
Formal Verification of an Approach for Systematic
False Positive Mitigation in Safe Automated

Driving Systems
Ayhan Mehmed
TTTech Auto AG
Vienna, Austria

ayhan.mehmed@tttech-auto.com

Wilfried Steiner
TTTech Computertechnik AG

Vienna, Austria
wilfried.steiner@tttech.com

Aida Čaušević
Mälardalen University

Västerås, Sweden
aida.causevic@mdh.se

Abstract—Manufacturers of self-driving cars need to signif-
icantly improve the safety of their products before the series
of such cars are deployed in everyday use. A large number of
architecture proposals for Automated Driving Systems (ADS)
are aiming at addressing the challenge of safety. These solu-
tions typically define redundancy schemes and quite commonly
include self-checking pair structures, e.g., commander/monitor
approaches. In such structures, the problem of detecting false
positive failures arises, i.e., the monitor may falsely classify the
output of the commander as being faulty. In this report we
provide details regarding a formal verification of an approach
aiming at false positive mitigation in the domain of automated
driving. We formalize our proposal in an abstract model and
prove the absence of false positives by means of k-induction.

Index Terms—automated driving systems, run-time monitor-
ing, false positive, congruency exchange

I. INTRODUCTION

In our earlier work, we have introduced a novel method for
reducing the false positive rate of run-time monitors imple-
mented in a fail-safe (e.g., fail-silent, fail-operational) ADS
architecture. In this report the proposed method is formalized
in an abstract model and the absence of false positives is
proved by means of k-inductions.

The report is organised as follows. In Section II we present
background information presented, i.e., the assumed ADS
architecture, the problem statement, as well the proposed
solution. In Section III the proposed solution is formalized in
an abstract model and the absence of false positives is proved
by means of k-induction. Section IV provides final remarks
and concludes the paper.

II. BACKGROUND

A. A General ADS Fail-Silent Architecture

One way to handle the unsafe operation of ADS is by
designing the system to be fail-silent, i.e., a design that shuts
down system output upon detection of a failure. A common
way to implement a fail-silent design is the Commander-
Monitor architecture (also called Doer/Checker).

Figure 1 presents an example fail-silent ADS architecture
known as Commander-Monitor architecture (or Doer/Checker
architecture). The ADS consist of: (i) Commander (COM),

that is the sub-system responsible for the AD functionality,
(ii) Monitor (MON) for verifying the safe operation of COM.
Based on the verification results, the MON decides whether
to forward the COM output for execution to the actuators or
not.

COM consists of Pre-Processing (PP-COM), Sensor Fusion
(SF-COM), Free Space Produces (FSP-COM), and Tra-
jectory Planning (TP-COM) builindg blocks. Furthermore,
COM is additionally labeled with Fault-Containment Region 1
(com fcr1), to indicate that any fault occurring inside the
region will not propagate to other parts of the system.
MON includes Pre-Processing (PP-MON), Sensor Fusion (SF-
MON), and Free Space Producer-MON (FSP-MON) blocks,
that perform similar functions as PP-COM, SF-COM and
FSP-COM. However, as the MON is responsible for ensuring
the overall ADS safety, it is expected that these components
are less complex and safer than their counterparts in COM.
Moreover, the MON includes the so-called CHECK-MON
block that is responsible for (i) verifying the correctness of the
COM output (i.e., trajectory) and (ii) based on the verification
results to forward or discard them.

Fig. 1. An example of a fail-silent ADS architecture.

It is essential to note that the sub-components of MON
are distributed into two fault-containment regions. mon fcr2
includes PP-MON, SF-MON, FSP-MON, whereas mon fcr3
includes CHECK-MON. The rationale for this is that CHECK-
MON is assumed to be highly critical element that can be
constructed as fail-silent fault-containment region, i.e., as
ASIL D component according to ISO 26262.

Based on the objects detected by SF-MON, the FSP-
MON calculates a space for safe trajectories called the
free space mon. CHECK-MON then takes the output from
TP-COM (i.e., the trajectory) and the FSP-MON (i.e.,
the free space mon) and verifies whether the trajectory
is safe by checking whether it is located entirely in-
side the free space mon. In case of successful verifica-
tion (i.e., the trajectory is verified to be in free space mon),
CHECK-MON forwards the trajectory to the actuators. Oth-
erwise, CHECK-MON shuts down the COM output by not
passing the trajectory to the actuators, hence achieving a fail-
silent behavior.

B. Problem statement

The fail-silent design presented in II-A has been proposed
in [1] as part of a fail-operational ADS architecture. We
assume a single failure hypothesis in which com_fcr1,
mon_fcr2, and mon_fcr3 fail independently from each
other. The COM may fail arbitrarily. There are two types of
MON failures, false negative and false positive detections.
A false negative detection occurs when the MON falsely
concludes that an unsafe trajectory is safe. A false positive
occurs when the MON falsely concludes that a safety trajec-
tory is unsafe. False negative detections are out of the scope
of this paper and could be addressed by sufficient design
diversity, ASIL decomposition, and certification processes, or
a combination of these. In this paper, we focus on false positive
detections, in particular, their mitigation.

Figure 2 describes the occurrence of an example of a false
positive detection. In Figure 2 (a), the COM has generated
a safe trajectory. In Figure 2 (b), the MON has generated
the free space mon as described in Section II-A, however
in this case leading to a false positive result occurring. The
leading cause for the false positive, is the difference in the
precision between COM and MON, as explained in Section
II-A. Specifically, the approximation of OBJ1 made by MON
(i.e., MON-RTO1) is less precise than the approximation made
by COM (i.e., COM-RTO1). As a result, an otherwise safe
trajectory is verified to be unsafe as it is not entirely inside
the free space mon, and it goes into the non-drivable area
surrounding OBJ1.

The frequent occurrence of such false positives is not desir-
able as it will significantly reduce the availability of the system
and thus achieve opposite results compared to the initial goals
of the better comfort in driving. Furthermore, in some cases,
the false positive can as well affect the safety aspect of the
ADS. Consider a system designed to brake whenever the
MON identifies an unsafe trajectory (i.e., a design similar
to Automated Emergency Braking (AEB) system). Initiating

(a) A safe trajectory

fr
ee
_s
pa

ce
_c
o
m

OBJ2COM-
RTO2

OBJ1COM-
RTO1

(b) A false positive fault detection

fr
ee
_s
pa

ce
_m

o
n

OBJ2

Unsafe

MON-
RTO1

MON-
RTO2

OBJ1

EG
V

EG
V

Fig. 2. An example of false positive.

sudden braking (due to a false positive) during an ordinary
safe driving scenario may put the ego-vehicle into an unsafe
situation. For example, the vehicle behind the ego-vehicle
might not expect the sudden braking and crash to the ego-
vehicle.

C. Proposed Solution

To address the false positive problem outlined in
Section II-B, we introduce a novel fail-silent ADS architecture
that reduces the false-positive rate of MON, while not reducing
the overall ADS safety (see Figure 3).

Fig. 3. A fail-silent ADS architecture with false positive reduction.

The architecture proposes two changes in comparison to the
general fail-silent architecture in Section II-A. First, we intro-
duce an additional block to the COM, namely the information
merging block (MRG-COM). Second is the introduction of an
information exchange channel between MON and COM, in
particular from FSP-MON to the MRG-COM block 1

1We assumes that the underlying architecture ensures real-time computation
and communication that enables the coordinated exchange of information
between MON and COM. Such architectures are [2], [3] [4], [5].

(b) free_space_mon

fr
ee
_s
pa

ce
_m

o
n

OBJ1 OBJ2

(c) A visual overlay
of (a) and (b)

OBJ1 OBJ2

EG
V

EG
V

Fr
ee

sp
ac

e

(c) free_space_mrg

fr
ee
_s
p
a
ce
_m

rg

OBJ1 OBJ2

EG
V

(a) free_space_com
fr
ee
_s
p
a
ce
_c
o
m

OBJ1 OBJ2

EG
V

Fig. 4. Example merging process.

1) Merging Process: The MRG-COM block takes as an
input the output of the FSP-COM and FSP-MON (i.e.,
free space com and free space mon) and provides a com-
bination of these two outputs. The process is illustrated in
Figure 4. Figure 4 (a) and (b) depict respectively the output
from FSP-COM and FSP-MON. Figure 4 (c) is only for
better reader experience and depicts the overlay of the free
spaces generated from COM and MON. Figure 4 (d), presents
the output of the MRG-COM block (i.e., free space mrg).
To produce free space mrg the MRG-COM block combines
free space com and free space mon using set-theoretic cut-
set operation.

2) Trajectory planning based on merged free space: Fol-
lowing the architecture in Figure 3, the free space mrg is
given to TP-COM that then accordingly plans a trajectory ma-
neuvering the vehicle safely on the road (see Figure 5 (a)). As
TP-COM needs to generate trajectories that fit free space mrg
(which may be more conservative), the TP-COM trajectories
may degrade in terms of comfort. The planned trajectory
is going to the left-most lane, as all other three lanes in
free space mrg are occupied.

3) Trajectory verification: Next, the generated trajectory
from the TP-COM block is then sent to CHECK-MON

(a) Example trajectory planning

MRG-
RTO2

OBJ2MRG-
RTO1

fr
ee
_s
p
a
ce
_m

rg

OBJ1 OBJ2MON-
RTO1

MON-
RTO2

OBJ1

(b) Example trajectory verification

fr
ee
_s
p
a
ce
_m

o
n

EG
V

EG
V

Fig. 5. An example trajectory planning based on free space mrg and
trajectory verification.

block that then verifies the trajectory as described earlier in
Section II-A. Figure 5 (b) illustrates the verification process.
As can be seen, the trajectory is identified to be correct since
it is completely in the free space mon. Hence, the CHECK-
MON block will forward the trajectory to the actuators.

A key element is the fact that the operation of the infor-
mation merging stage MRG-COM is safe. That means even in
case of failure of the MON providing a faulty free space mon
to the commander COM, the information merging stage
MRG-COM operation will not lead to a merged free space
(i.e., free space mrg) that could cause a non-faulty TP-COM
to produce an unsafe trajectory. We will argue the safety of
the merging process more formally next.

III. FORMAL VERIFICATION

We explore the advantages of congruency exchange between
COM and MON formally, by means of infinite bounded
model-checking and k-induction.

Our proof and simulation framework is based on the
bounded model checker for infinite-state systems that is
part of the SAL environment. This model checker is called
sal-inf-bmc. The algorithms presented in this paper have
been formalized in SAL [6] as state-transition systems of the
form 〈S, I,→〉. S defines the set of system states σi, I is the
set of initial system states with I ⊆ S, and → is the set of
transitions between system states. Each system state σ maps
state variables to particular values according to their defined
type. The proof of an invariant property �P (“P is always
true”) is done by k-induction [7], which is a generalized form
of induction. k-induction consists of the following stages [8]:

• Base Case: Show that all the states reachable from I in
no more than k − 1 steps satisfy P

• Induction Step: For all trajectories σ0 → · · · → σk of
length k, show: σ0 |= P ∧ · · · ∧ σk−1 |= P ⇒ σk |= P

We reuse a proof procedure proposed by Rushby [9].
An overview of the proof structure is given in Figure 6,
where we model an ideal AD system as well as a real AD
system and show that their input-output behavior equals under
certain constraints. In addition to the ideal and the real AD
system, we make our assumptions explicit by encoding them

in an assumption module as well. In the following, we will
incrementally construct the depicted proof.

S`

com_fcr1 mon_fcr2

mon_fcr3

ideal

R
eal A

D
 syste

m
(p

rim
ary o

n
ly)

M
o

d
el C

h
eckin

g (M
C

) system

data_in_com data_in_mon

mon_out

mon_outcom_out

ideal_out checker_out

Fig. 6. Overview of the final proof structure

The construction of the model and the formal proof took
an expert in the SAL language less than a month. The actual
verification time of the properties is in the order of seconds
on a standard laptop.

A. A Basic Formal Model

We use the SAL infinite bounded model checker and start
the formal model with a set of TYPE definitions and some
initial constants.
sensor_data: TYPE;
free_space: TYPE; free_space_init: free_space;
trajectory: TYPE; trajectory_init: trajectory;
trajectory_empty: trajectory;

sensor_data is an abstract type that represents sensor
data - it is irrelevant which sensors are used. free_space
is a type that represents free space, i.e., the space that the
vehicle is able to maneuver with a sufficiently high prob-
ability of absence of collisions. We also define an initial
free space as free_space_init. Finally, we define a
type trajectory that represents trajectories and define two
instances trajectory_init, an initial trajectory, as well
as trajectory_empty as a constant that identifies when
the AD system is not providing a trajectory.

We, furthermore, define some generic functions.
pp_sf_fsp_com(x: sensor_data): free_space;
pp_sf_fsp_mon(x: sensor_data): free_space;
tp_com(x: free_space): trajectory;

The function pp_sf_fsp_com combines the preprocess-
ing, sensor fusion, and free space generation procedures of
the COM. It takes as an input the sensor data and returns
a free space for further trajectory planning, which is done by
the function tp_com. The latter function takes as an input the
free space and returns a trajectory. The combination of prepro-
cessing, sensor fusion, and free space generation procedures in
the MON is represented by the function pp_sf_fsp_mon.
We assume that the COM actually produces a free space
interpretation. However, the proofs can easily be transferred in
case the COM would directly produce trajectories from sensor
data without explicit representation of its perceived free space.

With these definitions, we are already able to express the
ideal behavior of our AD system, the ideal AD system.

ideal: MODULE =
BEGIN
INPUT data_in_com: sensor_data
OUTPUT ideal_out: trajectory
INITIALIZATION ideal_out = trajectory_init;
TRANSITION
ideal_out’ =
tp_com(pp_sf_fsp_com(data_in_com));

END;

The ideal AD system never fails and always returns a
safe trajectory, i.e., a trajectory that does not cause a severe
incident. We model this ideal behavior by a SAL module that
takes as input some sensor data data_in_com, and returns
as an output said safe trajectory ideal_out. To do so, we
model the initial output to be a safe trajectory_init
and further model the update process of the trajectories by a
simple transition using the functions previously defined.

The ideal AD system behaves perfectly, yet we cannot
build such a system in reality since we must consider the
presence of failures in artificial components. Thus, we now
model a real AD system that consists of components that,
indeed, may fail.

This real AD system consist of a COM that is imple-
mented by one fault-containment region com_fcr1 and a
MON that is implemented by two fault-containment regions
mon_fcr2 and mon_fcr3 (see Figure 3 for the contents of
fault-containment regions). We will further show by means
of model-checking and k-induction that the behavior of this
real AD system equals the behavior of the ideal AD system
under certain conditions. It is the aim of this formal study to
make these conditions explicit and to study the behavior of the
real AD system in those cases when the previously described
conditions do not hold (and therefore the behavior of the real
AD system deviates from the ideal AD system).

We start with the first model of the commander com_fcr1
(which we will refine later as the paper progresses).
com_fcr1: MODULE =
BEGIN
INPUT data_in_com: sensor_data
OUTPUT com_out: trajectory, com_error: BOOLEAN
INITIALIZATION com_out=trajectory_init; com_error=FALSE
TRANSITION
[TRUE -->
com_out’ = tp_com(pp_sf_fsp_com(data_in_com));
com_error’ = FALSE;

[] TRUE -->
com_out’ IN {x: trajectory |

x/=tp_com(pp_sf_fsp_com(data_in_com))};
com_error’ = TRUE;

] END;

This first com_fcr1 module extends ideal in the fol-
lowing way: we introduce a second output com_error that
is a boolean variable with initialization set to FALSE, i.e., we
assume that initially the commander is non-faulty. We also ex-
tend the one transition from ideal with a second transition in
com_fcr1. Note that SAL formulates transitions as guarded
commands of the form guard --> command. As depicted,
both com transitions have the guard set to true. Thus, in
each execution step com is free to non-deterministically chose

either one of the transitions. The first transition represents the
failure-free execution of com_fcr1 and therefore equals the
transition of ideal. The second transition represents a faulty
execution of com_fcr1 that leads to com_fcr1 returning a
trajectory that is different from the correct trajectory (however
this faulty trajectory might be a safe trajectory as well).
When com_fcr1 executes the second transition the model
marks the occurence of a failure of com_fcr1 by setting
com_error to TRUE. Note, we use com_error only to
reason about the model, not as a part of an algorithm that
the real AD system executes - we do not assume a faulty
component to report its failure in operation.

We aim to verify that ideal and com_fcr1 return
the same output, by the following system composition
(MC_ideal simply executes ideal and com_fcr1 in par-
allel) and a lemma.

MC_ideal: MODULE = ideal || com_fcr1;
CTR_ideal: LEMMA MC_ideal |- G(ideal_out = com_out);

It should not come as a surprise that the verification attempt
of the CTR_ideal lemma fails, since we explicitely allowed
com_fcr1 to produce trajectories that differ from ideal
(that is when com_fcr1 fails). However, if we assume that
com_fcr1 does not fail, then the verification attempt should
be successful. We can formally express this assumption by an
additional module assumptions_simple.

assumptions_simple: MODULE =
BEGIN
INPUT com_error: BOOLEAN
OUTPUT a_hold: BOOLEAN
DEFINITION a_hold = IF com_error THEN FALSE ELSE TRUE ENDIF;
END;

The assumptions module takes com_error as an input
and returns a boolean a_hold as output that indicates whether
the assumptions hold or not. In this simple case we are
interested in the assumption that com_fcr1 is not faulty. We
can then verify that com_fcr1 and ideal, indeed, have
identical output as follows.

MC_a_simple: MODULE=ideal||com_fcr1||assumptions_simple;
PROOF_a_simple: LEMMA MC_a_simple |-

G(a_hold => ideal_out = com_out);

We include the assumptions_simple model in the
system composition and extend the lemma by the hypothesis
that a_hold is true. Then, indeed, k-induction verifies this
lemma. While this is not a major result, we have introduced
the full verification framework used in the following study
in which we modify our assumptions in the assumptions
module, as we update the real AD system, with the monitor
fault-containment regions mon_fcr2 and mon_fcr3.

B. Model Updates of the real AD system

We begin with the fault-containment region mon fcr2.

mon_fcr2: MODULE =
BEGIN
INPUT data_in_mon: sensor_data
OUTPUT mon_out: free_space, mon_error: BOOLEAN
INITIALIZATION mon_out = free_space_init; mon_error=FALSE;
TRANSITION
[TRUE -->
mon_out’ = pp_sf_fsp_mon(data_in_mon);
mon_error’ = FALSE;

[] TRUE -->
mon_out’ IN
{y: free_space | y/=pp_sf_fsp_mon(data_in_mon)};

mon_error’ = TRUE;
] END;

The fault-containment region mon_fcr2 of the monitor
shares many similarities with com_fcr1. The main difference
being that mon_fcr2 does not generate a trajectory, but only
returns a free space via its output mon_out. This free space is
the result of the mon_fcr2 function pp_sf_fsp_mon that
uses sensor data for the mon_fcr2 as the input. In analogy
to com_fcr1 also mon_fcr2 defines two transitions. A first
transition for the failure-free case and the second transition for
the failure case. In the latter case, mon_fcr2 returns a faulty
free-space, i.e., a free space that is different from the free space
it would have generated in the failure-free case. Similar to the
com_fcr1, the faulty free space is not necessarily unsafe (we
will continue this discussion a little later in this paper).

The checker CHECK-MON is modeled by the mon_fcr3
module and uses the following trajectory_verified?
predicate.

trajectory_verification(x: free_space): trajectory;
trajectory_verified?(x: trajectory, y: free_space):
BOOLEAN = IF x = trajectory_verification(y)

THEN TRUE ELSE FALSE ENDIF;

trajectory_verified? returns TRUE, if a given
trajectory x matches a given free_space y,
and FALSE otherwise. We will later use the
trajectory_verified? predicate in mon_fcr3
and in assumptions or the com_fcr1 module. For the
architectural properties we are interested to analyze, it is not
important to be specific on the semantics of this evaluation,
but it is rather important that we assume the existence of such
an evaluation. mon_fcr3 then simply uses this predicate.

mon_fcr3: MODULE =
BEGIN
INPUT com_out: trajectory, mon_out: free_space
OUTPUT checker_out: trajectory
INITIALIZATION checker_out = com_out;
TRANSITION
checker_out’ = IF trajectory_verified?(com_out’, mon_out’)

THEN com_out’ ELSE trajectory_empty ENDIF;
END;

mon_fcr3 takes the output of com_fcr1 and mon_fcr2
(i.e., com_out and mon_out) as an input. It uses the pred-
icate trajectory_verified? to check the compatibility
of the trajectory and the free space and returns either the
com_out trajectory (in case of successful evaluation) or
an empty trajectory trajectory_empty (in case if the
trajectory and the free space do not match). In case the checker
returns trajectory_empty, the real AD system switches
to a backup system.

We also need to update the assumptions to reflect a single-
failure hypothesis as well as our hypothesis that a correct
com_fcr1 only produces trajetories that are verified by a
correct mon_fcr2. As discussed earlier, there are multiple
ways to tolerate the failure of the checker mon_fcr3. For
simplicity reasons, in this paper (and proofs) we assume that
mon_fcr3 fails silent, i.e., in the failure case mon_fcr3
returns the empty trajectory trajectory_empty.
assumptions_2: MODULE =
BEGIN
INPUT com_error: BOOLEAN, mon_error: BOOLEAN,
com_out: trajectory, mon_out: free_space

OUTPUT a_hold: BOOLEAN
DEFINITION
a_hold = IF ((NOT com_error AND NOT mon_error) OR

(com_error AND NOT mon_error) OR
(NOT com_error AND mon_error)) AND
((NOT com_error AND NOT mon_error)
=> trajectory_verified?(com_out, mon_out))

THEN TRUE ELSE FALSE ENDIF;
END;

We can then compose the system again and verify a more
interesting property as follows.
ADS: MODULE = com_fcr1 || mon_fcr2 || mon_fcr3;
MC_a2: MODULE = ideal || ADS || assumptions_2;
PROOF_a2: LEMMA MC_a2 |-
G(a_hold => (ideal_out=checker_out OR
checker_out=trajectory_empty OR
com_error AND NOT mon_error AND
trajectory_verified?(com_out, mon_out)));

Indeed, we can verify the PROOF_a2 lemma presented
above, and show the benefit of Rushby’s formal approach quite
well. We want to prove that given that our assumptions hold,
there is a certain relation between the ideal AD system (the
one that does not fail) and the real AD system (that does
fail). Indeed, by this formal notation and model-checking, we
discover that we need to distinguish three cases:

• ideal_out=checker_out: this is the failure-free
case in which the real AD system behaves as the ideal
AD system.

• ideal_out=trajectory_empty: this is the behav-
ior in the failure case that we would expect. When either
com_fcr1 produces a faulty trajectory or mon_fcr2
produces a faulty free-space that fails to verify the
commander’s trajectory then the checker returns an empty
trajectory.

• com_error AND NOT mon_error AND
trajectory_verified?(...): in this case,
com_fcr1 is faulty and produces a trajectory that
diverges from ideal. However, this faulty trajectory
is still accepted by mon_fcr3. This third case,
although not so obvious, has a natural interpretation:
com_fcr1 may be faulty, but could actually, still
produce a trajectory that is good enough to be accepted
by mon_fcr3.

Note that the formal model-checking process has been
guiding us towards this third case. When we aim to verify
the PROOF_a2 property without this third case, the model
checker returns a counterexample from which we can deduct
this third case.

C. Assumptions Reduction

The assumptions_2 are actually quite demanding, since
they state perfection of a non-faulty mon_fcr3 to classify all
trajectories from a non-faulty com_fcr1 as correct. Without
explicit coordination mechanism between com_fcr1, and
mon_fcr2 this will be hardly achievable: diversity in sensor
inputs, technology choices, and/or algorithmic realizations, as
well as, clock skews, and other synchronization inaccuracies
will lead to false positives with quite reasonable probability.
It is likely that the checker mon_fcr3 falsely identifies good
trajectories by the commander as being faulty.

Alternatively to these stringent assumptions we can explic-
itly design a coordination activity between com_fcr1 and
mon_fcr2. We can forward the free space calculated by
mon_fcr2 to com_fcr1 and com_fcr1 may be designed
in a way such that it generates trajectories that are in the
com_fcr1 free space as well as in the mon_fcr2 free space.
From a modeling perspective this can be easily achieved by
updating the com_fcr1 module to the com_fcr1_w_mrg
module.
com_fcr1_w_mrg: MODULE =
BEGIN
INPUT data_in_com: sensor_data,
mon_out: free_space, mon_error: BOOLEAN

OUTPUT
com_out: trajectory, com_error: BOOLEAN

INITIALIZATION
com_out = trajectory_init; com_error = FALSE;

TRANSITION
[TRUE -->
com_out’ IN {x: trajectory |
x=tp_com(pp_sf_fsp_com(data_in_com)) AND
trajectory_verified?(x, mon_out’)
OR (mon_error’ AND x=trajectory_empty)
OR (mon_error’ AND x/=tp_com(pp_sf_fsp_com(data_in_com)};

com_error’ = FALSE;
[] TRUE
-->
com_out’ IN {x: trajectory |

x /= tp_com(pp_sf_fsp_com(data_in_com))};
com_error’ = TRUE;

] END;

We provide com_fcr1_w_mrg as an additional input to
the free space from mon_fcr2 and require in the correct
operation of com_fcr1_w_mrg that the trajectory calculated
satisfies also the mon_frc2 free space. Practically, this can be
achieved by calculating the cut set of com_fcr1_w_mrg and
the mon_frc2 free spaces and having com_fcr1_w_mrg
use this cut-set for trajectory planning.

There is, however also the possiblity that
com_fcr1_w_mrg is not able to calculate such a trajectory
(i.e., a trajectory that satisfies both free spaces). Yet, this can
only be the case when com_fcr1_w_mrg or mon_fcr2 is
faulty, i.e., in case of correctly operating com_fcr1_w_mrg
and mon_fcr2 such a cut set can be calculated.

In order to reflect this impossibiltiy to generate a trajectory
to the mon_fcr2 execution in the failure case mon_fcr2
needs to inform com_fcr1_w_mrg of mon_error. Of
course, in a real implementation the input mon_error would
not be available to the commander, and merely the fact that
no trajectory is produced would be observed. Since we do not
explicitely model a trajectory generation function we need to

add the mon_error input to com as an auxiliary modeling
artefact to avoid an overly optimistic model, i.e., the optimistic
model would always return a trajectory, even if no trajectory
exists that satisfy the cut set of com_fcr1_w_mrg and a
mon_fcr2 free space.

It could also be the case that a faulty monitor
mon_fcr2 would prevent the commander com_fcr1
to produce the same trajectory as the ideal AD.
However, the commander com_fcr1 could still find
a trajectory that is safe. This case is indicated by
x/=tp_com(pp_sf_fsp_com(data_in_com) above.

With such an additional coordination mechanism, we can
relax the assumptions to assumptions_3.
assumptions_3: MODULE =
BEGIN
...
DEFINITION
a_hold = IF ((NOT com_error AND NOT mon_error) OR

(com_error AND NOT mon_error) OR
(NOT com_error AND mon_error))

THEN TRUE ELSE FALSE ENDIF;
END;

We can then verify the following lemma, accordingly.
MC_a3_mrg: MODULE = ideal || ADS_w_mrg || assumptions_3;
PROOF_a3_mrg_1: LEMMA MC_a3_mrg |-
G(a_hold => (ideal_out=checker_out OR
checker_out=trajectory_empty OR
(com_error AND NOT mon_error AND com_out/=ideal_out
AND trajectory_verified?(com_out, mon_out))));

The PROOF_a3_mrg_1 is essentially equal to the
PROOF_a property that we proved before, however in a
different system model. We translated the strong assumptions
necessary to verify the PROOF_a property to an additional
functionality in the com_fcr1_w_mrg module.

Finally, we can also prove that false positives are not
possible.
PROOF_a3_mrg_3: LEMMA MC_a3_mrg |-
G(NOT com_error =>
(checker_out=ideal_out OR

(mon_error AND checker_out=trajectory_empty) OR
(mon_error AND com_out/=ideal_out AND

trajectory_verified?(com_out, mon_out))));

The PROOF_a3_mrg_3 property verifies that as long as
the com_fcr1_w_mrg operates correctly, the real AD sys-
tem behaves as the ideal AD system. However, in the case of
a mon_fcr2 failure, the real AD system may fail to produce
a trajectory (i.e., mon_fcr3 failures are assumed to produce
empty trajectories as well) or produces another safe trajectory.

We summarize the considered failure scenarios in Table I.
Each row represent a particular type of settings. In each setting
(i.e., row) the table indicates whether an FCR is fault-free or
faulty. In case a FCR is faulty we name the failure mode. Each
setting also indicates the overall output of the ADS. The last
column indicates whether the setting has been verified in the
formal model or by informal argument.

IV. CONCLUSIONS

ADS developed for L3 and above automated driving are
highly safety-critical and thus must ensure safe operating

com fcr1 mon fcr2 mon fcr3 ADS output Coverage
fault-free fault-free fault-free ideal out Formal Model
unsafe trj fault-free fault-free trj empty Formal Model
faulty-safe fault-free fault-free trj!=ideal Formal Model
fault-free non-drivable fault-free trj empty Formal Model
fault-free faulty-drivable fault-free traj!=ideal Formal Model
fault-free fault-free fail-silent trj empty Informal

TABLE I
ADDRESSED FAILURE SCENARIOS

during their entire lifetime. The design of ADS with sufficient
levels of safety and availability is a challenge. One design
measure towards such acceptable ADS is to design appropriate
run-time monitoring mechanisms, such to construct comman-
der/monitor pairs (also known as doer/checker). Thus, run-time
monitoring, applied in a commander/monitor ADS architec-
ture, provides an on-going verification of the safe operation
of the commander. Important performance characteristics of
run-time monitors are their false positive and false negative
rates.

In this report we have (i) described a solution for removing
false positives in a systematic way (ii) and have formalized
the solution in an abstract model to prove the absence of false
positives by means of k-induction.

REFERENCES

[1] A. Mehmed, W. Steiner, M. Antlanger, and S. Punnekkat, “System
architecture and application-specific verification method for fault-tolerant
automated driving systems,” in 2019 IEEE Intelligent Vehicles Symposium
(IV). IEEE, 2019, pp. 39–44.

[2] P. Caspi, C. Mazuet, and N. R. Paligot, “About the design of distributed
control systems: The quasi-synchronous approach,” in International Con-
ference on Computer Safety, Reliability, and Security. Springer, 2001,
pp. 215–226.

[3] R. Larrieu and N. Shankar, “A framework for high-assurance quasi-
synchronous systems,” in 2014 Twelfth ACM/IEEE Conference on Formal
Methods and Models for Codesign (MEMOCODE). IEEE, 2014, pp. 72–
83.

[4] H. Kopetz and G. Bauer, “The time-triggered architecture,” Proceedings
of the IEEE, vol. 91, no. 1, pp. 112–126, 2003.

[5] A. Benveniste, P. Caspi, P. Le Guernic, H. Marchand, J.-P. Talpin, and
S. Tripakis, “A protocol for loosely time-triggered architectures,” in
International Workshop on Embedded Software. Springer, 2002, pp.
252–265.

[6] L. de Moura, S. Owre, H. Ruess, J. Rushby, N. Shankar, M. Sorea, and
A. Tiwari, “SAL 2,” in Computer-Aided Verification), ser. LNCS, vol.
3114. Springer, 2004, pp. 496–500.

[7] L. de Moura, H. Rueß, and M. Sorea, “Bounded model checking and in-
duction: From refutation to verification,” in Computer-Aided Verification,
CAV 2003, ser. Lecture Notes in Computer Science, vol. 2725. Springer,
2003, pp. 14–26.

[8] B. Dutertre and M. Sorea, “Modeling and verification of a fault-tolerant
real-time startup protocol using calendar automata,” in Proc. of FOR-
MATS/FTRTFT, ser. Lecture Notes in Computer Science, vol. 3253.
Springer-Verlag, Sep. 2004, pp. 199–214.

[9] J. Rushby, “A safety-case approach for certifying adaptive systems,” in
AIAA Infotech@ Aerospace Conference and AIAA Unmanned... Unlimited
Conference, 2009, p. 1992.

