for a given alpha = 0.01
i.e., expected rate of falsely rejecting null hypothesis. More
detail about the method can be found in [22]. Figure 3 shows
a histogram of absolute prediction errors and the estimated
threshold as a red vertical line. This approach can be used in
the online system by updating the mean and standard deviation
parameters used in Z — Score test statistics depending on the
model update policy of an online system.

IV. INDUSTRIAL CASE STUDY

As already stated, anomalies in the measured attenuation
from CMLs might seriously affect the performance of the
weather classifiers. In this section, we analyze the relationship
between detected anomalies and the number of misclassifica-
tions.

1) Data: In order to analyze the feasibility of the proposed
framework, we designed an industrial case study at Ericsson,
by following the proposed guidelines in [23] and [24]. We use
a data set consisting of real data collected from five CMLs
over a period of ten months. We consider attenuation data
measured every 10 second, i.e. A = 10 s, and for training the
forecasting models we consider time windows of 5 minutes,
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i.e. T = 5 min, which correspond to 30 measurements and
scale the data to zero mean and unit variance. We aggregate
the squared errors and compute the MSE over time windows
of the length of one hour, i.e. 7 =1 hr.

For weather classification, we use the approach proposed
in [4], which uses a classifier based on a one-dimensional
(1D) CNN to distinguish between precipitation and non-
precipitation events on an hourly base. Due to space limita-
tions, we refer the reader to [4] for more detailed information
regarding the architecture of the employed CNN. An overview
of the data set after being classified into either precipitation
or non-precipitation can be seen in Table I.

Precipitation Non-precipitation
Link  Mean Std Count Mean Std Count
1 48.34 0.80 6840 45.73 3.04 2736000
2 54.76 1.50 15480 53.41 1.30 2727360
3 50.37 1.05 12960 49.80 0.89 2729880
4 37.10 0.92 8280 35.69 0.69 2734560
5 52.39 0.59 5760 49.47  2.60 2737080

TABLE I: Statistics of the CML attenuation data set grouped
by weather class (precipitation versus non-precipitation) as
assigned by the weather classifier.

2) The ground truth (GT): To evaluate the performance
of the proposed approach a ground truth has been derived
by using information from the Swedish Meteorological and
Hydrological Institute (SMHI). The SMHI data is used to de-
termine the misclassifications of the weather classifier. SMHI
data is available for two out of the ten months, therefore
we use such two-month data as a test set, while we use the
remaining eight-month data as a training set. The validation
set size consists of 20% of the training data set.

3) Parameters: The following parameters and architectures
are chosen for the CNN and LSTM.

« The CNN consists of two blocks of 1-D convolutions
with rectified linear units (ReLU) activation functions,
32 feature maps, and a kernel size of 3. Both blocks
are followed by a size of 2 max-pooling. Following the
convolutional blocks are 16 fully connected units with
ReLU, and finally a single linear output unit. No zero-
padding of the inputs to the convolutional and max-
pooling layers were used.

« The LSTM network consists of two stacked LSTM-layers
with 35 cells each, where the entire hidden state of the
first layer is propagated to the second layer. The two
stacked LSTM-layers are then followed by a single linear
output unit.

Both networks were trained using Adam optimizer [25] with
a learning rate of 0.001 until MSE on a 20% validation split
ceased to decrease.
V. RESULTS AND DISCUSSION

Anomaly detection generally is categorized as an imbal-
anced problem, which means the ratio of the normal and
anomalous data is not equal. In this context, the receiver
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Fig. 4: Functional architecture of the proposed framework. Black blocks represent the flagged anomalous hours and green

blocks represent normal hours.

operating characteristic (ROC) curve and the area under the
ROC curve (AUC) is the most commonly used metrics for
comparing classification models. As stated earlier, the meteo-
rological observations to derive the GT for weather classifica-
tion between precipitation and non-precipitation events were
extracted using data from SMHI. The following confusion
matrices can be interpreted as follows:
« True Positive: detected anomaly corresponds to a mis-
classification.
« False Positive: detected anomaly corresponds to the ab-
sence of misclassification.
« True Negative: the absence of anomaly corresponds to
the absence of misclassification.
« False Negative: the absence of detected anomaly corre-
sponds to a misclassification.
Table I1 shows the obtained results against the GT for the five
considered CMLs in terms of MSE and AUC as performance
metrics.

MSE AUC
Link CNN LST™M CNN  LSTM
1 0.0015 0.0018 0.760  0.832
2 0.0068 0.0129 0.729  0.698
3 0.0265 0.0225 0.725  0.706
4 0.0386 0.0449 0.720 0.797
5 0.0022  0.0045 0.699  0.621
Mean 0.0151 0.0173 0.726 0.731

TABLE II: MSE and AUC values for anomaly detection, for
five CMLs using CNN and LSTM.

As can be seen in Table II, the AUC values differ from
link to link, which indicates that the location of the CMLs
plays a key role in the appearance of anomalies. Moreover,
the results show that on average the CNN has a lower MSE,
but the LSTM has a slightly higher AUC, which indicates bet-
ter detection capabilities. Moreover, the empirical evaluation
presented in Table IT indicates that the average AUC exceeding
0.72 using the proposed data preprocessing framework in this
paper, which shows a strong effect on the performance of the
weather classifier.

Figure 5 mirrors the evaluation of the proposed framework
using both LSTM and CNN on link 1 of Table II. This link
is characterized by the largest number of misclassifications
and for this link, the highest AUC is achieved, both in case
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Fig. 5: ROC curve for link 1 obtained (a) with the CNN and
(b) with the LSTM.

of prediction performed by the CNN (Figure 5a) and by
the LSTM (Figure 5b). These results indicate that there is
a direct relationship between the hidden anomalies in the data
measured from CMLs and the performance of the 1D CNN
weather classifier. Therefore, adopting this approach as a data
preprocessing step prior Lo classification can have a substantial
and direct impact on the generalization performance of the
classifier. In this study, all abnormal behavior of the data is
considered as an anomaly, therefore the detected anomalies
need to be handled carefully. In fact, it might be the case
that the detected anomalies represent a new weather class not
embedded in the classifier or a combination of the weather
classes already embedded, e.g., rain and sun simultaneously.
Figure 4 shows an overview of the proposed framework which
is connected to the Influx database at Ericsson that provided
the CML attenuation data for the case study. Generally,
for each CML the following information is stored in the
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database: link ID, timestamp, received power, and transmitted
power. Mostly, existing weather classification models classify
the weather for each hour. Therefore, to enable immediate
compatibility with existing weather classifiers, the presented
framework provides data quality flagging on an hourly basis.
This data quality flagging can tremendously help the network
operators when deciding whether to amplify, damp, or reroute
a signal on the basis of the weather classifier output. If the data
given as input to the classifier is mostly flagged as anomalous,
then the operator knows whether to trust the output of the
classifier or not and can perform a manual inspection before
acting on the signal. However, the proposed framework is
not limited to these aspects and can be easily adjusted to
different settings. Flagging the anomalous hours is one way to
employ the proposed approach. The detected anomalies can be
eliminated, interpolated, or replaced by a new value by means
of smoothing.

VI. FUTURE WORK

A possible future direction consists of analyzing the corre-
lation between the presence of anomalous data in a CML link
and the geographical location of the link. By doing so, it would
be possible to identify which geographical characteristics,
e.g. vicinity to the sea, affect the quality of the attenuation
data, and take proper countermeasures. The main threat to the
validity of this study is the generalization of the proposed
approach and findings. The proposed framework has been
applied to just one industrial case study and it should be
applied to other similar contexts using different classifiers.
Furthermore, handling the detected anomalies automatically
e.g. through applying smoothing methods, is another direction
of this study.

VII. CONCLUSION

Data quality plays a critical role in the performance of
machine learning models. We addressed the issue of data
quality in the context of weather classification from CMLs
attenuation data. The main goal of this study was to design,
implement, and evaluate an automated framework that consists
of a data preprocessing step before weather classification. The
proposed framework employs deep learning models, performs
anomaly detection, and validates the measured CMLs data
by adding data quality flags. To this end, we made the
following contributions: (i) detecting the hidden anomalies in
the raw measured attenuation data from CMLs, (ii) allowing
a dynamic threshold for anomaly detection, and (iii) flagging
detected anomalous time windows (data quality warning) to
validate the raw CMLs data before weather classification. The
empirical evaluation indicates that the average area under the
receiver operating characteristic curve exceeding 0.72 using
the proposed data preprocessing framework.
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