
 

Mälardalen University Licentiate Thesis 
No. 20 

 
 
 
 

 

LAYOUT AND FUNCTION OF THE INTRACORTICAL 
CONNECTIONS WITHIN THE PRIMARY VISUAL 

CORTEX 

Baran Çürüklü  

2003 

 

 

 

 

Department of Computer Science and Engineering 
Mälardalen University 

 
 
 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Copyright © Baran Çürüklü, 2003 
ISSN 1651-9256 
ISBN 91-88834-23-9 
Printed by Arkitektkopia, Västerås, Sweden 
Distribution: Mälardalen University Press 



 

 

i

Abstract 
This thesis describes a top-down view of the cat primary visual cortex (area 17), which is faithful 
to the relevant aspects of the known physiology and anatomy. The centerpiece of this work is an 
abstract hypercolumn model that is mapped to cat primary visual cortex. This model shows how 
the recurrent (intracortical) connections can be self-organized and that their presence can explain 
the emergence of several response properties of the striate cells, such as contrast-invariance of 
orientation tuning, narrowing of the orientation tuning, response saturation followed by 
normalization and response facilitation mediated by long-range horizontal connections. 

The abstract hypercolumn model is in line with other recurrent models by assuming broadly 
tuned inhibition. It is believed that large basket cells mediate this inhibition. However, the model 
is unique in that, when mapped to layer 4 it incorporates an additional class of interneurons, 
which only inhibit excitatory simple cells in their close surroundings. 

The layout and function of the intracortical connections within a patch of area 17 have been 
addressed using developmental network models. These models are developed during exposure to 
visual input using a Bayesian Confidence Propagation Neural Network (BCPNN) with an 
incremental learning rule. The connectivity pattern demonstrated by the correlation-based 
network model is similar to that of area 17. Excitatory local connections are dense, whereas 
excitatory long-range horizontal connections are sparse and elongated along the orientation axis. 
Furthermore, layer 4 excitatory local connections target mainly the iso-orientation domain, 
whereas the excitatory long-range horizontal connections are equally distributed between all 
orientation domains. However, both local and long-range horizontal connections of the layer 2/3 
connections are biased towards the iso-orientation domains. It is hypothesizes that this patchiness 
is a consequence of excitatory long-range connections made by the pyramidal cells targeting 
mainly other pyramidal cells located in distal iso-orientation domains. The dissimilarity between 
the two layers’ layout might indicate functional differences. 

The function of the intracortical connections has been investigated by studying response 
facilitation of simulated striate cells. This phenomenon is manifested by improved visibility of a 
Gabor patch when it is elongated along the orientation axis. This phenomenon is probably due to 
the elongated shape of the long-range horizontal connections. Response facilitation requires 
robust communication between striate cells located several millimeters from each other. It is 
hypothesized that spike and burst synchronization might be responsible for this. Furthermore, the 
anisotropy of the long-range horizontal connections seems also to help narrowing the orientation 
tuning of the excitatory cells. 

The main conclusion to be drawn is that it is possible to explain several response properties of 
the striate cells by an abstract hypercolumn model, which is faithful to the known anatomy and 
physiology of the neocortex. When simplicity is combined with biological plausibility the 
models of hypercolumns can give valuable insight into the structure and function of cortical 
circuitry. 
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1 Introduction 

1.1 Neocortical Microcircuits – Aim and Scope 
of the Thesis 

This thesis presents a top-down view of the cat primary visual cortex (area 17) that 
can help to unveil the computations that are carried out within the neocortex. The 
primary visual cortex (striate cortex, Brodmann’s area 17 of cat, area V1 of 
monkey) of cat and other species, such as monkey and rodents, is relatively well 
documented, and hence have been the principal system for studying the structure 
and function of cortical systems. The structural similarities between various 
cortical areas, which are primarily manifested by the modular and laminar 
organization of the neocortex, suggest that studies of the primary visual cortex 
might contribute to a general understanding of other cortical systems as well. 

Microcircuits found in the primary visual cortex (hypercolumns) have been 
subject to intense study mainly as a result of the hypothesized modular 
organization of the neocortex. One of the aims has been to spatially relate various 
response properties of the striate cells (neurons populating the primary visual 
cortex) to each other. This leads to one of the ultimate goals of the neuroscience, 
which is to propose a blue print of the cortical microcircuits. Such a blue print 
could help to reveal the organization principles of the neocortex. 

Emergence of response properties of the striate cells, such as orientation 
selectivity, contrast-invariance of orientation tuning, response saturation, 
normalization, response facilitation and cross-orientation inhibition are among the 
first tasks to be tackled by any model of the hypercolumns. The functional role of 
the thalamocortical circuitry in emergence of some of these response properties, 
such as orientation selectivity, is relatively well understood (Hubel and Wiesel, 
1962). It is also generally accepted that the thalamocortical circuitry fails to 
explain other fundamental response properties, e.g. contrast-invariance of 
orientation tuning. However, the functional role of the cortical circuitry in the 
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emergence of these response properties is still unclear. This should not come as a 
surprise, since the layout of the intracortical connections is not fully understood. 
However, as it has been pointed out by Hubel and Wiesel (1962), the functional 
role of the cortical circuitry in emergence of orientation selectivity and other 
response properties of the striate cells should not be underestimated: ‘what chiefly 
distinguishes the cerebral cortex from other parts of the nervous system is the great 
diversity of its cell types and interconnections. It would be astonishing if such a 
structure did not profoundly modify the response of patterns of the fibers coming 
into it’. 

Based on the hypothesized modular organization of the neocortex, this thesis 
work intends to motivate the hypothesis saying that the response properties of the 
striate cells are not solely governed by the thalamocortical circuitry. In order to 
motivate this hypothesis, and hence demonstrate the functional role of the 
intracortical connections, in shaping the response properties of the striate cells, an 
abstract hypercolumn model has been presented (Papers II and III). This model 
reveals interactions within a small region that roughly corresponds to a cortical 
hypercolumn. 

With this abstract hypercolumn model comes also the possibility of 
investigating a larger patch within area 17, since such a two-dimensional patch 
could be constructed by tiling the hypercolumn models next to each other. This has 
been done to investigate the functional role of the connections between orientation 
domains located several millimeters from each other (Papers I, III and IV). 
Especially the response saturation of striate cells and putative role of the 
summation pools in emergence of this behavior has been shown by simulations 
(Paper III). 

The intracortical connections within the proposed models have also been 
analyzed quantitatively (Paper IV). This analysis helps to compare the presented 
models with area 17 (layers 4 and 2/3), and gives a plausible explanation of the 
differences in layout of the intracortical connections between these two layers. The 
hypothesis is that the pyramidal cells of layer 2/3 are mainly projecting to the 
other pyramidal cells in distal iso-orientation domains. This explains the patchy 
layout of the layer 2/3 connections. 

By concluding this thesis work by an analysis of a cortical patch that contains 
tens of hypercolumns it is also underlined that the neocortex is a continuum. It is 
neither possible to reduce this complex structure to a single microcircuit nor grasp 
the microcircuits by ignoring the rest of the neocortex. 

Hopefully, this thesis work will lead to a better understanding of the cortical 
microcircuits and clarify the challenges that lie ahead, towards more detailed 
models. 
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1.2 Thesis Structure 
The thesis is structured in the following way. Chapter 2 reviews the biological 
background. The substance of chapter 2 is both essential and sufficient for 
understanding this thesis work. In sections 2.1 elementary topics related to early 
stages of vision is briefly reviewed. The intention is to introduce the readers, 
which are not familiar with neuroscience, to the topic and scope of this thesis 
work. The columnar organization of the neocortex is reviewed in section 2.2, 
whereas the following section is dedicated to the layout and function of the 
intracortical connections. Section 2.4 explains emergence of orientation 
selectivity. The putative functional role of the long-range horizontal connections in 
shaping the response properties of the striate cells is summarized in section 2.5. 

Readers that are familiar with the topic of this thesis work will notice that some 
important parts, which are related to the cortical circuitry, such as projections from 
other (higher) cortical areas, a more detailed description of the sublayers of layer 4 
and how they are related to the parvo- and magnocellular layers of the thalamus, 
layers 5 and 6, connections between different cortical laminea etc. are omitted. It 
has been considered that these parts would not contribute significantly to the 
understanding of this thesis work. On the contrary by their absence they help to 
define the scope of the work. Readers that are not familiar with the topic of this 
thesis work (and finds it interesting) should turn to university level textbooks in 
neuroscience for a more comprehensive coverage of the less accessible parts of 
this thesis work (Purves et al., 1997; Kandel et al., 2000; Connors et al., 2002). In 
fact, I believe that this thesis work is much more accessible if the basic topics 
related to vision are briefly covered beforehand. 

Chapter 3 summarizes the BCPNN family of neural networks including the 
BCPNN incremental learning rule. Related work is covered in chapter 4. The first 
two sections in this chapter are classified according to the role of the 
thalamocortical circuitry in shaping the response properties of the striate cells, 
whereas section 4.3 reviews models that address various surround effects. The 
results are thoroughly described in chapter 5. Section 5.1 focuses on the findings 
related to the layout of the intracortical connections. Section 5.2 summarizes 
findings related to the emergence of response properties of the striate cells. The 
following section is dedicated to the response facilitation of striate cells, and the 
putative functional role of cortical summation pools in emergence of this behavior. 
Section 5.4 contains a summary of each of the four papers that are included in the 
thesis work. Chapter 6 sums up the thesis work by providing a top-down view of 
the results described in chapter 5. Chapters 7–10 contain the papers that are 
included in this thesis work. 
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2 Biological Background 

2.1 Early Stages of Vision – The Retino-
Geniculo-Cortical Pathway 

Early stages of vision consist of three structures, i.e. the retina, the dorsal lateral 
geniculate nucleus (dLGN, or LGN), and the primary visual cortex (striate cortex, 
Brodmann’s area 17 of cat, area V1 of monkey). In this section, a brief summary 
of the properties of the neurons populating these structures will be given. 
However, some of the properties, which are of special interest, will be explained 
more thoroughly in later sections (2.2–5). Nevertheless, this summary is limited to 
those properties, which are relevant to this thesis. 

2.1.1 The Retina 
The retina is the first processing step of the incoming information of the visual 
field, since the visual field is projected to the two retinae located in each eye. The 
retina consists of three granual layers, i.e. the photoreceptor layer, the bipolar 
layer (consists of bipolar, amacrine, and horizontal cells), and the retinal ganglion 
layer. Regions between these three layers are referred to as the plexiform layers. 
Synaptic connections between cells located in different granual layers occur within 
the plexiform layers. 

The photoreceptors are divided into two types (rods and cones). These two types 
of cells are the only elements sensitive to light within the retina. Thus, they form 
the very first processing step of visual signals within the visual pathway. The 
specialization into rods and cones reflects different aspects of vision. The rods are 
extremely sensitive to light but have poor spatial resolution. These cells are 
specialized for sensitivity at the expense of resolution. In contrast, the cone system 
has very high spatial resolution. The cones are, however, less sensitive to light. 
The cone system is also responsible for color vision. 
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The bipolar cells receive exclusively input from rods or cones. Thus, the bipolar 
cells can be divided into rod- or cone-bipolar cells. Furthermore, these synaptic 
connections can be either excitatory or inhibitory. The lateral projections, which 
target the periphery of the bipolar cells’ receptive fields, mediate the opposite to 
the direct path, which targets the center of the bipolar cells’ receptive fields. The 
term ‘receptive field’ (RF) is often used when the response properties of the 
neurons are discussed. In terms of vision this term can be defined as: ‘the receptive 
field of a neuron in the visual system is the region of the retina that influences the 
firing rate of the target neuron by increasing it (excitation) or decreasing it 
(inhibition)’ (Palmer, 1999). 

The connection pattern results in two types of bipolar cells, ON and OFF, with 
opposite response properties. The ON bipolar cells have ON-center (direct path) 
and OFF-surround (lateral path) receptive fields, whereas the OFF bipolar cells 
have OFF-center (direct path) and ON-surround (lateral path) receptive fields. 

The bipolar cells make, however, only excitatory connections to the retinal 
ganglion cells. These connections are of two types, either ON bipolar cells to ON 
retinal ganglion cells or OFF bipolar cells to OFF retinal ganglion cells. As a 
consequence of this wiring pattern, the bipolar cells have similar response 
properties as the retinal ganglion cells, which are the last processing step of the 
visual field within the retina. 

The physiological studies done by Kuffler (1953) have shown that the cat retinal 
ganglion cells react to small spots of light. This study indicates that each ganglion 
cell responds to stimulation of a small, circular patch of the retina. This patch 
defines the receptive field of a single retinal ganglion cell. Kuffler (1953) have 
discovered two different types of retinal ganglion cells (ON and OFF). When the 
center of an ON retinal ganglion cell is stimulated with a light spot, the cell reacts 
by generating a burst of spikes as a result of increased activity. When the light 
stimulus, which covers the center of the ON retinal ganglion cell, is moved to the 
periphery of the cell’s receptive field, the cell is inhibited (decreased activity). The 
OFF retinal ganglion cells have opposite receptive field properties. These cells 
prefer dark spots in the center of their receptive fields, which is surrounded by a 
light region. The receptive fields of the bipolar and the retinal ganglion cells can 
be mathematically described with a so-called ‘Mexican-hat’ function. 

Note however that the activity of the retinal ganglion cells depends on the 
contrast, i.e. the difference in the amount of light that falls on their receptive field 
centers and surrounds. Both types of retinal ganglion cells are equally numbered, 
and are distributed equally in the retina. 

The retinal ganglion cells are not only divided into ON or OFF cells. There is 
also a morphological (based on form and structure) classification of these cells. 
According to this classification best known retinal ganglion cells are either α (5%) 
or β (55%) cells (Wässle et al., 1975). The remaining 40% are γ retinal ganglion 
cells (Boycott and Wässle, 1974). The γ retinal ganglion cells are further 
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subdivided into groups. Not much is know about their functional impacts on 
vision. 

The α and β retinal ganglion cells show functional differences as well, and are 
physiologically classified as Y and X cells, respectively. The γ retinal ganglion 
cells are classified as W cells. The α retinal ganglion cells act as novelty detectors, 
they are fast and sensitive to motion, and they can operate during low contrast. On 
the contrary, the β retinal ganglion cells are specialized for a more detailed 
analysis of a stationary scene. 

Distribution of the different types of photoreceptors (rods and cones) and retinal 
ganglion cells (α or β) reveals different aspects of vision. The cones are the only 
photoreceptors located in the fovea, whereas the rods dominate the periphery. (The 
fovea is a region located in the center of the retina, about 2º of visual angle in 
diameter. This region is responsible for highest spatial accuracy.) The convergence 
between photoreceptors and the retinal ganglion cells is very small within the 
fovea. Not surprisingly the β retinal ganglion cells dominate the fovea. The α 
retinal ganglion cells dominate the periphery of the retina. With increasing retinal 
eccentricity the density of photoreceptors and retinal ganglion cells decrease, and 
the sizes of receptive fields of all cells increase. Furthermore, the fraction of rods 
and α retinal ganglion cells, as well as convergence rate increase. 

2.1.2 The LGN 
The major target of the retinal ganglion cells is the LGN of the thalamus (Hubel 
and Wiesel, 1977). Neurons in the thalamus send their axons to the cerebral cortex. 
The retinotopic representation of the visual field, which emerges in the retina, is 
preserved throughout the retino-geniculo-cortical pathway. Hubel and Wiesel 
(1977) have shown that the fibers that start from the neighboring retinal ganglion 
cells within the retina converge to neighboring geniculate cells. The geniculate 
cells project in turn to neighboring regions within the primary visual cortex (Hubel 
and Wiesel 1977). 

The LGN consists of six layers, four parvocellular (P-cell) and two 
magnocellular (M-cell). The ipsalateral eye drives two parvocellular and one of the 
magnocellular layers (one half of the layers). The contralateral eye drives 
remaining LGN layers. Axons from the α retinal ganglion cells converge to the M-
layers, whereas the β retinal ganglion cells converge to the P-layers. Note however 
that the retinotopic maps within the LGN and the primary visual cortex are 
distorted, since the visual field located in the fovea needs higher resolution and 
more computing power than the periphery of the visual field. 

The receptive field properties of the geniculate P and M cells are similar to 
those of β and α retinal ganglion cells, respectively. The LGN cells are also 
classified as ON and OFF cells. Note that the antagonistic center surround 
receptive field profile of the bipolar cells is preserved in the LGN. As a result the 
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LGN is often seen as a relay between the retina and the primary visual cortex. 
However, the LGN also receives input from two other sources than the retina. 
These two modulatory sources are, the primary visual cortex and the inhibitory 
cells located in the thalamic reticular nucleus. These inputs can affect the gain of 
the signal transmission (Coenen and Vendrik, 1972) and the mode of the firing of 
the geniculate cells (burst or continuous firing) (Steriade et al., 1993). 

2.1.3 The Primary Visual Cortex 
The cerebral cortex is a thin folded structure that covers the cerebral hemispheres 
(Purves et al., 1997). The neocortex is a six-layered structure, which takes up most 
of the cerebral cortex. The laminar division of the neocortex is based on the 
properties of the neurons (nerve cells) of different kinds populating the neocortex. 
These properties are size, shape and density. Some of the neocortical layers 
(laminea) are divided further into sublayers. (See the excellent book by 
Braitenberg and Schüz (1998) for a comprehensive review on the cortex) The 
neocortex of cat is ~1.3 mm thick (~0.08 mm in mouse, ~1.6 mm in monkey, ~3 
mm in human). Approximately 80% of the neurons are pyramidal or spiny stellate 
cells. These cells are excitatory (non-GABAergic). Remaining cells are classified 
as GABAergic inhibitory cells. These cells are referred to as interneurons (they are 
also mentioned as sparsely spinous cells, local circuit neurons, stellate cells) 
(Gabbott and Somogyi, 1986). Each neuron makes and receives thousands of 
synaptic connections to neurons located nearby and neurons in other parts of the 
brain. 

The rest of the cerebral cortex is made up of phylogenetically older structures 
(Purves et al., 1997). These structures are paleocortex, which has four layers, and 
archicortex (hippocampus), which has three layers. 

The neocortex is composed of different areas, which are dedicated to different 
tasks such as vision, hearing, and reasoning etc. Based on their properties, these 
areas are distinguishable from each other. The primary visual cortex, which is a 
part of the visual cortex, is one such area. It has (i) distinct architecture, (ii) a 
unique connectional signature with other brain regions, (iii) characteristic 
functional maps, (iv) a unique inventory of receptive field properties, (v) a distinct 
catalog of contributions to visual processing and visually guided behaviors (Payne 
and Peters. 2002). 

As mentioned above the primary cortex is composed of six layers. The most 
superficial layer is referred to as layer 1. This very thin layer is also known as the 
plexiform layer, since it contains few neurons. Neurons that populate this layer are 
mainly inhibitory (Gabbott and Somogyi, 1986).  

The border between layer 1 and layer 2 is easy to define. Upper layer 2 is 
populated with pyramidal cells. All the way through layer 2 and layer 3 the 
pyramidal cells increase in size. There is no clear border between layer 2 and layer 
3. Most often these two layers are referred to as layer 2/3. However, layer 2 
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pyramidal cell axons are short, whereas layer 3 pyramidal cell axons go through 
the deeper layers into the white matter and continuous to other cortical areas 
(O’Leary, 1941). It has been shown that besides the projections to other cortical 
areas, the axons of the pyramidal cells can extend horizontally for several 
millimeters (Rockland and Lund, 1982; 1983; Gilbert and Wiesel, 1983; 1989; 
Rockland, 1985; Amir, 1993; Malach et al., 1993; Fitzpatrick, 1996; Durack and 
Katz, 1996; Bosking et al., 1997; Kisvárday et al., 1997; Schmidt et al., 1997; 
Yousef et al., 1999; Chisum et al., 2003). These axons seem to form clusters of 
terminals, which mainly target dendritic spines (Kisvárday et al., 1986). The 
functional implication of these horizontal projections seems to be to spread the 
activity to other pyramidal cells, which have similar physiological properties 
(section 2.5). 

Layer 4 is the thickest of the layers, and takes up one third of the cortex. It is 
mainly populated with small and closely packed spiny stellate cells, and some 
pyramidal cells. The spiny stellate cells are similar to the pyramidal cells. 
However, they lack the typical apical dendrite of the pyramidal cells, and hence 
make symmetrical synapses around the cell body. Layer 4 is further divided into 
two sublayers (layers 4A and 4B). Layer 4A borders to layer 3, whereas layer 4B 
borders to layer 5. Spiny stellate cells found in layer 4A are bigger and more 
evenly placed than those in layer 4B. Layer 4A spiny stellate cells project to layer 
3 and deeper layers. Layer 4B spiny stellate cells on the other hand mainly project 
to layer 5 and layer 6. 

One more fundamental difference between the two sublayers is the type of the 
thalamic afferents. Layer 4A is dominated by the Y-visual signals from the LGN, 
whereas layer 4B receive exclusively X-visual signals. Ahmet et al. (1994) 
propose a quantitative assessment of the excitatory inputs to a spiny stellate cell. 
They suggest that 45% comes from layer 6, 28% from other spiny stellate cells, 
and 6% from the thalamic afferents. The remaining 21% could not be classified. 
They suggest also that up to 84% of the inhibitory connections might come from 
the small basket cells (see below). 

Layer 5 is divided into two sublayers. Layer 5A contains irregular discontinuous 
clusters of small and medium size pyramidal cells (O’Leary, 1941). These cells 
send their axons to the layer 2/3. The upper part of the layer 5B contains large 
pyramidal cells. The apical dendrites of these cells go through all the way to the 
layer 1. On their way the apical dendrites of these cells branch in layer 4 and later 
in layer 2/3. However, the small pyramidal cells dominate layer 5B. Their apical 
dendrites terminate in layer 1 without branching. Some of their axons terminate in 
layers 5 and 6, whereas some enter the white matter. 

Layer 6A contains small and medium size pyramidal cells. These cells are 
arranged into vertical columns. According to Katz (1987) these cells can be 
divided into two groups. The claustrum-neurons, which have apical dendrites that 
reach layer 1 and have fine axonal collateral branches that arborize only in layer 6 
and lower layer 5, and corticothalamic neurons, which have apical dendrites that 



2. Biological Backgrund 
 

 

10

never reach higher than layer 3. Axons of these neurons send widespread 
collaterals into layer 4. Layer 6B borders to the white matter. Not much is known 
about the neurons that populate this sublayer. 

In summary, the signals from the LGN that enter layer 4A are distributed within 
layer 4A, later to layer 2/3 and to the deeper layers. From layer 2/3 the signals are 
sent to layers 5B and 6. Signals entering layer 4B are projected to deeper layers, 
and back to layer 4B or to layer 2/3. 

Only 20% of the cortical neurons are classified as interneurons (Gabbott and 
Somogyi, 1986). The distribution of the interneurons is not uniform across the 
cortical layers. Lowest density of interneurons is found in layer 5, followed by 
layer 2, upper parts of layer 3 and layer 6. Highest density of interneurons is found 
in layer 4 (note that this layer is the main recipient of the thalamic input) and 
lower parts of layer 3 (~50% both layers). Until now no morphological scheme has 
been generally accepted to classify these cells. Below the interneurons that are of 
especial interest are reviewed. These are chandelier cells, small and large basket 
cells. 

Chandelier cells are multipolar cells (Tömböl, 1978). These cells are more 
common in layer 2/3, and to some extent in layer 5. These cells are characterized 
by their axons, which gives rise to short, vertically oriented string of boutons. 
These cells are also referred to as axoaxonic cells, since they synapse with the 
axons of the postsynaptic cells. Based on the strategic placement of the axon 
terminals, it is assumed that these cells are powerful inhibitors of the postsynaptic 
cells.  

Large basket cells are common in all layers except layer 1 (O’Leary, 1941; 
Tömböl, 1978). These cells have vertically oriented dendrites. Their axons form up 
to five branches. These branches extend up to 1.5 mm, parallel to the pial surface 
(horizontal projections). Main postsynaptic targets of these cells are both 
excitatory cells and other basket cells within the layer where they are located. 
Inhibition of other basket cells can be used for indirect facilitation of excitatory 
cells. Kisvárday et al. (1987) suggest that the basket cells do also target cells 
found in other layers as well. 

Small basket (multipolar) cells are found in layer 3 (Meyer, 1983) and layer 4 
(Kisvárday et al., 1985). Results by Kisvárday et al. (1985) suggest that these cells 
inhibit excitatory cells found in layer 4. The targets of their axons are the dendrites 
of the postsynaptic cells. 

In this section some of the properties of the primary visual cortex, which are 
fundamental and highly relevant to this thesis, are leaved out. In the later sections 
these properties will be review in detail. In section 2.2 the modular structure of the 
neocortex is explained. This hypothesis is founded on the vertical organization of 
the apical dendrites of the larger pyramidal cells within layer 5. Section 2.3 
focuses on the lateral interactions within layer 4 and the superficial layers (layer 
2/3). Sections 2.4–5 focus on the response properties of the cells populating the 
primary visual cortex. 
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2.2 Modular Structure of the Neocortex 

2.2.1 Neocortical Mini- and Macrocolumns 
The vertical organization of the neocortex is as evident as the laminar 
organization. The neocortex is composed of repetitive structures referred to as the 
minicolumns (Mouthcastle, 1957; 1978; 1997; Powell and Mouthcastle, 1959; 
Hubel and Wiesel, 1962; 1977; Buxhoeveden and Casanova, 2002). The 
minicolumns are positioned orthogonally to the cortical surface, and goes through 
all cortical layers, i.e. from the pial surface of layer 1 to layer 6, which borders to 
the white matter. A minicolumn contains roughly some 100 neurons. Minicolumns 
found within the primary visual cortex contain 2–3 times more neurons. 

Mountcastle (1957) have reported the very first evidence of the columnar 
organization of the neocortex (cat’s somatosensory cortex). It was also the first 
time the term ‘column’ was used. Later, Mountcastle and Powell (1959) have 
revealed that also the monkey’s somatosensory cortex is based on the same 
organization principals. Vertical penetration through the cortical layers of cat 
somatic sensory cortex revealed that cells in each layer have similar properties of 
place and modality. However, penetrations oblique or parallel to the cortical 
surface showed that the properties change continuously. 

Hubel and Wiesel (1962; 1977) have revealed the columnar organization of the 
primary visual cortex. They have discovered that neurons are reacting selectively 
to ‘line orientations’ (Hubel and Wiesel 1962). They found that the orientation 
preference of the neurons along the vertical axis, i.e. perpendicular to the cortical 
surface, is almost constant. Only exception is the layer 4 neurons of monkey, 
which are only ‘mildly’ orientation specific (Hubel and Wiesel, 1977). However, 
the parallel and the oblique penetrations revealed the systematic change of 
orientation preference of the neurons with distance. Their study reveals that these 
changes are either clockwise or counterclockwise with steps of ≤10º, roughly 
every 50 µm. During several penetrations, one full sequence of orientations, 
corresponding to 180º, or more is completed. Hubel and Wiesel have named the 
region that corresponds to a full sequence the ‘orientation hypercolumn’. The 
length of a full sequence is approximately 500–850 µm on cortical surface. 

Columnar organization of other heterotypical areas, such as the auditory cortex 
(Woolsey and Waltz, 1942), and the motor cortex (Meyer, 1987) is also prominent. 
The homotypical cortical areas, i.e. the association cortex, do also show same 
organization principles. This finding is highly interesting since, the modalities of 
the neurons populating these areas are created within the neocortex through 
intrinsic connections, and are not directly linked to sensory input. 

More recent evidence of minicolumn structures is presented by Peters and 
colleagues (Peters and Yilmaz, 1993; Peters and Sethares, 1996) based on the 
arrangement of the pyramidal cells of cat and monkey primary visual cortex. Their 
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analysis is based on the layout of the apical dendrites of larger layer 5 pyramidal 
cells of cat area 17. Peters and Yilmaz (1993) have shown that the apical dendrites 
of these cells form clusters, and are joined by the apical dendrites of layer 2/3 
pyramidal cells, while they continue to pial surface. The result is an axis of 
dendrites going from layer 5 to layer 1. Layer 6A pyramidal cells do not 
participate in this arrangement. A similar pattern is also found within the monkey 
area V1 (Peters and Sethares, 1996). In monkey the center-to-center cluster 
distance is 23 µm, whereas in cat the distance between the clusters is 56 µm (these 
values are roughly constant). It seems that the minicolumns within the monkey’s 
neocortex are smaller and more densely packed than those found in cat’s 
neocortex. 

It is also shown that cells within a small patch receive input mainly from one 
eye. Horizontal penetrations show that there is a transition between regions of 
different eye dominations (Hubel and Wiesel, 1977). However, penetrations 
perpendicular to the cortical surface shows that the same eye dominates all 
neurons within an orientation minicolumn. All layer 4 cells are, however, driven 
exclusively from one eye, and hence are classified as monocular cells, whereas 
cells in other layers are classified as binocular. These findings gave birth to the 
‘ocular dominance columns’. The ocular dominance columns run parallel to the 
cortical surface and alternate with each other (right eye and left eye). Later, Hubel 
and Wiesel have integrated orientation and ocular dominance columns into one 
general model. The result is the highly idealized ‘ice cube’ model (Hubel and 
Wiesel, 1972; Hubel, 1988). Inside the ice cube model, the two columnar systems 
(orientation and ocular dominance) are positioned orthogonally to each other. Ice 
cube modules are hypothesized to analyze small spots of the visual field. 
According to this scheme, adjacent ice cube modules analyze adjacent small spots 
of the visual field, with some overlap between them. Note however that the 
hypercolumns are not physical entities with well-defined input and outputs such as 
components in electrical circuits. 

During the late seventies a new type of circular-shaped centric models have 
emerged (Braitenberg, 1979). Within this circular-shaped model, orientation 
minicolumns are organized around the middle points, corresponding to the 
orientation ‘singularities’. The orientation singularities are regions where all 
orientations meet (Swindale, 1982). Around this middle point of the model, the 
orientation changes continuously. Braitenberg (1979) have proposed that during 
one lap around the middle point same orientation should be encountered twice. 
Thus, on the ‘opposite side’ of an orientation singularity cells having the same 
orientation preference are located. Blasdel and Salama (1986) have named this 
model the ‘pinwheel model’. Later, the pinwheel model has received renewed 
attention after the discovery of the cytochrome oxidase blobs in cat (Wong-Riley, 
1979) and in monkey primary visual cortex (Hendrickson et al., 1981; Horton and 
Hubel, 1981). Cells within the blobs are poorly tuned for orientation. Thus, it is 
tempting to speculate that blobs are located at the orientation singularities of the 



 
 

 

13

pinwheel model. After the discovery of blobs several circular-shaped models have 
been proposed (Horton, 1984; Gotz, 1987; 1988; Baxter and Dow, 1989) (see the 
reviews by Erwin et al. (1995) and Dow (2002)). However, most of them have 
been rules out after the voltage-sensitive dye examinations of the monkey primary 
visual cortex. 

Despite their ripe age, the ice cube and the pinwheel models are still very 
popular among the modelers. In the literature, the ice cube model, the pinwheel 
model, and others are referred to as cortical microcircuits, cortical columns, 
macrocolumns, cortical modules, hypercolumns (this term is reserved for 
microcircuits found in the visual cortex (Hubel and Wiesel, 1977)) and segregates 
(this term is reserved for microcircuits found in the somatosensory cortex 
(Favorov and Diamond, 1990)) etc. 

2.2.2 The Orientation Map 
A more careful analysis of the distribution of the orientation minicolumns and how 
they are related, in terms of geometry, to the ocular dominance columns and the 
singularities become possible first after the voltage-sensitive dye examinations of 
the monkey primary visual cortex (Blasdel and Salama, 1986; Blasdel, 1992; 
Obermaiyer and Blasdel, 1993). Through these studies, several features of the 
orientation map are revealed. The singularities, described by several independent 
groups, are apparently located in the center of the ocular dominance columns. 
During clockwise movement around a singularity point, the orientation rotates 
either clockwise (positive singularity) or counterclockwise (negative singularity). 
Furthermore, one lap around the singularity point corresponds to 180º, and not to 
360º, as proposed by the original pinwheel model of Braintenberg (1979). Thus, 
cross-orientation domains are positioned on the opposite sides of a singularity 
point. 

Besides the orientation singularities the orientation map has other features, such 
as ‘linear zones’, ‘saddle points’, and ‘fractures’. Linear zones are frequently 
located on the borders between the ocular dominance columns. Within these zones 
the iso-orientation lines are parallel to each other. Furthermore, these lines are 
roughly orthogonal to the ocular dominance columns. Saddle points are found 
within the ocular dominance columns. The saddle points are relatively large zones 
where the orientation selectivity remains almost constant. Most often these areas 
are found between two adjacent singularity points that are within the same ocular 
dominance column. Fractures are small local discontinuous patches where 
orientation selectivity changes irregularly (Hubel and Wiesel, 1977). 
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2.3 Layout of the Intracortical Connections 
within the Primary Visual Cortex 

The two-dimensional orientation map is often used as a starting-point when the 
organization of the neocortex is analyzed. The orientation map reveals the 
orientation preference of the striate cells located in different regions on the cortical 
surface. It can also be used to link the visual field, covered by both eyes, to 
cortical dimensions. Furthermore, the orientation map is a perfect tool for the 
visualization of the layout of the intracortical connections. This is done by 
mapping the connections, within a specific cortical layer, on an orientation map, 
which holds information on the orientation preference of the regions exposed to 
projections from the injection site. 

In this section, a brief review of the layout of the local and long-range 
horizontal connections within layer 17 of cat will be given. This review is based 
on the qualitative assessments. The focal point is the intracortical connections 
within layer 4 and the superficial layers (layer 2/3). Remember that layer 4 is the 
main recipient of the thalamic input. Furthermore, in cat area 17 orientation 
selectivity emerges in layer 4 (section 2.4). 

The superficial layers are interesting for the analysis of the computations within 
the primary visual cortex. Furthermore, long-range horizontal connections within 
the superficial layers extend more than in any other layer of the neocortex. 
Neurons within layer 2/3 receive input from layer 4 neurons. 

In the literature the local connections are defined as connections within a 
region, which roughly corresponds to a hypercolumn (‘Diameter’ of a 
hypercolumn is in the range of 0.5–1.2 mm depending on the area and species. Cat 
hypercolumns are larger than monkey, and area 17 hypercolumns are larger than 
area 18). As a consequence, an imaginary border isolates a hypercolumn from the 
rest of the neocortex. Connections crossing this imaginary border are defined as 
long-range horizontal connections. (These connections are also referred to as long-
range intracortical (intrinsic, lateral) connections, distal projections etc.). Thus, it 
is hypothesized that those connections link cells, which are located in different 
hypercolumns, even though the distances covered by the axons are relatively 
small.  

One important consequence of this division is to be able to distinguish the 
functional role of the cells located in the near surrounding of a cell, and cells 
located elsewhere within the neocortex, in altering the response properties. It is 
obvious that the term ‘local’ is highly subjective and depends on the intention of 
the author. In some cases local is defined as a region that is composed of up to 
four or five hypercolumns. 
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2.3.1 Patchy Layout of the Long-Range Horizontal 
Connections 

During the early eighties, Rockland and Lund (1982) discovered the patchy layout 
of the long-range horizontal connections of the tree shrew visual cortex. These 
patches were located periodically several millimeters from the injection sites. 
Since their discovery, the long-range horizontal connections have received 
increased attention. It is now widely accepted that the long-range horizontal 
connections of the superficial layers are a prominent feature of the visual cortex. 
The long-range horizontal connections are also evident in other neocortical areas, 
such as auditory, motor, somatosensory, and prefrontal cortex (Schmidt and 
Löwel, 2002). Now it is widely believed that the pyramidal cells are responsible 
for these projections to remote regions. 

The patchy, iso-orientation biased, layout of the long-range horizontal 
connections have been shown on a variety of species including cat (Gilbert and 
Wiesel, 1983; 1989; Kisvárday et al., 1997; Schmidt et al., 1997; Yousef et al., 
1999), tree shrew (Rockland and Lund, 1982; Fitzpatrick, 1996; Bosking et al., 
1997; Chisum et al., 2003), ferret (Rockland, 1985; Durack and Katz, 1996), and 
monkey (Rockland and Lund, 1983; Amir, 1993; Malach et al., 1993). These 
connections can extend up to 8 mm on cortex surface. However, most connections 
are within an area of ~2.5 mm from an injection site (Kisvárday et al., 1997). 

2.3.2 Quantitative Assessment of the Intracortical 
Connections of the Layer 2/3 

A qualitative assessment of the intracortical connections has been possible to do 
only recently. Excitatory pyramidal cells and inhibitory cells of different kinds 
such as the chandelier cells and the basket cells populate the superficial layers. 
Kisvárday et al. (1997) report that in layer 2/3, 56.2% of the local excitatory 
connections target the iso-orientation (±30º) domain. Oblique- (±30–60º) and 
cross-orientation (±60–90º) domains receive 28.4 and 15.3 per cent of the 
connections respectively. Long-range connections show a similar pattern. The 
distribution of excitatory connections shows that 40.0% are located at the distal 
iso-orientation domains, 36.9% at the distal oblique-, and 23.1% at the distal 
cross-orientation domains. Note that roughly only one half of the connections 
target the iso-orientation domains. It is clear that the projections targeting the iso-
orientation domains do not dominate. 

The inhibitory long-range horizontal connections extend only one third to one 
half of the excitatory network. Furthermore, the excitatory connections out number 
them. It is also assumed that large basket cells make these inhibitory long-range 
horizontal connections. Thus, the majority of the long-range connections are 
considered to be excitatory in both layer 4 and layer 2/3 (Kisvárday et al., 1997). 
Inhibitory local connections target mainly the iso-orientation domain, similar to 
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the excitatory local connections. Roughly 48.0% of them are found within the iso-
orientation domain. 29.2% are located at the oblique-orientation domain, and 
22.8% are located at the cross-orientation domain. Long-range projections are 
even less orientation specific, with only 47.7% targeting the distal iso-orientation 
domains. 21.7% are located at the oblique-, and 30.6% at the cross-orientation 
domains. 

The pattern shown by the excitatory and inhibitory connections is that the 
inhibitory projections are less specific for orientation. Both networks are biased 
towards the iso-orientation domain, however, as pointed out by Kisvárday and 
colleagues (Kisvárday et al., 1997) this bias is moderate. 

2.3.3 Quantitative Assessment of the Intracortical 
Connections of Layer 4 

Surprisingly, the layout of the long-range horizontal connections found within 
layer 4 has drawn much less attention, when compared to those found within the 
layer 2/3. Layer 4 is the main recipient of the thalamic input, and in cat layer 4 
cells are well tuned for orientation (Hubel and Wiesel, 1962; Reid and Alonso, 
1995). Thus, the interplay between the orientation map and the layout of long-
range connections is essential for understanding the origins of orientation 
selectivity. 

The findings suggest that the layout of the layer 4 long-range horizontal 
connections is different from those found within the superficial layers (Chisum et 
al., 2003; Kisvárday et al., 1997; Yousef et al., 1999; Schmidt and Löwel, 2002). 
Their extent is only 50% of the connections of the superficial layers (Kisvárday et 
al., 1997). Furthermore, Yousef et al. (1999) found that layer 4 long-range 
connections (of area 18) are hardly biased towards the iso-orientation domains. 
The patches, which characterize the superficial layers, are absent. Furthermore, 
only 35.4% of the connections (>740 µm) target the distal iso-orientation domains. 
Oblique- and cross-orientation domains receive 33.7% and 30.9% of the 
connections respectively. The pattern shown by the local connections (<740 µm) is 
different. The local iso-orientation domain receives 60.0% of the connections, 
whereas 22.0% of the connections are targeting the oblique- and 18.0% the cross-
orientation domains. Note that 40% of the local connections target other than the 
iso-orientation domain. 

It seems that independent of the layer, the excitatory long-range horizontal 
connections are neither random nor restricted to the iso-orientation domains. Cross 
talk between different orientation domains is a prominent feature of both the layer 
4 and the superficial layers. 
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2.4 Emergence of Orientation Selectivity within 
the Primary Visual Cortex 

In this section, the functional role of the thalamocortical circuitry in the response 
properties of the striate cells is discussed. Furthermore, shortcomings of the 
thalamocortical circuitry in explanation of several response properties of the striate 
cells will be revealed. Thus, this section will lay the foundation for the hypothesis 
that the intracortical connections are essential parts in explaining several 
fundamental response properties of the striate cells. 

As reported by Hubel and Wiesel (1962; 1977) the cells populating the primary 
visual cortex react selectively to line orientations (these cells are named ‘simple’, 
‘complex’ and ‘hypercomplex’ depending on their response properties. See section 
2.4.1). However, the relay cells within the LGN, which carries the visual 
information from the retina to the primary visual cortex, are not orientation 
selective. It is not known in detail how orientation selectivity of the cells within 
the primary visual cortex emerges (Das, 1996; Sompolinsky and Shapley, 1997; 
Ferster and Miller 2000). Hubel and Wiesel (1962) have proposed that orientation 
selectivity of the cat simple cells is a consequence of the arrangement of the 
thalamic afferents. According to this arrangement, the ON-center LGN cells 
converge to ON-subregions of the simple cells. The OFF-subregions of the simple 
cells are constructed in the same way by the OFF-center LGN cells. This is the 
first model of the thalamocortical circuitry. It is named the ‘feedforward’ model, 
since the intracortical connections do not play any prominent functional role in 
generating the orientation selectivity properties of the striate cells. The 
information flows in a pure feedforward fashion, along the retino-geniculo-cortical 
pathway. Note that the recurrent intracortical connections are not included in the 
model. 

The feedforward model relates the receptive fields of the striate cells to the 
visual field. Later, Reid and Alonso (1995) have suggested that the feedforward 
model of Hubel and Wiesel can indeed explain the structure of the thalamocortical 
circuitry of cat. They have recorded simultaneously the simple cells and the LGN 
cells, which have overlapping receptive fields. They have detected that some 
simple and LGN cells have highly correlated activity if they have overlapping 
‘receptive fields’. Based on this finding they have discovered that ON-center LGN 
cells are connected monosynaptically to the ON-subregion of the simple cells. 
However, the results by Reid and Alonso (1995) cannot explain the high aspect 
ratios of the subregions required by the feedforward model as revealed by the 
study of Pei et al. (1994).  

Note further that layer 4 cells found in other species than cat, i.e. monkey 
(Blasdel and Fitzpatrick, 1984; Hawken and Parker, 1984) tree shrew (Humprey 
and Norton, 1980), and ferret (Chapman and Stryker, 1993), are poorly tuned for 
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orientation. Thus, the feedforward model cannot alone explain emergence of 
orientation selectivity in primary visual cortex of these species. 

2.4.1 Simple, Complex and Hypercomplex Cells 
As mentioned above, Hubel and Wiesel (1962; 1977) have discovered and named 
three types of striate cells, which have fundamentally different response 
properties. The simple cells, which mainly populate layer 4 of cat, have elongated 
ON- and OFF-subregions that reflect the thalamic inputs. Hubel and Wiesel (1962; 
1977) have discovered that these cells’ responses to complex stimuli can be 
predicted from their responses to individual spots of lights. As a consequence, a 
simple cell’s receptive field can be mapped based on its response to small light 
spots positioned on different locations on the retina. A light, which is positioned at 
the cells’ ON-subregion, excites the cell, whereas a light spot positioned at the 
cells OFF-subregion inhibits the cell. The responses to ‘dark’ spots are opposite to 
light spots. 

Complex cells are the single most common cell type in the primary visual 
cortex. Approximately 75% of the striate cells are classified as complex cells. It is 
assumed that projections originating from layer 4 simple cells form the receptive 
fields of these cells (Alonso and Martinez, 1998). Complex cells do not have the 
linear receptive fields of the simple cells. The nonlinear receptive field properties 
of the complex cells are much harder to predict. They do not respond to light spots 
at all. They respond to lines (bar or grating) located within their receptive fields. 
The location of the line within the receptive field seems to have less importance 
compared to the simple cells. Complex cells are highly sensitive to motion though. 
They have also larger receptive fields than the simple cells. 

Hypercomplex cells (end-stop cells) are named after their peculiar responses to 
lines that are positioned in their receptive fields. Surprisingly, lines that normally 
excite the hypercomplex cells inhibit them if they extend beyond their receptive 
fields. Now it is widely believed that the hypercomplex cells are actually end-
stopped simple or complex cells. 

2.4.2 Spatial Frequency Selectivity 
Moving and static sinusoidal gratings with different spatial and temporal 
configurations are often used to reveal response properties of the striate cells. The 
‘spatial frequency’ of a sinusoidal grating is defined as the width of the light and 
dark bars, which a sinusoidal grating is composed of. If a sinusoidal grating has 
low frequency, then its light and dark bars are thick. High frequency implies that 
the sinusoidal grating consists of thin bars. 

It has been shown that the striate cells respond selectively to spatial frequencies 
(Campbell et al., 1969; Maffei et al., 1973). Their responses to sinusoidal gratings, 
which have lower or higher spatial frequencies than the preferred ones are lower 
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(they behave like band-pass filters). Note that the striate cells respond similarly to 
orientations. 

Tootell et al. (1981) suggest that spatial frequency is also organized in a 
columnar fashion, such as orientation and ocular dominance. It is not clear, 
however, how spatial frequency columns are related to orientation and ocular 
dominance columns. Shoham et al. (1997) have shown that striate cells preferring 
lower frequencies are positioned at cytochrome oxidase blobs, which coincide with 
the singular points (section 2.2). It is also shown that these regions are surrounded 
by striate cells preferring higher spatial frequencies (Shoham et al., 1997). 
Remember that the singular points are positioned in the middle of ocular 
dominance columns (section 2.2). One year earlier, the same group has also 
revealed that LGN Y-cells are projecting predominantly to the blobs, whereas 
interblob areas are receiving input mainly from LGN X-cells (Hübener et al., 
1996). LGN X-cells are tuned to higher spatial frequencies than LGN Y-cells 
(Derrington et al., 1979). 

Issa and colleagues (2000) suggest that striate cells preferring the extremes of 
the spatial frequency continuum (low and high) are located at the singular points. 
Issa et al. (2000) point out that Shoham and colleagues (1997) classify spatial 
frequencies as ‘low’ or ‘high’, whereas their approach is based on three classes of 
spatial frequencies (low, high and intermediate). Issa et al. (2000) remark also that 
they test a larger (and especially higher) range of spatial frequencies than Shoham 
et al. (1997). Everson et al. (1998) on the other hand proposes that the spatial 
frequencies are organized in a pinwheel fashion around singular points, in the 
same manner as orientation selectivity. 

Somewhat related to the spatial frequency selectivity are the terms ‘absolute 
spatial phase’ and ‘relative spatial phase’. These two terms are practical when a 
receptive field is described in terms of its subfields. Relative spatial phase refers to 
the position of the ON- and OFF-subregions with respect to the center of a 
receptive field. Absolute spatial phase refers to the position of the ON- and OFF-
subregions with respect to the visual field. 

2.4.3 Degree of Invariance within the Orientation 
Map 

The orientation minicolumns are not homogenous structures. There are variations 
in orientation preferences of the neurons populating the orientation minicolumns. 
As reported by Murphy and Sillito (1986) orientation preference inside an 
orientation minicolumn can vary 9–18º between the cells. Furthermore, each cell 
responds selectively to a broad range of orientation. 

A more recent study by DeAngelis et al. (1999) reveal the degree of invariance 
of response variables, such as orientation, spatial frequency and absolute spatial 
phase. Highest degree of invariance is shown by the orientation, closely followed 
by spatial frequency. One response variable did not show any evidence of 
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clustering, namely, the relative spatial phase. Given the fact that orientation is the 
most clustered response variable (and the results by Murphy and Sillito (1989)) it 
is evident that orientation minicolumns of the neocortex are highly heterogeneous. 

2.4.4 Strength of the Thalamocortical Synapses 
The feedforward model describes in an excellent way individual connections 
within the thalamocortical circuitry. However, it does not reveal the strength of the 
geniculate input. Results by Reid and Alonso (1995) suggest that the input is 
strong and monosynaptic. Their result is based on cross-correlation analysis on the 
spikes generated by the cortical and thalamic cells. Ahmet et al. (1994) reveal that 
the thalamocortical synapses are larger than intracortical synapses, and hence 
contain more release sites. A study by Gil and colleagues (Gil et al., 1999) indicate 
that the thalamocortical synapses within the somatosensory system of rat is five 
times stronger than intracortical synapses. 

Results from the intracellular recordings by Ferster and colleagues (Ferster et 
al., 1996; Chung and Ferster, 1998) indicate that the thalamocortical synapses are 
strong. Ferster et al. (1996) show that even when the cortex is cooled (~9ºC) the 
shape of the orientation tuning curve is intact. However, the amplitudes of the 
EPSPs are reduced dramatically. Furthermore, the latency of an EPSP increases to 
5 ms. Chung and Ferster (1998) have shocked the cortex electrically in order to 
silence the activity of the cells in the layer 4 and the superficial layers of the 
primary visual cortex. After the inactivation the amplitudes of the EPSPs are down 
to 46%. These experiments indicate that roughly one third to one half of the spikes 
generated within the layer 4 can be tracked back to the thalamocortical synapses. 
However, Somers et al. (2002) remark that the orientation tuning curves of 
intracellular recordings in cortical silencing experiments by Ferster and colleagues 
(Chung and Ferster, 1998; Ferster et al., 1996) are much broader than the 
extracellular measurements of the tuning curves. 

2.4.5 Contrast Gain Functions of the Geniculate Cells 
It seems that the parvocellular cells do have roughly linear contrast gain functions, 
whereas the magnocellular cells have logarithmic contrast gain functions 
(Derrington and Lennie, 1984; Sherman et al., 1984; Movshon et al., 1994). Note 
further that 90% of the geniculate cells are found in the parvocellular layers of the 
LGN (Dreher et al., 1976). These cells dominate the input to the layer 4, and hence 
the hyperbolic contrast gain functions of the striate cells (Albrecht and Hamilton, 
1982) cannot be predicted by the saturation of the thalamic cells. 

2.4.6 Contrast Gain Functions of the Striate Cells 
Several groups have been investigating the contrast gain functions of the striate 
cells (Maffei et al., 1973; Dean, 1981; Albrecht and Hamilton, 1982). Furthermore, 
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Albrecht and Hamilton (1982) have quantified the contrast gain functions of the 
striate cells found within both the cat’s and the monkey’s primary visual cortex. 
During the experiments, 247 simple and complex neurons from cat and macaque 
monkey are recorded. It is found that the contrast gain functions of the neurons 
have the form of a hyperbolic function. The first phase of this function is defined 
as a linearly increase of response to linear increased contrast. This phase is 
followed by a rapid saturation, and later by total saturation (normalization or 
division). 

Albrecht and Hamilton (1982) have also showed that the saturation level seems 
to be determined by the properties of the stimulus, i.e. orientation and spatial 
frequency, and not by the electrical properties of the neurons. Furthermore, 
maximum response to non-preferred stimulus is reported to be lower than to 
preferred stimulus. 

Note that the striate cells saturate more than the geniculate cells (Derrington and 
Lennie, 1984; Sherman et al., 1984; Movshon et al., 1994). This finding reveals 
the existence of the intracortical inhibition. Carandini and Heeger (1994) propose 
that normalization of the activity comes from a pool of inhibitory cells 
representing all possible orientations and spatial frequencies. This pool generates 
the shunting inhibition, which is required to divide the excitatory input from the 
thalamus. The effect is saturation of the responses of the striate cells. However, the 
shunting inhibition requires that the membrane time constant of the striate cells 
decreases ~60 ms. This is not possible, since the resting time constant of the most 
striate cells are ~20 ms. Nevertheless it seems that the intracortical inhibition is 
indeed responsible, in one form or another, for shaping the contrast gain functions 
of the striate cells. 

2.4.7 Contrast-Invariance of Orientation Tuning 
The feedforward model cannot solely predict many of the response properties of 
orientation selective cells (Ferster and Miller, 2000). Contrast-invariance of 
orientation tuning shown by striate cells is perhaps the most striking example. As 
contrast increases the height of the response curve increases. However, the half-
width at half-height of the response curve remains almost constant (Sclar and 
Freeman, 1982; Skottun et al., 1987). Loosely speaking, the striate cells can detect 
a line and ‘tell’ its orientation, also in poor light conditions. The study carried out 
by Sclar and Freeman (1982) shows that orientation tuning of a striate cell is 
independent of the contrast of the stimulus. The stimuli, which are used during the 
experiment, are sine-wave gratings. Data obtained from 45 cells (19 simple and 26 
complex) within the cat primary visual cortex shows that orientation tuning is 
indeed independent of stimulus contrast. Furthermore, saturation of activity when 
the contrast of the stimulus is increased is evident in all 45 cases. 
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2.4.8 Cross-Orientation Inhibition 
One last interesting finding is related to responses of striate cells to superimposed 
stimuli. When two stimuli are super positioned, the response of a cell is less than 
to the sum of each stimulus alone. The cross-orientation inhibition experiments 
reveal this finding. During the experiment two gratings stimulate the cell. The first 
grating is of the preferred orientation, and the second grating is of the orthogonal 
orientation. It is shown that the second grating inhibits a cell, which is of 
orthogonal orientation (Morrone et al., 1982; Bonds, 1989). Morrone et al. (1982) 
suggest that this inhibition arises from a pool of cells with different orientations. 

2.4.9 On the Interplay between the Thalamocortical 
Circuitry and the Intracortical Circuitry 

There is growing evidence that the thalamocortical circuitry and the intracortical 
network collaborate in order to shape the response properties of the striate cells. In 
cat, the orientation selectivity of the striate cells emerges in layer 4. This layer is 
the main target of the thalamocortical circuitry. However, the layer 4 lateral 
network of cat extends more than layer 4 lateral networks in other species, such as 
monkey, ferret and tree shrew. Furthermore, elongated subfields required by the 
feedforward model are rare even in cat (Pei at el., 1994). It seems that the 
intracortical connections alter the initial input from the thalamus to create the 
known response properties of the striate cells. 

2.5 Putative Functional Role of the Long-Range 
Horizontal Connections in Responses of the 
Striate Cells 

Even though the extent and shape of the long-range horizontal connections are 
relatively well documented, their functional role in cortical processing is still not 
clear. It is believed that in the primary visual cortex these connections are 
responsible for a variety of surround effects and configuration of the summation 
pools. Depending on stimulus configuration, these effects can be facilitatory or 
suppressive (Kastner et al., 1997; Polat and Sagi, 1993; Polat and Norcia, 1996; 
1998; Solomon et al., 1999; Solomon and Morgan, 2000; Yu et al., 2002; Chisum 
et al., 2003). These effects are exposed by psychophysical studies on humans and 
neurophysiological studies on other species. Neurophysiology is the study of the 
relation between the sensation and the stimuli that produce them. 

It is also hypothesized that the long-range horizontal connections are 
responsible for spike and burst synchronization, which is believed to play an 
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important functional role in perceptual grouping (Gray and Singer, 1989; Gray et 
al., 1989; Singer, 1993; 1999). 

2.5.1 Summation Pools and Contour Integration 
According to Chisum et al. (2003) the summation pools of tree shrew primary 
visual cortex reflect the elongated long-range horizontal connections found in 
layer 2/3. One support for this belief is the length summation experiment showing 
the facilitatory effect (Chisum et al., 2003). Neurons in the layer 2/3 show clear 
evidence for length summation up to distances, which correspond to the extent of 
the layer 2/3 long-range horizontal connections. Polat and Norcia (1998) stress the 
possible impact of long-range horizontal connections on the elongated 
physiological summation pools within the visual cortex of humans. Their 
experiments show that, in humans, when the area of the stimulus (a Gabor patch) 
is increased the visibility is improved. Furthermore, collinear configuration 
enhances striate cells more than orthogonal configuration. Consequently, as 
indicated by the two studies described above, the elongation of the long-range 
horizontal connections along the orientation axis could be linked to summation 
pools. 

A recent study carried out by Ernst and colleagues (Ernst et al., 2003) relate 
psychophysical investigations with macaque monkeys to information theoretical 
modeling of contour integration. More precisely, the intention of this study is to 
compare quantitatively the performance of monkeys on detection simple contours, 
which are composed of aligned Gabor patches, with an ideal observer defined by 
Williams and Thornber (2001). Ernst et al. (2003) reveal that monkeys perform 
close to what is defined as an ideal observer. Their results indicate that the 
mechanisms within the visual cortex of monkey are highly specialized for contour 
integration. Thus, monkeys perform equally well as humans on contour 
integration. Furthermore, Ernst et al. (2003) stress that the gap between a 
heuristical explanation of the Gestalt criteria and a solid mathematical framework 
of the Gestalt properties remains. However, according to Ernst et al. (2003) the 
work by Williams and Thornber (2001) helps to narrow this gap. Williams and 
Thornber (2001) have shown that a contour can be defined as the outcome of a 
stochastic process with a known probability distribution. When this relation is 
inverted the model can take an arbitrary collection of elements, e.g. Gabor patches, 
and calculate the relative probability of them to belong to a contour. The result is 
the performance of an optimal observer on contour detection. These calculations 
give an upper limit, which can be compared to real observers as humans or 
monkeys, and hence give an indication on the performance of various species and 
individuals within a species. 

Solomon at al. (1999) have studied the facilitation from flanks in human visual 
cortex. In this experiment Solomon at al. (1999) have used a target and two flanks, 
which are Gabor patches. The target and the flanks are collinearly positioned. 
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Their results show that even tough the flanks have opposite sign, relative to the 
target, the effect of presence of flanks is facilitation. However, this facilitation is 
not as prominent as if the flanks have same sign as the target. Furthermore, 
Solomon and Morgan (2000) have reported that when the flanks extend to 
surround the target the facilitation is reduced dramatically. This finding is 
interesting, since non-collinear flanks by themselves do not mask the target 
prominently. 

Yu et al. (2002) have recently studied modulatory effects of cross-orientation. 
In this study the stimulus that is positioned in the surround has orthogonal 
orientation relative to the target. They report that cross surround facilitation is a 
surround-contrast dependent effect. This effect is more evident at low surround 
contrasts. Thus, when the full-surround has low contrast threshold is lowered. 
Interestingly, collinear surround facilitation is unaffected by surround contrast 
(Polat and Sagi, 1993). Yet another interesting result of the study by Yu et al. 
(2002) is related to the tuning of spatial frequency and orientation. The results 
indicate that on the contrary to the orientation, surround facilitation is narrowly 
tuned to spatial frequency. Yu et al. (2002) hypothesize that the target cells receive 
surround input from a group of cells narrowly tuned to target spatial frequency but 
loosely tuned to cross-orientation, indicating signal pooling over a large range of 
orientations. 

Kastner et al. (1997) have investigated the neuronal responses to static and 
moving texture in area 17 of anaesthetized and paralyzed cats. The motivation is to 
investigate the neural basis of visual pop-out of orientation and motion. In the 
orientation test the stimulus that is positioned in the classical receptive field (CRF) 
is either orthogonal or parallel (uniform pattern) to the other bars that surround it. 
Their results indicate that orthogonal configuration enhances pop-out, since during 
this configuration the striate cells response more strongly compared to the uniform 
pattern. In the motion test all bars have same orientation, however, center and 
surround elements move either in the same or opposite directions. The results 
indicate that when the center element moves in the opposite directions the striate 
cells respond stronger than if all patterns move in the same direction. As a result of 
the experiments Kastner et al. (1997) conclude that static and moving patterns 
positioned outside the CRF may alter response properties of the striate cells. 

2.5.2 Synchronization and its Putative Functional 
Role in Perceptual Grouping 

Neurons in the visual cortex of anesthetized and awake animals (cat and monkey) 
tend to synchronize with each other, with near-zero phase lag and in the 
millisecond range, when activated with a single contour (Gray and Singer, 1989; 
Gray et al., 1989; Singer, 1993; 1999; Singer and Gray, 1995; Kreiter and Singer, 
1996; Engel et al., 1997; Usrey and Reid, 1999; Friedman-Hill et al., 1999; 2000; 
Haig et al., 2000; Maldonado et al., 2000). Furthermore, the synchronized neurons 
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oscillate in the γ frequency range, which is 30–50 Hz (Singer and Gray, 1995). 
However, this precise synchronization is absent if the stimulus is composed of 
different contours moving in different directions (Gray et al., 1989). 

Neurons that are synchronized are found several millimeters from each other 
(and are even located in different hemispheres) it is therefore assumed that the 
reciprocal long-range horizontal connections play a prominent functional role in 
emergence of this behavior (Engel et al., 1991; Löwel and Singer, 1992; König et 
al., 1993). One consequence of synchronization is enhancement of the incoming 
signals. This has been shown in hippocampus (Stevens and Zador, 1998), along the 
thalamocortical (Alonso et al., 1996; Usrey and Reid, 1999) and the intracortical 
pathway (Alonso and Martinez, 1998). 

According to the Gestalt physiologists the cognitive system of humans tends to 
relate objects (or events) to each other if they are connected in time and space 
(Köhler, 1930; Koffka, 1935). Events that happen simultaneously are more likely 
to be related to each than events that are separated in time. The same idea is also 
valid for objects. Contours (or contrast edges) that have a similar contrast or move 
with the same speed and direction are more likely to be part of the same object. It 
is assumed that synchronization in the early stages of vision is a result of internal 
dynamics. It is also believed that synchronization is context-dependent and 
probably reflects Gestalt criteria for perceptual grouping (Gray et al., 1989; 
Kreiter and Singer, 1996). 
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3 The Bayesian Confidence 
Propagation Neural 
Network 

The environment where the animals and the humans live in is ever changing and 
highly complicated. The information, which is available in the environment, is 
often noisy and incomplete. Furthermore, several events occur simultaneously, and 
on different time scales. Biological learning systems seem to cope with these 
properties of the real world successfully. These systems are adapted to specific 
habitats and are formed by millions of years of evolution.  

Sandberg et al. (2002) have recently developed an incremental learning rule 
derived from the Bayesian confidence propagation neural network (BCPNN) 
(Lansner and Ekeberg, 1987; 1989; Lansner and Holst, 1996; Holst, 1997). 
Sandberg et al. (2002) have also demonstrated that when the network is configured 
as a recurrent attractor network it has ‘palimpsest’ properties (see also Sandberg 
(2003)). Thus, recently learned patterns are more stable than older patterns to 
avoid catastrophic forgetting. 

The recurrent network proposed by Sandberg et al. (2002), which consists of 
dense local and sparse long-range connections, fits well the known connectivity of 
the neocortex (section 2.3). In the same study it is shown that the BCPNN does not 
suffer from catastrophic forgetting. Furthermore, the network’s capacity depends 
on the learning time constant, and it recalls newer patterns faster than the older 
ones (during the retrieval phase). 

The BCPNN has been developed in analogy with the known columnar structure 
of the neocortex (Mouthcastle, 1957; 1978; 1997; Powell and Mouthcastle, 1959; 
Hubel and Wiesel, 1962; 1977). The network consists of units that correspond to 
cortical minicolumns. The units are grouped into hypercolumn-like modules and 
the summed activity within each hypercolumn module is normalized to one. The 
normalization is a way of controlling the total activity of the network. The 
normalization scheme is supported by the studies on the response saturation 
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properties of the striate cells (Maffei et al., 1973; Dean, 1981; Albrecht and 
Hamilton, 1982; section 2.4.6). 

The BCPNN learning rule is based on a probabilistic view of learning, and is 
derived from Bayes’ rule (Bayes, 1958). Units receive input from all other units in 
the network representing confidence of feature detection. Based on the input, the 
units calculate posterior probabilities of outcomes. The learning rule is based on 
Hebb’s ideas on synaptic plasticity and emergence of cell assemblies (Hebb, 
1949). Thus, correlated activity reinforces the connections between pairs of units. 
Anti-correlated activity results in weakening of a connection, and emergence of an 
inhibitory one. A brief derivation of the BCPNN architecture and the incremental 
learning rule can be found in the next section (see Sandberg et al. (2002) and 
Sandberg (2003) for a more detailed derivation). 

3.1 Derivation of the Network Architecture and 
the Incremental Learning Rule 

As mentioned above the starting point is Bayes’ rule and the naive Bayesian 
classifier (Good, 1950). Using the naive Bayesian classifier (NBC), probabilities 
of attributes yi, can be calculated given other attributes xi. It is assumed that both 
these two sets of attributes are discrete. Furthermore, the variable xi is assumed to 
be independent ( ∏ =
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Based on the assumption that information on some attributes is missing, the 
formula above can be modified as 
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where the indicator oi represent whether there is information about a feature i or 
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Equations above can be implemented as a one-layered feedforward neural 
network with the weights wij= log[P(yj,xi)/(P(yj)P(xi))] and the biases βj = log P(yj). 
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The input layer activations are oi. The one-layered feedforward neural network 
calculates the posterior probabilities πj using an exponential transfer function, 
given the input attributes. 

The one-layered feedforward neural network becomes modular when the 
discrete attribute values are represented by the indicator variables. Continuous 
valued attributes can be interval coded. Note that this scheme is common within 
the neocortex (Mouthcastle, 1957; 1978; 1997; Powell and Mouthcastle, 1959; 
Hubel and Wiesel, 1962; 1977). Every orientation minicolumn within the primary 
visual cortex responds selectivity to an interval of orientation (Hubel and Wiesel, 
1962; 1977). Furthermore, all orientations within a small patch of the visual field 
are represented by a collection of such orientation minicolumns, which ‘populate’ 
an orientation hypercolumn. 

Assume now that the representation of the attributes is changed so that each 
attribute can take Mi different values. Furthermore, the observation of a given 
value of a given attribute as a new binary value is defined (marked with double 
indices) 
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with indicator oii’ = 1 if i’ = k and zero otherwise 
Consider now the attributes Xi as stochastic variables with values },,{ 1 iiMi xx K , 
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If the outcomes 'iix  of different attributes are independent of each other when 
conditioned on iX , 'ˆ jjπ  will be the expectation of 'jjπ  given input iX . 

The resulting equations reveal that the network has a modular structure. The 
unit ii’ represent explicitly values 'iix  of Xi, which can be viewed as a 
hypercolumn. By definition the total activity within a hypercolumn i is normalized 
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The probability of 'jjy  can be calculated given the uncertain information related 
to 'iix . Probability )( 'iiX xP

i
 reflects the uncertainty. The network setting of these 

relations is 
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In this network setting hjj’ is defined as the support of unit jj’. The output of a unit 
jj’ is given by ')(ˆ ''
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The independence assumption is too strong and can only be approximately 
fulfilled as we deal with approximations of probabilities. As a consequence the 
outputs within each hypercolumn is normalized 
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Note that both the input and the output of the units are probabilities. It is now 
possible to configure the network as a fully recurrent network, which can work as 
an autoassociative memory. The procedure starts with the currently observed 
probability )( 'iiX xP

i
, which is used as an initial approximation of the true 

probability 'iiX . From )( 'iiX xP
i

 the posterior probability is calculated, which tends to 
be a better approximation. This probability value is later fed back to the process. 
This procedure is iterated until a stable state is reached. Sandberg et al. (2002) 
explain the procedure with: ‘this represents a heuristically estimated probability 
closest to the observed data and consistent with the already acquired knowledge, 
that is prior information represented by the learning parameters 'jjβ  and '' jjiiw .’ 

The continuous time updating rule is defined as 
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where parameter cτ  is the ‘membrane time constant’ of each unit. 
The BCPNN has two modes. During the learning mode the weights and the 

biases are modified, whereas during the retrieval mode these parameters are static 
and a pattern is being retrieved. At the start of the retrieval mode the units are 
initiated with probabilities. These values propagate through the network during the 
retrieval mode. 

The original BCPNN learning rule (Lansner and Ekeberg, 1989; Lansner and 
Holst, 1996) uses counter for calculating the probabilities )( 'iiX xP

i
. The counter 

associated with a certain unit is updated each time its unit is active. Later, when 
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the training is finished, the counters are divided with the total number of training 
examples. Probabilities )( '' jjiiX xP

i
 associated with co-activations of units are 

calculated in the same way. Whenever the units ii’ and jj’ are active (as a result of 
a training example) the counter associated with the weight between them is 
updated. Later this counter is divided with the total number of training examples. 
When the estimations )( 'iiX xP

i
 and )( '' jjiiX xP

i
 are calculated the weights and the 

biases of the units can be calculated. Afterwards the network can be used in the 
retrieval mode. 

A continuously operating learning system operates in a fundamentally different 
way. Such a system learns new patterns and updates the weights and the biases 
continuously. Estimations ))(( ' txP iiXi

 and ))(( '' txP jjiiX i
 need to be estimated given the 

information that }'),'({ tttx < . There are three requirements, which such a system 
must fulfill. Firstly, it should converge towards ))(( ' txP iiX i

 and ))(( '' txP jjiiX i
 in a 

stationary environment. Later, more recently learned patterns must be more stable 
than older ones. The last requirement is that it should smooth or filter out noise 
and adapt to longer trends. 

These requirements are achieved by the incremental BCPNN learning rule by 
approximating ))(( ' txP iiX i

 and ))(( '' txP jjiiX i
 with the exponentially smoothed running 

averages )(' tiiΛ  of the activity 'ˆ iiπ  and )('' tjjiiΛ  of coincident activity '' ˆˆ jjii ππ . 
The continuous time version of the update and learning rule is defined as 
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The parameter α is defined as the inverse of the learning time constant Lτ . 
During the retrieval mode α is set to zero, and hence the weights and the biases are 
not updated. 

The parameter 0λ , which corresponds to noisy background activity, is introduced 
to avoid logarithmic zero. In the absence of input the parameters )(' tiiΛ  and )(' tjjΛ  
converge towards 0λ  and )('' tjjiiΛ  converges towards 2

0λ . As a consequence the 
weight between two units becomes 1)('' =tw jjii . 
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4 Related Work 
There are several types of network models that address vastly different response 
properties of the cells populating the primary visual cortex, such as response 
saturation followed by normalization (Albrecht and Geisler, 1991; Heeger, 1992; 
Carandini et al., 1997), contrast-invariance of orientation tuning (Somers et al., 
1995; 1998; 2002; Troyer et al., 1998; Adorján et al., 1999), and various surround 
effects (Somers et al., 1998; 2002; Yen and Finkel, 1998; Li, 1998; Grossberg and 
Raizada, 2000) (See relatively new reviews by Ferster and Miller (2000) and 
Martin (2002)). Most of these models are of either cat (Hubel and Wiesel, 1962; 
Somers et al., 1995; 2002; Troyer et al., 1998; Grossberg and Raizada, 2000) or 
monkey (McLaughin et al., 2000; Wielaard et al., 2001) primary visual cortex. 
Some network models address the interactions within a very small region (Kayser 
and Miller, 2002), while others focus on interactions within patches that are 
several square millimeters on cortical surface (Somers et al., 1998; 2002; Yen and 
Finkel, 1998; Li, 1998; Grossberg and Raizada, 2000). 

Most often these models are, however, classified after the importance of the 
thalamocortical circuitry (or the intracortical connections) in generating 
orientation selectivity and other response properties of the striate cells. The 
feedforward models rely heavily on the thalamocortical circuitry for achieving 
contrast-invariance of orientation tuning. The normalization models, which can be 
seen as a sub-class of the feedforward models, address mainly the contrast gain 
functions of the striate cells. The recurrent models, however, assume that the 
thalamic input is both weak and poorly tuned. They address mainly contrast-
invariance of orientation tuning like the feedforward models. 

4.1 Feedforward and Normalization Models of 
Orientation Selectivity 

The models of the orientation hypercolumns, which rely heavily on the 
thalamocortical circuitry for achieving orientation selectivity, are classified as 
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feedforward models (Hubel and Wiesel, 1962; Troyer et al., 1998; Kayser and 
Miller, 2002). 

Hubel and Wiesel (1962) have proposed the original feedforward model (section 
2.4). LGN cells of the same type (ON-center or OFF-center) converge to form 
elongated regions, which becomes the subregions of the simple cells. This model 
explains the origins of orientation selectivity in an elegant way. However, it 
cannot explain contrast-invariance of orientation tuning. Nevertheless, this simple 
model is still used for studying the thalamocortical circuitry. 

Miller and colleagues (Troyer et al., 1998; Kayser and Miller, 2002) have 
shown that contrast-invariance of orientation tuning of cat layer 4 simple cells can 
be achieved within a very small patch of the primary visual cortex. They assume 
that the input from the thalamus is strong and well tuned for orientation as 
proposed by Reid and Alonso (1995). In these models the intracortical recurrent 
connections, especially the long-range horizontal connections, play a minor 
functional role in shaping the response properties of the striate cells. Interactions 
inside the modeled small patch are based on the spatially opponent inhibition 
theory (Ferster, 1988). According to the study by Ferster (1988) inhibitory simple 
cells mediate local inhibition between excitatory simple cells, which have opposite 
absolute spatial phase. Miller and colleagues (Troyer et al., 1998; Kayser and 
Miller, 2002) assume that the cells participating in this assembly are located inside 
a very small region corresponding to an orientation minicolumn. As a consequence 
this model assumes that inhibition is local. 

A sub-class of the feedforward models is the normalization models (Albrecht 
and Geisler, 1991; Heeger, 1992; Carandini and Heeger, 1994; Heeger et al., 1996; 
Carandini et al., 1997). The primary goal of these models is to address the contrast 
gain functions (response saturation) of the striate cells. Thus, these network 
models assume that input from the LGN grows linearly with contrast of the 
stimulus. The geniculate input is divided by a linearly growing inhibitory input, 
which is of cortical origin and depends of the contrast of the stimulus. The effect is 
division of the input from the LGN.  

Carandini and Heeger (1994) proposed that the inhibition would take the form 
of a shunting inhibition. This inhibition would originate from a pool of striate cells 
with all possible orientation and spatial frequency preferences (the normalization 
pool). The shunting effect corresponds to the lowering of the time constants of the 
striate cells, and as a result the cells’ integration times decreases. However, the 
shunting inhibition requires that the membrane time constants of the striate cells 
decreases ~60 ms. This is not possible, since the resting time constants of most 
striate cells are ~20 ms, and membrane time constants cannot decrease below zero. 
Nevertheless it seems that the intracortical inhibition is indeed responsible, in one 
form or another, for shaping the contrast gain functions of the striate cells, since 
most thalamic cells saturate only mildly (sections 2.4.5 and 2.4.6). 
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4.2 Recurrent Models of Orientation Selectivity 
Recurrent models are fundamentally different in their approach on addressing 
response properties of the striate cells (Ben-Yishai et al., 1995; 1997; Somers et 
al., 1995; 1998; 2002; Hansel and Sompolinsky, 1996; Adorján et al., 1999; 
McLaughin et al., 2000; Wielaard et al., 2001). In these network models the 
intracortical recurrent connections play a prominent functional role in achieving 
orientation selectivity and contrast-invariance of orientation tuning. The geniculate 
input is assumed to be weak and poorly tuned for orientation (Pei et al., 1994). 
Intracortical connections are assumed to be responsible for enhancing the 
geniculate input. 

Somers and colleagues (1995; 2002) assume that inhibition originates from a 
pool of cells with more spread in orientation selectivity than the excitatory input. 
This network topology helps to prevent the spread of a local excitatory activity. A 
prominent feature of the recurrent models is thus the emergence of the ‘Mexican-
hat’ function (Somers et al., 1995; 2002; Hansel and Sompolinsky, 1996). The 
prominent feature of the Mexican-hat functions is that striate cells in close 
surroundings receive net excitatory input, whereas cells located further away 
receive net inhibitory input. Furthermore, the long-range excitatory connections 
are patchy and target the iso-orientation domains. As a consequence of this local 
and long-range connections pattern, the orientation tuning becomes a property of 
the recurrent cortical circuitry, and does not depend on the tuning of the geniculate 
input. Note also that the layout of excitatory and inhibitory connections alone 
define the tuning width of the cells. 

The network model of macaque primary visual cortex (layer 4Cα) by Adorán et 
al. (1999) is based on the anisotropic intracortical excitatory connections within 
the primary visual cortex of the macaque monkey. These connections provide both 
the initial orientation bias and its subsequent amplification. Furthermore, the 
thalamic input from the M cells does not provide any orientation bias. It is 
assumed that the aspect ratios of the striate cells’ receptive fields are not in line 
with sharply tuned simple cells (Pei et al, 1994). 

McLaughlin and colleagues (McLaughin et al., 1999; Wielaard et al., 2001) 
presented yet another model of the layer 4Cα macaque primary visual cortex. The 
Mexican-hat connectivity, which near the orientation singularities provide the cells 
with broadly tuned local inhibition. The result is sharpening of the orientation 
tuning of the striate cells. 

The hypercolumn model that have been proposed in this thesis work is based on 
the hypothesis that the recurrent excitatory and inhibitory intracortical connections 
can explain emergence of several response properties, such as response saturation 
(followed by normalization) and contrast-invariance of orientation tuning of the 
striate cells. Note that feedforward model proposed by Miller and colleagues 
(Troyer et al., 1998; Kayser and Miller, 2002) does also assume that the 
intracortical connections play an important functional role in forming the response 



4. Related Work 
 

 

36

properties of the striate cells, however, their model assumes that connections are 
mainly feedforward and local (within a couple of orientation minicolumns). 

4.3 Models that Address Various Surround 
Effects 

Besides contrast invariance of orientation-tuning Somers et al. (1998; 2002) 
address several other phenomena, such as contrast-dependent length tuning (end-
stop cells), supersaturation and facilitation suppression based on the local and 
long-range synaptic interactions. Contrast-dependent length tuning is the effect of 
increase in excitatory receptive field size of a cell with decreased contrast. 
Supersaturation, which is related to contrast-dependent length tuning, means that 
increased contrast of a stimulus can actually cause decreased activity of a cell. 
Facilitation suppression reveals the modulatory effects of the (uniform or 
orthogonal) surround grating to the center grating. When the center grating has 
low contrast surround grating has facilitatory effect independent of the 
configuration. However, during high contrast an orthogonal surround grating has 
more prominent facilitatory effect. 

Several groups have addressed contour integration and perceptual grouping 
(Grossberg and Raizada, 1998; Yen and Finkel 1998; Li, 1998). Grossberg and 
Raizada (1998) present a laminar model of areas V1 and V2 that addresses 
contrast-sensitive perceptual grouping and attention. Their highly detailed model 
pools and sharpens raw contrast edge signals, which become closed boundaries 
that are ‘filled-in’ by neuronal activity representing color. In this model, above-
threshold firing layer 2/3 complex cells are responsible for perceptual grouping. 
The model also demonstrates that long-range excitation and disynaptic inhibition 
is sufficient for explaining emergence of illusory contours. 

Yen and Finkel (1998) address the extraction of salient contours within the 
primary visual cortex. Their model relies heavily on temporal synchronization, 
which is a result of strong facilitation of the modeled striate cells. This facilitation 
is mediated by the long-range horizontal connections. Furthermore, the level of 
temporal synchronization between modeled striate cells determines perceptual 
salience. Li (1998) address contour integration within the primary visual cortex. 
The initial activity is amplified so that edges that form smooth contours oscillate 
in synchrony. In this model, higher cortical areas, such as V2, that are involved in 
perceiving illusory contour are absent. However, the author notes that the model 
could easily be modified to include other (higher) cortical areas. 
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5 Results of the Thesis 

5.1 Issues Related to the Layout of the 
Intracortical Connections 

The centerpiece of this thesis work is the abstract hypercolumn model, which is 
presented in Paper II and later refined in Papers III and IV. The model addresses 
the interactions within an area that roughly corresponds to a cortical hypercolumn 
and can be mapped to both layer 4 and layer 2/3 of cat area 17 (Papers III and IV). 

The abstract hypercolumn model, which is based on the relevant aspects of 
known physiology and anatomy of cat area 17, is derived from the BCPNN 
architecture (chapter 3). The BCPNN architecture requires that the activity within 
a modeled hypercolumn module is constant. This requirement is founded on the 
normalization mechanism of the striate cells (section 2.4.6). The inhibitory cell, 
which is positioned between the two layers of the hypercolumn model (not to mix 
with cortical layers), fulfils this requirement (section 5.2). This cell corresponds to 
a uniformly distributed population of large basket cells within a cortical layer. 
Note that large basket cells are know for sending out horizontally aligned axons up 
to 1.5 mm (Kisvárday et al., 1997), whereas other interneurons, such as chandelier 
cells (that populate mainly layer 2/3) and small basket cells target cells in their 
near surroundings. 

The abstract hypercolumn model is based on the assumption that large basket 
cells can inhibit a region, which corresponds to a cortical hypercolumn. Note also 
that distribution of the connections from an injection site to local iso-, oblique- 
and cross-orientation domains also suggests that the inhibitory connections are less 
biased towards the local iso-orientation domain than the excitatory connections 
(Kisvárday et al., 1997). (Usually such an injections site is smaller than an iso-
orientation domain.) It is further assumed that the excitatory cells within a region 
that correspond to a hypercolumn can drive these large basket cells. The outcome 
of this scheme is local inhibition that can control the total activity of a region, 
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which roughly corresponds to a hypercolumn. This scheme can occur both in layer 
4 and layer 2/3 (independent from each other), since large basket cells are found in 
both these layers (O’Leary, 1941; Tömböl, 1978).  

The correlation-based developmental models of layer 4 in Papers III and IV 
propose yet another local inhibitory network, which probably operates parallel to 
the inhibitory network of large basket cells. The connections within the 
correlation-based models are created using the BCPNN incremental learning rule. 
The stimuli consist of randomly positioned contrast edges. The weight matrix, 
which is the result of training, reflects the degree of correlation between units 
(recall that BCPNN units correspond to cortical minicolumns). The units in Paper 
III have layer 4 simple cells’ receptive fields, and hence consist of two elongated 
subregion of opposite (ON/OFF) sign. One implication of the correlation-based 
activity is that developed connections between units do not solely depend on 
orientation preference. Relative spatial phase is as important. Thus, this 
correlation-base circuitry is also in line with the opponent inhibition theory by 
Ferster (1988), which suggests that inhibitory simple cells inhibit excitatory simple 
cells (in their close surroundings) if they have opposite absolute spatial phase. 
(Hirch and colleagues (Hirch et al., 2000) have recently reported inhibitory simple 
and complex cells. However, their functional roles are not fully understood.) The 
implication of the opponent inhibition theory is strong iso-orientation inhibition, 
which originates from inhibitory simple cells that have opposite absolute spatial 
phase, but same orientation preference. Excitatory simple cells can inhibit other 
excitatory cells through these inhibitory simple cells. 

The estimations of the bouton distribution in layer 4 reveal that local projections 
are biased towards the iso-orientation domain, whereas long-range projections are 
equally distributed between the iso-, oblique- and cross-orientation domains 
(Yousef, 1999; Chisum, 2003). This finding is in contradiction with the patchy, 
iso-orientation domain biased, layout of the layer 2/3 (Bosking, 1997; Kisvárday, 
1997; Schmidt, 1997; Chisum, 2003). In Paper IV the reasons behind these 
differences have been addressed. It is assumed that the patchy layout of the layer 
2/3 is due to excitatory cells targeting mainly other excitatory cells located in 
distal iso-orientation domains. These excitatory cells are probably the pyramidal 
cells. 

The correlation-based networks of layer 4 and layer 2/3 are similar to area 17 in 
that local connections are dense, whereas distal connections are sparse. 
Furthermore, the long-range horizontal connections of both layers are elongated 
along the orientation axis. 
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5.2 Local Connections Account for Response 
Saturation and Contrast-Invariance of 
Orientation Tuning 

In cat, orientation selectivity emergences within layer 4, which is also the main 
recipient of the thalamic input (Hubel and Wiesel, 1962). Compared to other 
species (monkey, tree shrew and mouse) connections within layer 4 of cat extend 
longer. It is also striking that the fraction of the inhibitory cells is higher in layer 4 
than in any other cortical layer. Thus, it is tempting to speculate on the functional 
role of the intracortical connections and different cell types in the emergence of 
various response properties of the striate cells. 

Note however that when considering the intracortical connections it is also 
important to distinguish between those that functionally belong to the feedforward 
network (the thalamocortical circuitry), and those that are recurrent connections. 
The intention of the abstract hypercolumn model is to demonstrate that the 
recurrent connections, which originate from an area that roughly corresponds to a 
cortical hypercolumn, can explain emergence of several response properties of the 
striate cells. 

It is shown that the striate cells saturate with stimulus contrast increase (Maffei 
et al., 1973; Dean, 1981; Albrecht and Hamilton, 1982; section 2.4.6). For most 
striate cells this saturation, which is very rapid, starts at 50-60% of their response 
ranges. As a result of this rapid saturation, the contrast gain functions take the 
form of a hyperbolic function (Albrecht, 1982). However, results by Movshon et 
al. (1994) indicate that the majority of LGN cells, namely the P cells, have 
practically linear response functions and shows very little sign of saturation as a 
result of contrast stimulus increase (section 2.4.5). On the contrary, the M cells do 
saturate more prominently, and hence have logarithmic gain functions. It is also 
known that most striate cells (especially those found in lower parts of layer 3, 
layer 4A and layer 6A) receive a mixture of P and M signals. Thus, saturation of 
the input from the LGN cannot solely explain the hyperbolic contrast gain 
functions of the striate cells. It is thus hypothesized that the cortical inhibition 
plays an important functional in emergence of this behavior. 

In Paper II, a possible mechanism behind response saturation followed by 
normalization is demonstrated. The large basket cell, which is positioned in 
between the layers of the hypercolumn model (section 5.2), integrates the total 
activity of the excitatory cells located in the input layer. This cell can estimate the 
total input from the LGN and cortex to a small patch, which corresponds to a 
hypercolumn. The strength of this thalamic input is primarily a function of the 
stimulus contrast, since the large basket cell receives input from all orientation 
domains. In the next step, the large basket cell inhibits the excitatory cells in the 
output layer of the model. The result is the control of the activity of the excitatory 
cells located in the output layer. This circuitry, which is limited to a hypercolumn, 



5. Results of the Thesis 
 

 

40

is sufficient to explain the machinery needed to control the total activity within a 
modeled hypercolumn, and hence response saturation followed by normalization. 

Contrast-invariance of orientation tuning is also explained by the same local 
circuitry (Paper II). As an effect of stimulus contrast increase the large basket cell 
increases its activity, and hence inhibits excitatory cells found in the output layer 
more strongly. For those output layer excitatory cells, whose orientation 
preferences differ more than ~45º relative to the stimulus, the inhibition increases 
more rapidly than the feedforward excitation from the LGN (and recurrent 
excitation from the cortex). Paradoxically, stimulus contrast increase causes these 
cells to decrease their activities. It is possible to control the balance between 
inhibition and excitation by adjusting the excitatory connections between modeled 
cells located in the same orientation minicolumn module and layer. 

From this follows also narrowing of the orientation tuning (Paper II). However, 
this narrowing is only marginal, since the model does not assume unrealistically 
strong inhibitory synapses (see (Martin, 2002) for a critical review of the existing 
feedforward and recurrent models of hypercolumns). Instead, the orientation 
tuning is mainly by the inhibitory simple cells (Hirch et al., 2000), which inhibit 
excitatory cells that have opposite absolute spatial phases (Paper III). 

5.3 Findings Related to the Function of the 
Long-Range Horizontal Connections 

5.3.1 Long-Range Horizontal Connections Account 
for Spike and Burst Synchronization 

Simulations in Paper I are intended to show that spike and burst synchronization is 
possible to achieve between striate cells positioned several millimeters from each 
other. This study reveals also the facilitatory effect of synchronization on different 
levels (section 2.5.2). 

Synchronized activity is demonstrated with a biologically plausible network 
model of layer 2/3 of tree shrew primary visual cortex. The network consists of six 
sub-sampled orientation minicolumns that are composed of integrate-and-fire 
neuron models, all having similar orientation preference. The orientation 
minicolumns are co-linearly positioned in adjacent hypercolumns. The intention 
with the layout of this network is to mimic the elongated shape of the summation 
pools (sections 2.5.1 and 5.3.2; Papers III and IV). Connections between modeled 
cells inside the orientation minicolumns are dense, whereas connections between 
cells located in different orientation minicolumns are sparse. On average, every 
modeled cell receives six inputs from the other cells that are positioned in the 
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same orientation minicolumn, whereas on average two connections are from cells 
positioned in the other five orientation minicolumns. 

This study demonstrates that burst and zero-lag (γ frequency) spike 
synchronization is possible to achieve in a biologically detailed network model. 
Spike synchronization is however fragile, since it could be destroyed momentary 
by repetitive firing shown by some of the modeled cells. Spike synchronization is 
only slightly tighter between neurons spatially closer to each other, i.e. neurons 
positioned inside an orientation minicolumn. The correlation between distance and 
degree of spike synchronization is noticeable when much larger models are 
simulated (in these model the distance between the orientation minicolumns on the 
extremes is 8 mm). Nevertheless, high precision zero-lag spike synchronization is 
possible to achieve between cells located within the orientation minicolumns on 
the extremes of the modeled network. These two orientation minicolumns are 
located 2.5 mm from each other. Note that the spike propagation delay between 
them is ~4 ms, and that there are at most two direct connections between cells 
located within these two orientation minicolumns. 

It is evident that synchronization on different levels facilitates the modeled 
cells. It is thus hypothesized that synchronization seen in visual cortex (section 
2.5.2) plays a similar role, e.g. during low-contrast conditions to facilitate the 
thalamic signals. 

 

5.3.2 Findings Related to the Summation Pools and 
Contour Integration in Visual Cortex 

Several groups have suggested that long-range horizontal connections might play 
an important functional role in response facilitation of the striate cells of humans 
and other species (Polat and Sagi, 1993; Polat and Norcia, 1996; 1998; Yu et al., 
2002; Chisum et al., 2003; sections 2.5.1 and 4.3). These studies relate detection or 
increased visibility of abstract figures, such as contours or Gabor patches, to 
response facilitation of the striate cells. Note that the intention of these studies is 
somewhat different from those that focus on synchronization (section 2.5.2). 

In Paper III (and partially in Paper IV) the functional role of the long-range 
horizontal connections in response facilitation of the striate cells is investigated. 
These simulations are primarily influenced by the experiments of Polat and 
colleagues (Polat and Sagi, 1993; Polat and Norcia, 1996; 1998). They suggest that 
elongated physiological summation pools can explain response facilitation in 
visual cortex (see section 2.5.1 for the details). 

Two assumptions are made in Papers III and IV. Firstly, total activity of the 
units inside a hypercolumns is constant, as required by the BCPNN incremental 
learning rule. The abstract hypercolumn model (Paper II) addresses this 
requirement. Furthermore, during the simulations activities of the units are 
calculated in every time step without taking the delays between units into account. 
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However, Paper I shows that synchronization on different levels is possible over 
several millimeter on cortex surface. 

Recall that the correlation-based model of the cat area 17 in Paper III represents 
layer 4 circuitry, and hence the units’ receptive fields are defined as contrast edge 
detectors. The stimuli used during training are randomly positioned contrast edges. 
The end result is overlapped circuitries that comprise units located in several 
hypercolumns and operate as contour integrators. This network can efficiently 
reinforce the relatively weak and noisy input from the LGN. Units along a contrast 
edge are facilitated or inhibited by their neighbors as a result of their orientation 
preferences and spatial phases (section 5.1). Yet another effect of response 
facilitation, which is obviously selective, is to sharpen the orientation tuning of the 
units. 

5.4 Summary of the Papers 
Professor Anders Lansner at the ‘Studies of Artificial Nervous Systems’ (SANS, 
NADA, KTH) has supervised this thesis work1. 

5.4.1 Paper I 
In this paper it has been shown that phenomena like spike and burst 
synchronization are possible to simulate with a biologically detailed network of 
integrate-and-fire neurons. One of the most important conclusions of this paper is 
that high precision spike synchronization (<10 ms) is possible to achieve with a 
constant current input. However, then the strength of the current input is above a 
certain level neurons display repetitive bursting. This behavior enhances 
population oscillation but destroys high precision spike synchronization. 

The network behavior is rather independent of the input type. It is further 
assumed that more pronounced spike synchronization is possible achieved for the 
one bar stimulus simulation, if the stimulus configuration is different. 

The long-range horizontal connections play an important functional role for 
synchronization. Even with very few connections it is possible to spike 
synchronize neurons situated in minicolumns 2.5 mm from each other. During the 
simulations there has been at most two connections between neurons in orientation 
minicolumn one and six. These two orientation minicolumns are positioned on the 
extremes of the network. 

Spike synchronization is slightly tighter between neurons spatially closer to 
each other and decreased with distance. This finding is detectable when much 
                                              

1 Prof. Lansner has generated most of the ideas, especially at the beginning of the thesis work. I have detailed the 
connections to the anatomy and physiology of the visual cortex, done the implementations of the models, the 
simulations and most of the writing. 
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larger networks are simulated (up to 8 mm between orientation minicolumns on 
the extremes). 

This paper is presented at the ICANN – International Conference on Artificial 
Neural Conference in Vienna, August 2001. 

5.4.2 Paper II 
In this paper we derived and presented a model of a cortical hypercolumn from the 
BCPNN architecture. This model replicates important experimental findings 
relating to the orientation tuning mechanism in the primary visual cortex. 
Properties of the orientation selective cells in the primary visual cortex like, 
contrast-invariance of orientation tuning and response saturation (followed by 
narmalization) are demonstrated. 

One important assumption made is on the linear responses of the LGN cells to 
the contrast stimulus increase (The LGN input is mainly from the P-cells, see 
section 2.4.5). Based on this assumption, it is shown that the response saturation 
(followed by normalization) behavior of the modeled striate cells in the output 
layer is possible to explain by the local recurrent connections inside the abstract 
hypercolumn model.  

Narrowing of the orientation tuning is possible through the reinforcement of the 
LGN input by the inputs from excitatory cells that have similar orientation 
preferences. However, as a side effect, cells having non-preferred orientations are 
also excited above their resting activity levels, and this affects their orientation 
tuning negatively. 

The divisive inhibition of the excitatory cells in the output layer (by the large 
basket cell) results in sharpening of the orientation tuning curves and 
normalization of their activity. The large basket cell represents a pool of large 
basket cells with a mixture of preferred orientations. It is assumed that these 
inhibitory cells are distributed homogenously within the layers of the area 17. The 
activity of the large basket cell is a function of the excitatory cells in the input 
layer and the LGN input. Thus, it samples the total activity inside the 
hypercolumn. Studies made on cat area 17 supports this network configuration. 

This paper is presented at the 9th ICONIP – International Conference on Neural 
Information Systems in Singapore, November 2002. 

5.4.3 Paper III 
A patch of layer 4 of cat area 17 has been modeled. This developmental network 
model is based on the modular structure of the neocortex. The BCPNN incremental 
learning rule develops the connections between the units. The correlation-based 
network captures some of the known properties of area 17 of cats, such as dense 
local and sparse distal connectivity. 
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The network has two different types of interneurons. Large basket cells are 
responsible for keeping the total activity within a hypercolumn constant. The 
second group of interneurons, the inhibitory simple cells, mediate local and distal 
inhibition through targeting excitatory cells that are located in their close 
surroundings and have opposite absolute and relative spatial phase (relative to the 
interneuron).  

Excitatory local connections seem to be biased towards the iso-orientation 
domain. However, excitatory long-range horizontal connections target all 
orientation domains in a balanced manner, thus there is a strong crosstalk between 
all orientation domains. Note however that some of the targets of the long-range 
horizontal connections are excitatory cells, whereas some are inhibitory simple 
cells, since the network is correlation-based. 

The excitatory long-range horizontal connections are mildly elongated along the 
orientation axis, most likely as a result of the stimulus configuration. During the 
learning phase the stimuli are contrast edges. Note that contrary to in layer 2/3, 
there has not been any report on axial specificity of the layer 4 long-range 
horizontal connections.  

Nevertheless, we believe that the network behavior supports the existence of 
elongated summation pools in visual cortex, and gives a simple explanation for 
how it might be carried out within area 17. 

This paper is a technical report. 

5.4.4 Paper IV 
A quantitative assessment of the layer 4 and layer 2/3 local and long-range 
horizontal connections based on two separate models is presented. The results 
show that layer 4 long-range horizontal connections target all orientation domains 
in a balanced manner, whereas layer 4 local connections are biased towards the 
iso-orientation domain. 

The layer 2/3 network is significantly different. Both local and long-range 
horizontal connections of the layer 2/3 network are biased towards the iso-
orientation domains. We hypothesize that the patchy layout of the long-range 
connections is a consequence of excitatory long-range connections targeting 
mainly other excitatory cells located in distal iso-orientation domains. 

Furthermore, the fall-off with distance results in dense local and sparse distal 
connectivity for both networks. Preliminary results indicate that the layer 2/3 
network, like the layer 4 network, can detect low contrast stimulus. 

This paper was presented at the special session on ‘Biologically Inspired 
Computer Vision’, at 2nd CIRAS – Computational Intelligence, Robotics and 
Autonomous Systems in Singapore, December 2003. 
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6 General Conclusions 
The motivation of this thesis work is to present a top-down view of the cat primary 
visual cortex (area 17) that can help to unveil the computations that are carried out 
within the neocortex. The primary visual cortex of cat and other species, such as 
monkey and rodents, are relatively well documented, and hence has been the 
principal system for studying the structure and function of cortical systems. The 
structural similarities between various cortical areas, which are primarily 
manifested by the modular and laminar organization of the neocortex, suggest that 
studies of the primary visual cortex might contribute to a general understanding of 
other cortical systems as well. 

The top-down view helps to organize the enormous material that is available on 
the primary visual cortex. However, such an approach does not necessarily imply 
that the developed models are biologically plausible. Since the intention of this 
thesis work is to unveil the computations that are carried out within the neocortex, 
the developed models are faithful to the relevant aspects of known physiology and 
anatomy. However, a bottom-up manner of implementing the models with the top-
down view has helped to construct biologically plausible models, which are also 
simple enough to allow reasoning. 

The main contribution of this thesis work is the mapping of an abstract 
hypercolumn model to cat primary visual cortex (Papers II, III and IV). This 
highly general model could be mapped to both layer 4 and layer 2/3 local circuitry. 
The hypercolumn model shows that the recurrent (intracortical) connections can 
explain the emergence of several response properties of the striate cells. The 
uniqueness of this model is that it demonstrates response saturation (followed by 
normalization) together with contrast-invariance of orientation tuning. Narrowing 
of the orientation tuning is also demonstrated. 

The layer 4 abstract hypercolumn model is based on the assumption that there 
exist two parallel inhibitory networks, which originate from two different classes 
of interneurons. (To our knowledge, existing models of layer 4 include only one 
class of inhibitory cells (Ferster and Miller, 2000; Martin, 2002).) These two 
inhibitory networks have different functional implications. In the first network the 
inhibition arises from a pool of interneurons, the connections of which are 
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uniformly distributed within an area that corresponds roughly to a hypercolumn. It 
is assumed that large basket cells are responsible for these inhibitory local 
connections, which are less specific for orientation than the excitatory local 
connections (Kisvárday et al., 1997; Yousef et al., 1999). Such an inhibitory 
network can efficiently control the total activity within a small patch, e.g. a 
hypercolumn, of the neocortex and thus explain response saturation followed by 
normalization, and also contrast-invariance of orientation tuning. 

Narrowing of the orientation tuning is also demonstrated through the moderate 
reinforcement of the thalamic input by the excitatory local connections. However, 
this narrowing is only marginal, since the model does not assume unrealistically 
strong inhibitory synapses, such as many other recurrent models (Martin, 2002). 
Instead, the inhibitory simple cells (Hirch et al., 2000) achieve narrowing of the 
orientation tuning. It is assumed that these neurons target excitatory cells located 
in their close surroundings (Ferster, 1988). The inhibitory simple cells and their 
postsynaptic excitatory simple cell targets have opposite absolute (and relative) 
spatial phases relative to each other. Thus, anticorrelated excitatory cells can 
inhibit each other by targeting these inhibitory simple cells. The result is a 
correlation-based network, which narrows orientation tuning (Paper III). However, 
the layer 2/3 model lacks inhibitory simple cells. Otherwise the behavior of layer 
2/3 model is similar to that of layer 4. 

Furthermore, the layout and function of the intracortical connections within a 
patch of area 17 have been addressed using developmental network models (Papers 
III and IV). Such a cortical patch contains some tens of hypercolumns. More 
specifically, this study is based on the correlation-based models, which are 
generated by the BCPNN incremental learning rule using visual input. 

A quantitative assessment of the excitatory intracortical connections within 
layer 4 and layer 2/3 developmental network models has been presented (Paper 
IV). This study reveals that the local and long-range connections of the 
developmental network models are similar to the known connectivity of the 
primary visual cortex (Kisvárday et al., 1997; Yousef et al., 1999). 

Local connections are dense, whereas long-range horizontal connections are 
sparse. Furthermore, long-range horizontal connections are elongated along the 
orientation axis. Layer 4 long-range horizontal connections target all orientation 
domains in a balanced manner, whereas local connections of this layer are biased 
towards the iso-orientation domain. However, both local and long-range horizontal 
connections of layer 2/3 are biased towards the iso-orientation domains. It is 
hypothesized that the patchy layout of the long-range connections in layer 2/3 is a 
consequence of the excitatory long-range connections made by the pyramidal cells 
targeting mainly other pyramidal cells located in distal iso-orientation domains. As 
propose by Yousef et al. (1999) and others the differences between the circuitry of 
layers 4 and 2/3 might be an effect of their different functional roles. 

The function of the intracortical connections has been investigated by studying 
response facilitation of the cortical cells (Paper III). This phenomenon is 
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manifested by improved visibility of a Gabor patch when it is elongated along the 
orientation axis (Polat and Norcia, 1998). Similar results have been reported in 
tree shrew primary visual cortex based on neurophysiological experiments 
(Chisum et al., 2003). As a result, elongated summation pools, which are 
hypothesized to be functionally linked to the long-range horizontal connections, 
have been proposed (Polat and Norcia, 1998; Chisum et al., 2003). The elongated 
shape of the long-range horizontal connections along the orientation axis (Papers 
III and IV) supports this belief. 

Response facilitation requires robust communication between striate cells 
located several millimeters from each other. Spike and burst synchronization might 
be responsible for this. In Paper I it is shown that groups of striate cells (organized 
into orientation minicolumns) could indeed facilitate each other, through spike and 
burst synchronization, even tough they are located several millimeters from each 
other. The simulations do also show that response facilitation helps to narrow the 
orientation tuning of the striate cells. This might have a functional implication 
especially during low-contrast conditions. However, this hypothesis must be tested 
carefully before any conclusions can be drawn. 

The main conclusion here is that several fundamental response properties of the 
striate cells are possible to explain by an abstract hypercolumn model, which is 
faithful to the known anatomy and physiology of the neocortex. When simplicity is 
combined with biological plausibility the models of hypercolumns can give 
valuable insight into the structure and function of cortical circuitry. 

During this thesis work several additional questions have emerged that are 
closely related to this subject. In the near future the intention is to revisit the 
abstract hypercolumn model and address these questions. Firstly, a more careful 
study must be done on the different classes of inhibitory cells and their roles in 
emergence of various response properties. Furthermore, it is planned to present a 
quantitative assessment of the inhibitory connections, similar to the one on their 
excitatory counterparts. Finally, the behavior of the summation pools needs to be 
studied more thoroughly by simulation of activity during low-contrast conditions.  



6. General Conclusions 
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Abstract 
Previous studies have suggested that synchronized firing is a prominent feature of 
cortical processing. Simplified network models have replicated such phenomena. 
Here we study to what extent these results are robust when more biological detail 
is introduced. A biologically plausible network model of layer II/III of tree shrew 
primary visual cortex with a columnar architecture and realistic values on unit 
adaptation, connectivity patterns, axonal delays and synaptic strengths was 
investigated. A drifting grating stimulus provided afferent noisy input. It is 
demonstrated that under certain conditions, spike and burst synchronized activity 
between neurons, situated in different minicolumns, may occur. 

7.1 Introduction 
The synchronized activity of the neurons in visual cortex is believed to contribute 
to perceptual grouping [14,20,21,22,24,28], see also [23]. It is also assumed that 
neurons in primary visual cortex have small and overlapping receptive field [8]. 
We assume also that local cortical connectivity (<300 µm) is dense [7]. Dense 
local connectivity should help neurons to synchronize their activities. This should 
mean that neurons with same or contiguous receptive fields are active in presence 
of stimulus. 

Studies have shown evidence for long-range horizontal connections in primary 
visual cortex [10,13]. Recently Bosking et al. also showed evidence for modular 
and axial specificity of long-range horizontal connections in layer II/III, and 
suggested that these connections could help neurons respond to a stimulus, in part 
because they receive input from other layer II/III neurons [11]. 

We suggest that long-range horizontal connections that exist in layer II/III 
together with local connections can be used by the neurons for synchronization of 
their activities over distances of several millimeters on cortex surface. 

This follows the same ideas as earlier network model simulations where 
horizontal connections [16,17,19,25, 27] and synchronization [15,18,26] play an 
important role. 
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7.2 Network Model 
We have built a biologically plausible, but sub-sampled, network model. The 
network consists of neurons situated in six cortical minicolumns (orientation 
columns), having the same orientation preference. The minicolumns were lined up 
with a distance of 0.5 mm between two successive ones. We assume that 
minicolumns are co-linearly positioned in adjacent hyper-columns [8]. The 
cylinder shaped minicolumns had a height of 300 µm [7] and diameter of 50 µm 
[8]. 

Each of the six minicolumns was composed of 12 layer II/III pyramid cells. The 
neurons were positioned stochastically to fill up the volume of a minicolumn. 
Connection probability between two neurons was a function of the distance 
between them [7]. This resulted in a very spread connection probability of 15-80% 
for neuron pairs, and led to a connectivity of 50-60% between neurons inside a 
minicolumn [8]. 

Long-range horizontal connections were defined as connection between two 
neurons situated in different minicolumns. We computed the connection 
probability between such pairs of neurons by extrapolating the reported connection 
probabilities (<500 µm) by Hellwig [7] so that they fitted the findings by Bosking 
et al. [11]. This resulted in a smooth transition between local and long-range 
connection probabilities. In average a neuron received 6.2 intra-columnar inputs 
and 2.1 inter-columnar inputs. 

We implemented a leaky Integrate-and-Fire model neuron with noise [1,2]. It 
was modified to allow adaptation of the membrane time constant [3]. Adaptation is 
very crucial for the dynamics because of the fact that our network, as many others, 
does not have inhibitory interneurons. The neuron population was heterogeneous 
with all values sampled from a uniform distribution with a deviation of 10%. 

An axonal diameter of 0.3 µm [8] resulted in a spike propagation velocity of 
0.85 m/s [5]. This value together with distances between neurons, and the synaptic 
delay, resulted in maximum delay inside a minicolumn of approximately 1.36 ms. 
Maximum delay between neurons situated in two minicolumns was approximately 
3.96 ms. This delay corresponds to a distance of approximately 2.52 mm. 
Maximum values of EPSP:s were in the range of 0.5-2.2 mV for intra-columnar 
connections and three times those values for inter-columnar connections [4]. The 
simulation time step was 0.5 ms. 
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Figure 7.1. Population activity in the absent of long-range horizontal connections. 
Poisson spike train input (above), Constant current input (below). 
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Figure 7.2. Population activity (top), and cross-correlation (bottom left) between 
minicolumn one (neurons 1-12) and six (neurons 61-72). Auto-correlation on 
minicolumn six (bottom right). 
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connections. The network was tested on two different types of inputs. A drifting 
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manner [6]. We saw that in the absence of long-range horizontal connections, the 
neurons in different minicolumns were not synchronized with each other (Fig. 
7.1). Although the response of the network to the two inputs was different, spike 
synchronization between neurons inside a minicolumn was present in both cases, 
especially for constant current input. 
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Figure 7.3. Cross-correlation between minicolumn one and six. Neurons in the two 
middle minicolumns were not receiving current input, and were not spiking throughout 
the simulation. Oscillation frequency is 25 Hz. 

The following two simulations were done with the same two input types as 
described above, and in the presence of long-range horizontal connections. A 
drifting grating stimulus (constant current) resulted in both spike and burst 
synchronization for different values on input currents. In the first part of this 
simulation all the neurons received constant current. Some of the cells displayed 
repetitive bursting, for higher values of input current, synaptic weights or more 
dense connections. Spike synchronization as well as burst synchronization could 
be seen (Fig. 7.2). It is assume that the repetitive bursting behavior contributes to 
synchronous oscillation of the population [12]. But this behavior destroyed high 
precision spike synchronization (Fig. 7.2). In the second part of this simulation we 
fed only neurons in minicolumns one, two, five and six with constant current to 
see if neurons in minicolumns one and six still were correlated with each other. 
Observe that there were no direct connections between minicolumns one and six 
during this particular simulation, and neurons in the two middle minicolumns were 
not spiking (not shown here). Spike synchronization between neurons in 
minicolumn one and six was however present (Fig. 7.3). There was a tendency for 
a lag of a couple of milliseconds if synaptic weights were low or connections were 
sparse (not shown here). Observe that the shortest possible delay between two 
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neurons situated in minicolumn one and six was 2.75 ms. Gamma-band oscillation 
(20-70Hz) could be generated with different values on current input, and we 
assumed that oscillation was a property of the network. 
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Figure 7.4. Population activity. Notice how minicolumns three and four lagged 
behind. 

The intention of the moving one bar-stimulus simulation was to show that, it is 
possible for neurons to respond to a stimulus that they are not receiving directly. 
In this simulation all neurons received constant current input. However this input 
was not sufficient for generating a spike, and corresponded to lowering of the 
thresholds. Neurons in minicolumns one, two, five and six received uncorrelated 
Poisson spike trains for a short period of time (80-100 ms) as described above. 
Poisson spike EPSP:s were in the range of 0.05mV. On average neurons received 
65 of these spikes. We saw that neurons in minicolumns three and four were 
activated by other neurons, with a lag of approximately 4 ms (Fig. 7.4 and 7.5). 

High precision spike synchronization was present only during the first two 
spikes (Fig. 7.4). With lower values on Poisson spike EPSP:s or larger deviation 
for the Gaussian distribution high precision spike synchronization could be 
achieved for longer durations (not shown here). However we could see that burst 
synchronization and oscillation was present (Fig. 7.6). 
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Figure 7.5. Cross-correlation between neurons 1-24 and 49-72 (thick line). Cross-
correlation between neurons 1-24 and 25-48 (thin line) for the trial shown in Fig. 7.3. 
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Figure 7.6. Average PSTH of six trials. 
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7.4 Conclusion 
We have shown that phenomena like spike and burst synchronization is possible to 
simulate with a biologically detailed network of I-F neurons. High precision spike 
synchronization (<10 ms) was possible to achieve with a constant current input. 
With increased input some of the neurons displayed repetitive bursting, which 
helped population oscillation but destroyed high precision spike synchronization. 

We saw also that the network behavior was rather independent of the input type. 
We assume that more pronounced spike synchronization could be achieved for the 
one bar stimulus simulation, if the stimulus configuration was different, as stated 
before. 

The long-range horizontal connections played an important role for 
synchronization. Even with very few connections it was possible to spike 
synchronize neurons situated in minicolumns 2.5 mm from each other. We would 
like to stress the fact that, on average, there were at maximum two connections 
between neurons in minicolumn one and six during the simulations. Spike 
synchronization was tighter between neurons spatially closer to each other and 
decreased with distance. 

Direction of our future research is to make the network model even more 
realistic. We are currently testing the network model with Poisson neurons. 
Cortical neurons are known for their irregularity of the interspike interval [3,9]. 
Preliminary results have shown that oscillation is possible to achieve with our 
network using Poisson neurons. Our intention is to expand the model with 
inhibitory neurons as well. We believe that inhibition will contribute to 
synchronized activity [4]. 
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Abstract 
An abstract model of a cortical hypercolumn is presented. This model could 
replicate experimental findings relating to the orientation tuning mechanism in the 
primary visual cortex. Properties of the orientation selective cells in the primary 
visual cortex like, contrast-invariance and response saturation were demonstrated 
in simulations. We hypothesize that broadly tuned inhibition and local excitatory 
connections are sufficient for achieving this behavior. We have shown that the 
local intracortical connectivity of the model is to some extent biologically 
plausible. 

8.1 Introduction 
Most neurons in the primary visual cortex (V1) respond to specific orientations 
even though relay cells in the lateral geniculate nucleus (LGN), that carries the 
information from retina to V1, does not show evidence of orientation selectivity. It 
is not known in detail how orientation selectivity of the cells in V1 emerges and 
the issue is hotly debated (for a recent review see Ferster et al., [9]). Hubel and 
Wiesel [10] proposed that orientation selectivity of simple cells in V1 was a 
consequence of synaptic input from LGN. Still today the Hubel and Wiesel 
feedforward model serves as a model of thalamic input to cortex. However many 
of the properties of orientation selective cells in V1 cannot be predicted by such a 
feedforward model. Contrast-invariance of orientation tuning seen by simple and 
complex cells is perhaps the most striking example. As contrast increases the 
height of the response curve increases while the width remains almost constant 
[11,12,13]. 

It was also shown that response to contrast stimulus increases over 
approximately 50-60% of the response range and this behavior is followed by a 
rapid saturation and normalization of the cells activity [13]. The saturation level 
seems to be determined by stimulus property (orientation, spatial frequency) and 
not by electrical properties of the cells. Maximum response to non-preferred 
stimulus was reported to be lower than to preferred stimulus. 

According to the findings by Hubel and Wiesel [16] the primary visual cortex 
has a modular structure. It is composed of orientation minicolumns each one 
comprising some hundreds of pyramidal cells and a smaller number of inhibitory 
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interneurons of different kinds. Contrast edge orientation is coded such that the 
cells in each orientation minicolumn respond selectively to a quite broad interval 
of orientations. Further, the orientation hypercolumn contains orientation 
minicolumns with response properties distributed over all angles, and thus 
represents the local edge orientation pertinent to a given point in visual space. A 
similar modular arrangement is found in many other cortical areas, e.g. rodent 
whisker barrels [15]. 

The Bayesian Confidence Propagation Neural Network model (BCPNN) has 
been developed in analogy with this possibly generic cortical structure [14]. This 
is an abstract neural network model in which each unit corresponds to a cortical 
minicolumn. The network is partitioned into hypercolumn-like modules and the 
summed activity within each hypercolumn is normalized to one. 

The above network model relates to the so-called normalization models of V1 
proposed by Albrecht et al. [20] and Heeger [21] that address properties of simple 
cells mentioned above. These assume that input from the LGN grows linearly with 
contrast stimulus. This input is divided by a linearly growing inhibitory input. The 
effect is division of the input from the LGN and that the summed activity of the 
cells in a hypercolumn is normalized. This would correspond to saturation of a 
cells activity. Later Carandini et al. [22,23] proposed that a pool of cells with 
different preferred orientations and spatial frequencies drives the shunting 
inhibition. 

Cross-orientation inhibition is yet another feature of cortical simple and 
complex cells. Response to superposition of two gratings is less than sum of each 
response alone [8,25]. Morrone et al. [8] suggested that this inhibition arises from 
a pool of cells with different orientations. The cross-inhibition effect could be 
explained by a shunting inhibition proposed by the normalization models [22,23]. 

Here we present an abstract model of a cortical hypercolumn derived from the 
above-mentioned BCPNN architecture. Our main intention has been to address 
response saturation and contrast-invariance of orientation tuning behaviors of 
cortical cells. Initial tests were showing that cross-orientation inhibition was also 
prominent. All these behaviors could be achieved by a very simple network 
architecture (Fig. 8.1–3). 
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Figure 8.1. A, The hypothesized repetitive layout of the cat V1 demonstrated by 7 
hypercolumns. B, The partial hypercolumn model used during the simulations 
consisted of 17 minicolumns.  
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Figure 8.2. A scheme showing one of the subsampled orientation minicolumns and the 
basket cell representing the pool of inhibitory cells. Excitatory cells in the input layer 
are connected to the basket cell, and the basket cell inhibits the excitatory cells in the 
output layer. 
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8.2 Network Model 
The foundation of our network model is the columnar organization seen in V1 and 
elsewhere in the cortex [16]. We assume that V1 is composed of repetitive 
structures, so-called minicolumns, and that these minicolumns rotate around 
hypothetical centers [18], and form hypercolumns (Fig. 8.1A). In our model a 
hypercolumn is represented by a finite number of minicolumns, each representing 
a particular orientation (Fig. 8.1B). For sake of simplicity we decided to use a 
partial hypercolumn model composed of 17 subsampled orientation minicolumns, 
ranging from 0° to 180°, with the angular distance of 11.25° between two 
successive ones (Fig. 8.1B). The diameter of the cylinder shaped minicolumns was 
56 µm, as a consequence of the study done by Peters et al. [17] on cat V1. In that 
study, it was reported that apical dendrites of layer V pyramid cells formed 
clusters with a center-to-center spacing of about 56 µm, which provides an 
estimate of the mean distance between two successive minicolumns. The circular 
arrangement of the minicolumns gives the biologically plausible hypercolumn 
diameter of 900 µm for cat V1. The minicolumns has a height of 600 µm, and are 
abstractions of the layer II-IV of cat V1 [17]. Each of the subsampled minicolumns 
is composed of 28 neurons (Fig. 8.2) and the neuron population is heterogeneous 
with all values sampled from a uniform distribution with a standard deviation of 
10%. 

The hypercolumn model consists of two separate layers with two different tasks 
in order to achieve normalization behavior proposed by the BCPNN model (Fig. 
8.2). It will be shown later that the excitatory neurons in the output layer replicate 
experimental findings relating to the orientation tuning mechanism in V1.  

There were no connections between these two layers, and thus the interaction 
between them was through one basket cell, representing a pool of inhibitory cells 
(Fig. 8.1B and Fig. 8.2). This layout resulted in feedforward connectivity inside 
the hypercolumn model. Every input layer excitatory cell was connected to the 
basket cell, and thus could drive it. The basket cell was connected to every 
excitatory cell in the output layer. There were no connections between excitatory 
cells situated in different orientation minicolumns. Connection probability 
between two excitatory neurons inside a minicolumn layer was a function of the 
distance between them [6]. 

The implication of this scheme for the output layer is that, the distribution (in 
terms of orientation) of the inhibitory input to an excitatory cell is broader than the 
excitatory input. This is because the basket cell represents a pool of orientation 
specific neurons inhibiting a pool of excitatory neurons with all possible preferred 
orientation. Even though the connectivity pattern seen in the output layer is very 
simple, it is still biologically plausible. Kisvárday et al. [27] reported that, in an 
area of the size of cat V1 hypercolumn, 56 % of the excitatory and 47 % of the 
inhibitory connections were at iso-orientation, while cross-inhibition was shown 
by 14 % of excitatory and 20 % of inhibitory connections respectively. This 
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indicates that, the inhibitory network is less orientation specific than the excitatory 
network. A study based on ferret prefrontal microcircuits is also pointing in the 
direction of the basket cells as responsible for gain control of the local cortical 
network [26].  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.3. A scheme showing the activity of the excitatory cells in two minicolumns 
with preferred orientation (bottom solid lines) and non-preferred orientation (bottom 
dashed lines). Input layer excitatory cells (exponential curves) are driving the basket 
cell (thick top curve). The output layer excitatory cells (sigmoidal curves) are 
normalized when the basket cell’s activity increases linearly. 

Besides the basket cell, there were other inhibitory cells in the model. These 
cells were the local inhibitory chandelier cells [28] located inside the 
minicolumns, and hence inhibiting excitatory cells with the same orientation 
preference. In the input layer three chandelier cells inhibited an excitatory cell, 
while two chandelier cells inhibited the excitatory cells in the output layer. 
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Cortical neurons are known for their irregular spiking activity [3,4], and were 
thus modeled as Poisson processes. As the kernel of the Poisson process we used a 
leaky integrate-and-fire model [1,2]. The role of the leaky integrate-and-fire model 
was to sum the presynaptic inputs to generate the membrane potential of the cells. 
Maximum frequency of the excitatory and the inhibitory neurons were 100 Hz and 
300 Hz respectively. Half-height of the IPSPs were 10 ms, and 15 ms for the 
EPSPs. Mean amplitudes of the EPSPs inside the minicolumns were 0.94 mV for 
the input layer, and 9.4 mV for the output layer. The strength of the synaptic 
connection between the input layer excitatory cells and the basket cell was set to 
give an EPSP of 3.5 mV. IPSPs generated by the chandelier cells had a mean of -
3.2 mV, and that of the basket cell was -55.1 mV. Observe that the values are 
exaggerated, specially the IPSP generated by the basket cell, for compensating the 
small number of cells used in the network model. It is assumed that in cortex some 
20 % of the cells are various inhibitory cells [31]. The PSP values and number of 
connections, especially inhibitory ones, were calculated to preserve this ratio 
between the inhibitory and the excitatory populations in V1. The PSP values were 
sampled from a uniform distribution with a standard deviation of 10%. 

An axonal diameter of 0.3 µm [29] resulted in a spike propagation velocity of 
0.85 m/s [30]. 

8.3 Simulation Results 
One important assumption made was the linear response of the LGN cells to the 
contrast stimulus increase. This assumption was in line with the normalization 
models mentioned above. Results by Movshon et al. [24] indicate that the majority 
of LGN cells (namely P cells) have linear response functions and shows very little 
or no sign of saturation as a function of contrast stimulus increase. Our model does 
not have a LGN component, hence the LGN input is modeled as a constant current. 
During the simulations we defined the input to the modeled cells in the following 
way. The simulated LGN had two components, both constant currents. The first 
was a function of the contrast stimulus increase, and the second was, besides of 
contrast, also a function of the orientation of the postsynaptic cell. Tuning of this 
second component was 40° half-width at half-height [19] both for the excitatory 
and the chandelier cells. Observe that the basket cell did not receive any input 
from the LGN. The orientation dependent LGN input at 100 % contrast, for cells 
with the preferred orientation was 2.7 nA for excitatory cells, and 0.9 nA for 
chandelier cells. Orientation independent part of the LGN input was 0.9 nA for all 
excitatory cells, and 0.32 nA for all chandelier cells. Observe that input to cells 
having non-preferred orientation during high contrast might exceed input to cells 
having preferred orientation during low contrast as a results of the orientation 
independent part of the LGN input. As the background activity all excitatory cells 
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received additional current input. Excitatory cells in the output layer received 2 
nA, while input layer excitatory cells received 1 nA. To guarantee that the 
inhibitory cells were active in their logarithmic range these cells received 3.5 nA 
throughout the simulation. The current values were sampled from a uniform 
distribution with a standard deviation of 10%. 
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Figure 8.4. Contrast response function curves corresponding to mean activity of 
excitatory cells situated in the output layer. Top curve corresponds to cells situated in 
the minicolumn having the same orientation preference (90°) as the input to the 
hypercolumn. The thick curve in the middle corresponds to mean activity of cells in all 
17 minicolumns. The bottom curve corresponds to activity of cells having a 45° 
orientation preference. 

 
Experimental findings related to the orientation tuning mechanism in V1, and 

thus normalization in the BCPNN framework [14] is possible to achieve by 
assuming that excitatory and inhibitory cells are active in specific regions of their 
gain functions, and that these regions define their ranges. The sigmoidal gain 
function of the Poisson neuron could be divided roughly into two regions; the low 
activity region (<50 %) would correspond to the exponential function, and the high 
activity region (≥ 50%) to the logarithmic function. We assume here that the 
excitatory cells are in their low activity region and the inhibitory cells are in their 
high activity region. 
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Figure 8.5. Contrast-invariance demonstrated by the network. Selectivity remains 
constant while the peak increases as a function of increasing contrast. 

 
In order to analyze the network behavior we start with the input layer, and later 

continue with the output layer. Excitatory cells in the input layer of the 
hypercolumn model behaved like cells in a Hubel and Wiesel feedforward model 
[10]. This was not a surprise because orientation tuning of these cells was a 
function of the LGN input. Remember that the excitatory cells approximated the 
exponential function, and hence amplified their input. This resulted in the 
narrowing of the orientation tuning. Carandini et al. [19] reported that the half-
width at half-height of the tuning of the spike responses was approx. 23° while 
membrane responses were approx. 38°. Their finding could motivate the narrowing 
of the half-width at half-height of the orientation tuning. At the same time, activity 
of the cells having non-preferred orientation was increased above resting activity 
levels as an effect of the increased contrast. This resulted in widening of the 
orientation tuning curve.  

However, activity shown by the excitatory cells in the output layer (Fig. 8.4) 
corresponded well to the reported results of the nonlinear behavior of simple and 
complex cells [13]. The first region corresponded to the dynamic response range of 
the cortical cells. During this phase the activity of the cells increased 
monotonically as a function of increased contrast. This phase was followed by a 
rapid saturation. During the last phase the cells were normalized i.e. their activity 
was constant even though the contrast was increasing. It should be stressed that 
saturation of activity was evident in all cells independent of their orientation 
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preferences, and that, this level was not a function of the cells electrical properties 
as reported by [13]. 

It was shown by Albrecht et al. [13] that the contrast response function could be 
approximated by a hyperbolic function 

 
Response(C) = Rmax·(Cn / (Cn + C50

n)) 
 

where C50
n defined contrast value that was required to produce 50% of the cell’s 

maximum response. Rmax was the cell’s maximum response rate. It was also 
reported in that study that contrast response curves were shifted vertically 
downward as the stimulus orientation diverged from the preferred orientation. This 
would mean that Rmax changed while C50 and n remained relatively constant. This 
behavior was believed to be important for preserving the relative frequency 
response function independent of the contrast [12,13]. The excitatory cells in the 
output layer of the model hypercolumn had all these properties (Fig. 8.4). The Rmax 
levels, <12 Hz, were below maximum frequency levels (≈100 Hz) governed by the 
electrical properties of the cells (Fig. 8.4). C50 levels (approx. 24%) of modeled 
cells were biologically plausible (Fig. 8.4). 

Contrast dependent inhibition was reported by Sclar et al. [11]. According to 
their results, as the contrast increased activity of the cells having orientation 
preference that differed significantly from the stimulus orientation decreased 
below their spontaneous activity levels. This behavior was also demonstrated in 
our simulation, as seen when comparing the low and high contrast curves (Fig. 
8.5). Cells having orientation preference that differed more than approximately 50° 
from the stimulus orientation were inhibited below their spontaneous activity 
levels. Contrast-invariance of orientation tuning in simple and complex cells could 
be seen as an effect of this contrast dependent inhibition. 

Both contrast response function and contrast-invariance of orientation tuning 
could be explained by our network architecture. In order to explain interactions in 
detail we would like to focus on the connections from the excitatory cells in the 
input layer to the basket cell, and from the basket cell to the excitatory cells in the 
output layer. Remember that linear increase of the contrast results in exponentially 
increased activity of the input layer excitatory cells, and that these cells are driving 
the basket cell. The basket cell linearizes the input from these cells, because the 
response function of the basket cell is logarithmic. As a result, the basket cell 
responds to contrast in a linear fashion. Output from the basket cell is then fed into 
the output layer excitatory cells. The main part of the input received by these 
excitatory cells is from the LGN input and this intracortical inhibition. Observe 
that, in theory, both these inputs increase linearly with contrast. This means that 
these two inputs have constant and positive slopes. Consequently, the relative 
difference between them corresponds to a constant value, and hence defines a cells 
activity during the normalized phase. 
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Within the dynamic response range (contrast < 50%), net input to excitatory 
cells is increasing. The reason for this is that the excitatory cells in the input layer 
cannot drive the basket cell. When a certain threshold (contrast ≈ 40 %) is reached 
the input to the basket cell is strong enough (Fig. 8.4) to drive it. 

The cross-inhibition effect was also tested during the simulations (not shown 
here). In the presence of one additional line stimulus the basket cell’s activity 
increased resulting in a stronger inhibition of the excitatory cells than in case with 
a single line stimulus. It is also straightforward to see that activity of the basket 
cell is dependent of the contrast of the additional line stimulus. 

8.4 Discussion 
We have presented an abstract model of a cortical hypercolumn derived from the 
BCPNN architecture. This model could replicate important experimental findings 
relating to the orientation tuning mechanism in the primary visual cortex. 
Properties of the orientation selective cells in the primary visual cortex like, 
contrast-invariance and response saturation were demonstrated. One important 
assumption made was the linear response of the LGN cells to the contrast stimulus 
increase. As a result of this assumption, we showed that the normalization of the 
cells in the output layer could be explained by the local connections inside the 
hypercolumn.  

Narrowing of the orientation tuning was possible through the reinforcement of 
the LGN input by the excitatory cells. As a side effect, cells having non-preferred 
orientations were excited above their resting activity levels, and this affected their 
orientation tuning negatively. The divisive inhibition of the excitatory cells in the 
output layer by the basket cell resulted in sharpening of the orientation tuning 
curves and normalization of their activity. The basket cell represented a pool of 
inhibitory cells with a mixture of preferred orientations. The activity of the basket 
cell was a function of the excitatory cells in the input layer, and thus represented 
the total activity inside the hypercolumn. This network configuration is supported 
by studies made on cat V1. 

It is well known that the long-range horizontal intracortical connections play an 
important role in V1. The impact of such connections to the orientation tuning 
mechanism of the cortical cells will be addressed in the near future. One 
experiment will be to simulate cortical plasticity in the framework of the BCPNN 
incremental learning algorithm. In these experiments, stimuli defined as lines with 
random orientations moving across the model cortex will provide the activity 
patterns required for the learning algorithm to form assemblies of connected 
minicolumns. Our intention is to look into how well these resemble cortical 
connectivity patterns seen in V1 and how they influence the response dynamics of 
the network. 
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Abstract 
A patch of layer 4 of cat area 17 has been modeled. The developmental network 
model is based on the modular structure of the neocortex. Connections between the 
orientation minicolumns, building the network model, are developed during 
exposure to visual input. The network model captures some of the known 
properties of the layer 4 of cat area 17. Local connections are dense, whereas distal 
connections are sparse. Both local and distal inhibition is mediated by inhibitory 
simple cells, which target excitatory cells that are located in their close 
surroundings and have opposite absolute and relative spatial phase. Excitatory 
local connections seem to be biased towards the iso-orientation domain. However, 
there is a strong crosstalk between all orientation domains made by the excitatory 
long-range horizontal connections. Furthermore, the excitatory long-range 
horizontal connections are mildly elongated along the orientation axis. We 
hypothesize that this network layout can give a simple explanation to the 
psychophysical experiments demonstrating response facilitation as a result of 
elongation of a Gabor patch along the orientation axis. 

9.1 Introduction 
Orientation selectivity of the striate cells populating the primary visual cortex 
(area 17 of cat, area V1 of monkey) is one of the most investigated issues in visual 
neuroscience [3,21]. The feedforward model, proposed by Hubel and Wiesel [1], 
was the first attempt to explain the origin of the orientation selectivity of the 
striate cells. It was proposed that orientation selectivity of neurons classified as 
simple cells was a consequence of the synaptic input from the LGN. According to 
this arrangement, the ON-center LGN cells project to the ON-subregions of a 
simple cell’s receptive fields (RF). The OFF-subregions of a simple cell were 
constructed in the same way by the OFF-center LGN cells (see also [2]). Still 
today the Hubel and Wiesel feedforward model serves as a model of thalamic 
input to neocortex. 
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Figure 9.1. A, The network model consists of an 11x20 hexagonal array of 
hypercolumn modules. The oval illustrates the RF of the magnified units, positioned in 
the hypercolumn in the center in Fig. 9.1B. These units detect vertical lines but have 
opposite absolute and relative spatial phases. We see that these units’ RF overlap with 
many other hypercolumns, and hence indicate strong overlap between RF of units 
situated in neighboring hypercolumns. B, A sub-network consisting of seven 
hypercolumns. Inside each hypercolumn 12 units are placed. Every hypercolumn 
figure is also a polar plot (see polar-plots in Fig. 9.2). The units indicate the positions 
in the polar-plot. 

 
However, some of the properties related to the orientation selectivity are not 

possible to predict by a pure feedforward model [3–8]. Especially the 
psychophysical studies [4–8] examining the long-range spatial interactions in 
visual cortex clearly demonstrate that the cortical circuit plays a major role in 
altering the responses of the striate cells. Polat and Norcia [5] demonstrated that 
elongation of a Gabor patch along the orientation axis results in facilitation of the 
responses of the striate cells. As a result, Polat and Norcia [5] propose elongated 
summation pools. 
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Figure 9.2. Polar-plots organized as the network model, each one representing a 
hypercolumn module. The legend in A (top right) shows the orientation and the 
relative spatial phase of the units in each polar-plot representing a hypercolumn 
module. A, Projections of the ‘reference unit’, which is positioned in the middle 
hypercolumn (marked with an arrow). Thick lines are excitatory connections and 
thin lines correspond to inhibitory connections. Distance from the origin is 
proportional to the strength of the connection. B, Polar-plots showing normalized 
activities of the units in hypercolumn modules after 50 ms. Distance from the 
origin is proportional to the activity level. During this simulation the units receive 
both thalamic and cortical input. C, Same as B, but the units receive only thalamic 
input. Note that only hypercolumns receiving strongest input, those in the middle 
column, do converge. 

B A 

C 



Paper III 
 

 

96

 
The excitatory long-range horizontal connections are a prominent feature of the 

visual cortex [9–14]. These connections can extend for several millimeters on 
cortex surface. Local connections are defined as connections between neurons 
located inside an area as big as a hypercolumn (<500 µm). Especially the layer 2/3 
excitatory long-range horizontal connections have been subject to intense study 
since the discovery of their patchy layout [13]. More recent studies have 
confirmed the patchy, iso-orientation biased, layout of these connections [10,12]. 
The patches do, however, vary in size. Kisvárday et al. [10] report that the patch 
size can vary between 200 and 1000 µm in area 17 of cat. Observe that an iso-
orientation domain is roughly 400–600 µm in diameter. These values indicate that 
the patches are heterogeneous. Differences in orientation preferences between 
striate cells up to 90º inside such a patch are not unusual. Furthermore, according 
to Kisvárday et al. [10], also the local connections prefer the iso-orientation 
domain, i.e. the local connections show same connectivity patterns as the long-
range horizontal connections. Schmidt et al. [12] do also report axial specificity of 
the excitatory long-range horizontal connections. Later we will see that this 
anisotropy, also shown by our network model, can explain some of the 
observations described above [4–8]. 

On the contrary, the excitatory long-range horizontal connections found in layer 
4 have drawn less attention [11,14]. However, the study by Yousef et al. [11] 
reveals some of the layer 4 excitatory long-range horizontal connections’ 
properties. This study indicate that these connections are not, or very little, biased 
towards iso-orientation domains. The excitatory long-range horizontal connections 
to iso-, oblique- and cross-orientation domains are almost equal in distribution. 
However, local connections are still biased towards the iso-orientation domain. It 
seems that independent of the layer, the excitatory long-range connections are 
neither random nor restricted to iso-orientation domains. We can therefore assume 
that crosstalk between different orientation domains is a prominent feature of both 
layer 4 and layer 2/3. This belief is also supported by the experiments described 
above [4–8]. 

According to the findings by Hubel and Wiesel [15] the primary visual cortex 
has a modular structure (for a recent review see [16]). It is composed of orientation 
minicolumns each one comprising some hundreds of excitatory cells and a smaller 
number of inhibitory interneurons of different kinds. Contrast edge orientation is 
coded such that the striate cells in each orientation minicolumn respond selectively 
to a broad range of orientations. A recent study by DeAngelis et al. [17] reveal the 
degree of invariance of response variables like orientation, spatial frequency and 
relative spatial phase. Orientation was highly clustered, closely followed by spatial 
frequency. One response variable did, however, not show any evidence of 
clustering, namely, the relative spatial phase. Furthermore, an orientation 
hypercolumn contains orientation minicolumns with response properties 
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distributed over all angles, and thus represents the local edge orientation pertinent 
to a given point in visual space. 

The Bayesian Confidence Propagation Neural Network model (BCPNN) has 
been developed in analogy with the known generic cortical structure [25]. This is 
an abstract neural network model in which each unit corresponds to a cortical 
minicolumn. The network is partitioned into hypercolumn-like modules and the 
summed activity within each hypercolumn is normalized to one. We hypothesize 
that normalization can be carried out by large basket cells [28]. We assume that 
these cells inhibit an area that corresponds to a hypercolumns. 

A patch of layer 4 of cat area 17 has been modeled. This developmental network 
model is based on the modular structure of the neocortex. BCPNN incremental 
learning algorithm develops the connections between the units. The correlation-
based network captures some of the known properties of area 17 of cats, such as 
dense local and sparse distal connectivity. The network has two different types of 
interneurons. Large basket cells are responsible for keeping the total activity 
within a hypercolumn constant. The second group of interneurons, the inhibitory 
simple cells, mediate local and distal inhibition through targeting excitatory cells 
that are located in their close surroundings and have opposite absolute and relative 
spatial phase (relative to the interneuron). Excitatory local connections seem to be 
biased towards the iso-orientation domain. However, excitatory long-range 
horizontal connections target all orientation domains in a balanced manner, thus 
there is a strong crosstalk between all orientation domains. Note however that 
some of the targets of the long-range horizontal connections are excitatory cells, 
whereas some are inhibitory simple cells, since the network is correlation-based. 
Furthermore, the excitatory long-range horizontal connections are mildly 
elongated along the orientation axis, most likely as a result of the stimulus 
configuration. During the learning phase the stimuli were contrast edges. Note that 
on the contrary to layer 2/3, there has not been any report on axial specificity of 
the layer 4 long-range horizontal connections. Nevertheless, we believe that the 
network behavior supports the existence of elongated summation pools in visual 
cortex, and gives a simple explanation for how it might be carried out within area 
17. There are a variety of feedforward and recurrent models of area 17 (see review 
[3]), however, very few of them address the questions related to response 
facilitation as a consequence of elongated summation pools. Recently, Grossberg 
and Raizada [31] modeled perceptual grouping based on long-range horizontal 
interactions within area 17. In that model, layer 2/3 complex cells are responsible 
for contrast-sensitive perceptual grouping. 
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9.2 Network Model 
As stated before the columnar organization of the primary visual cortex [15] is the 
main influence of our network model. We hypothesize that area 17 is composed of 
repetitive structures, i.e. orientation minicolumns. We assume further that the 
orientation minicolumns can be grouped around hypothetical centers, the so-called 
pinwheels [18], to form modules we refer to as hypercolumns. We hypothesize that 
a hypercolumn can be built from a finite number of orientation minicolumns each 
representing a unique orientation (Fig. 9.1B). The network model used during the 
simulations consists of 220 (11x20) hypercolumns arranged to form a hexagonal 
array (Fig. 9.1A). The diameter of the circular hypercolumns, and thus the distance 
between two adjacent hypercolumns is 0.7 mm [19]. The size of the network 
model in cortical dimensions is 5.6x14.4 mm (Fig. 9.1A). The distance between the 
RF centers of two adjacent hypercolumns corresponds to 0.2º of visual angle (at 2º 
of eccentricity [19]). The visual world covered by the model is 2.4x5.4º. Note that 
the modeled cortical patch and hence the visual field covered by the network 
model is elongated. This shape was chosen after observing the mildly elongated 
shape of the excitatory long-range horizontal connections, and having the 
computational limitations in mind. However no artifacts related to corner effects 
due to the elongated shape of the network model was noticed during the 
simulations. 

Each hypercolumn consists of 12 units, representing 6 orientation minicolumns 
(Fig. 9.1B). The difference in orientation preference between two successive units 
inside a model hypercolumn is 30°. Observe that having this configuration, we 
represent every orientation twice with two so-called anticorrelation units. These 
anticorrelation units represent same orientation. However, they have opposite 
absolute and relative spatial phases, so that their subfields with opposite sign 
overlap. The magnified RF figures inside the middle hypercolumn are detecting 
vertical lines and have opposite absolute and relative spatial phases (Fig. 9.1B), 
thus they qualify as anticorrelation pairs. 

The RF centers of the units belonging to a model hypercolumn are positioned in 
the center of their host hypercolumn. As a consequence of this arrangement the 
units belonging to a hypercolumn are analyzing the same spot of the visual field. 
The RF of the units are designed as contrast edge detectors, and hence composed 
of two elongated subregions with opposite sign (Fig. 9.1B). Orientation tuning of 
the LGN input is 40º at half-width at half-height [20], suggesting a subfield aspect 
ratio of 3:1. The RF width is 1º [19], and hence the RF height is 1.5º. Figure 9.1A. 
shows how a RF, in this case belonging to the units located in the middle 
hypercolumn detecting vertical lines (Fig. 9.1B), are related to the rest of the 
network. We can see that there is an overlap between the RF:s of these two units 
and the rest of the network. Furthermore, all units are tuned for the same spatial 
frequency of 1 cycle/degree [19]. The thalamic input of the units is computed 
using a model developed by Troyer et al. [23]. 
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9.3 Simulation Results 
The simulations are divided into two parts. Firstly, BCPNN incremental learning 
algorithm [15] is used to train the fully connected recurrent network of units. The 
objective is to see if the BCPNN algorithm can develop a network that resembles 
the primary visual cortex [9–14]. Later we address the question of whether or not 
this network can explain some of the reported psychophysical observations, 
especially those related to response facilitation [5]. 

Briefly the BCPNN incremental learning algorithm behaves in the following 
way. If two units are correlated during a time step, the connection between them 
strengthens. This corresponds to the creation of an excitatory connection. 
However, anticorrelation between two units will result in an inhibitory connection 
(via a local inhibitory interneuron [26,27]). Hirsh and colleagues [26] have 
reported that there are inhibitory simple and complex cells in cat area 17. 
Furthermore, according to the study by Ferster [27] interneurons mediate 
inhibition between excitatory simple cells, which have opposite absolute spatial 
phase. Based on the results by Ferster [27] and Hirsh et al. [26] we assume that 
interneurons inhibit excitatory cells located in their close surroundings. We 
hypothesize further that the interneurons and their postsynaptic excitatory cell 
targets have overlapping receptive fields and opposite absolute spatial phases, 
relative each other. The implication of this scheme is that any given excitatory cell 
can, through an interneuron, inhibit another excitatory cell. Note that both local 
and distal inhibition can be mediated by these interneurons, since excitatory cells 
located in an arbitrary place can target an interneuron. Kayser and Miller [22] have 
proposed a similar model called the opponent inhibition model based on [27]. 
Their model assumes, however, that exclusively excitatory cells that have similar 
receptive field profile, i.e. same orientation preference and same absolute spatial 
phase, target the interneurons. Kayser and Miller [27] also assumed that the 
excitatory cell’s receptive field and its inhibitory target’s receptive field coincide 
in visual space. Hypothetically the whole network is local and can be located 
within an orientation minicolumn. 

According to the BCPNN incremental learning algorithm, if units are 
uncorrelated, the connection value will fluctuate around zero value. This means 
that the weight between two units is a measure of the correlation between them. 
From this follows also that the weight matrix is symmetric, and hence can be 
interpreted both as projections from one unit to all units in the network, and 
projections from all units into one. Note that normalization limits the total activity 
within a hypercolumn to one. This is done mathematically by dividing activity 
level of each unit within a hypercolumn by the total activity of its host 
hypercolumn. It is, however, assumed that large basket cells are responsible for 
normalization within area 17 [28]. 

Training of the fully connected network lasts for 1000 simulation steps. The 
time step is defined as 1 second, and hence the simulation duration corresponds to 
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1000 seconds. The learning rate, which defines the degree of weight modification, 
is 0.005 [15]. At every time step, the activity levels of the units are initiated with a 
new arbitrary contrast edge stimulus. The position and the orientation of the 
stimulus are sampled from a uniform distribution. The stimulus width is 1º, and its 
spatial frequency is 1 cycle/degree. Observe that for convenience the width and the 
spatial frequency of the stimulus is the same as that of the RF. 

Noise is added to the activity levels through several steps. First a normally 
distributed noise with a standard deviation of 10% of the so-called bias value is 
added. The bias value is defined as the value of all units inside a hypercolumn in 
absence of any stimulus. The activity levels are rectified so that all negative 
activity levels are set to zero, and a 5-10% uniform distribution noise is added to 
all units to simulate the background activity. Later the activity levels are 
normalized so that the sum of activities in each hypercolumn is equal to one, as 
required by the BCPNN incremental learning algorithm. The contrast of the 
stimulus is 100%, though the effect of high noise in combination with the 
normalization procedure lowers this level considerably. 

We see that in general the local connections do have higher amplitude than the 
long-range horizontal connections. This indicates strong local and sparse distal 
connectivity (Fig. 9.2A). The developed network is correlation-based and 
incorporates a second group of interneurons (after the large basket cells), which 
are hypothesized to be the inhibitory simple cells described by Hirch et al. [26] 
(see also [27]). 

Not surprisingly, the ‘reference unit’ is most correlated with itself (Fig. 9.2A). 
Units that are correlated excite each other (Fig. 9.2A). Units that are anticorrelated 
(not only anticorrelation pairs) inhibit each other through inhibitory simple cells, 
which have opposite absolute and relative spatial phase compared to their 
postsynaptic targets (Fig. 9.2A). We hypothesize that these interneurons could be 
driven by both local and distal excitatory cells that are anticorrelated with the 
targets of the interneurons. We assume further that the connection strengths 
between the inhibitory simple cells and their excitatory targets are constant. 

The mildly elongated shape (along the orientation axis) of the connections made 
by the reference unit reveals the axial specificity of the excitatory long-range 
horizontal connections (Fig. 9.2A). This result is in agreement with the results of 
Schmidt et al. [12] and others on layer 2/3 of several species. Note however that 
the layer 4 network seems to be less elongated than layer 2/3. 

As shown by Yousef et al. [11], all distal orientation domains are targets of the 
long-range horizontal connections. The connection matrix shows that, some of the 
excitatory long-range horizontal connections are targeting excitatory cells located 
in iso-orientation domains, whereas others are targeting local interneurons 
positioned in all three orientation domains (2A). Obviously there is an intense 
crosstalk between all orientation domains, made by the excitatory long-range 
horizontal connections. Note further that the inhibitory long-range horizontal 
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connections are not the subject of study, since all long-range horizontal 
connections are considered to be excitatory. 

A more detailed analysis of the excitatory long-range horizontal connections 
uncovers the type of these connections. We see that the strength of the excitatory 
connections between the reference unit, and units having same orientation 
preference and absolute (and relative) spatial phase tend to decrease along the axis, 
which corresponds to the preferred orientation of the reference unit. Along the 
orthogonal axis, connection type is switched from excitatory to inhibitory, as an 
effect of anticorrelation (Fig. 9.2A). Note also that again along the orthogonal axis, 
the reference unit is correlated with the units having opposite relative spatial 
phases, but similar absolute spatial phases (Fig. 9.2A). These observations indicate 
that units with similar absolute spatial phases excite each other. DeAngelis et al. 
[17] showed recently that relative spatial phase did not show any evidence of 
clustering, and local pooling across simple cells with different spatial phases was 
proposed to improve signal quality. These ideas support the connectivity pattern 
between the iso-orientation domains. 

Above, we showed that the network captures important properties of the 
connection pattern found within area 17. In the second part of the simulations, we 
will see if this network can predict some of the psychophysical effects especially 
those related to elongated summation pools in visual cortex [5]. But first, a brief 
explanation of the balance between the excitatory cortical input and the thalamic 
input received by the units. Chung and Ferster [20] reported that cortical 
suppression left only 46% of the visually evoked response of the striate cells 
receiving monosynaptic input from the thalamus. This balance is preserved in our 
network model such that at 100% contrast the input to a unit is 46% of maximum 
theoretical input, and the cortical input is scaled accordingly. The maximum 
theoretical input is defined as the strongest excitatory input that is possible to 
receive by a unit from the rest of the network. Normally distributed noise with a 
standard deviation of 10% of the maximum theoretical input is added to the total 
input of every unit. The simulation time step is 10 ms, and the ‘membrane time 
constant’ of the units is 50 ms [15]. 

The simulation consists of two phases. During these both phases the stimulus is 
a vertical contrast edge, positioned in the center of the network. This stimulus is 
identical to the stimuli used during the training of the network. In the first phase, 
the units receive both thalamic input and cortical excitatory and inhibitory input 
(Fig. 9.2B). The thalamic input is amplified by the cortical connections and all 
hypercolumns are converging after 50 ms, even those receiving weak input. In the 
second phase, the units receive only thalamic input (Fig. 9.2C). However, the 
thalamic input is not sufficient for the majority of the hypercolumns; only those 
receiving maximum thalamic input can converge. Note the difference in 
convergence speed and quality between these two cases after 50 ms. The role of 
excitatory long-range horizontal connections in sharpening of the responses of the 
units receiving weak thalamic input is evident. 
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The experiment by Polat and Norcia [5] shows that elongation of a Gabor patch 
along the orientation axis results in facilitation of the responses of the striate cells 
in visual cortex. As a result, elongated physiological summation pools are 
proposed. We hypothesize that the mildly elongated shape of the long-range 
horizontal connections along the orientation axis (Fig. 9.2A) can explain the 
facilitation described by Polat and Norcia [5]. Furthermore, pooling across simple 
cells with different, in our network model opposite, relative spatial phases (same 
absolute spatial phase) might also play an important role improving signal quality 
[17]. Finally, we presume that at least qualitatively, the simulations show the 
facilitatory effect of the excitatory long-range horizontal connections (Fig. 9.2B 
and 9.2C). 

9.4 Discussion 
A patch of layer 4 of cat area 17 has been modeled. This developmental network 
model is based on the modular structure of the neocortex. BCPNN incremental 
learning algorithm develops the connections between the units. The correlation-
based network captures some of the known properties of area 17 of cats, such as 
dense local and sparse distal connectivity. The network has two different types of 
interneurons. Large basket cells are responsible for keeping the total activity 
within a hypercolumn constant. The second group of interneurons, the inhibitory 
simple cells, mediate local and distal inhibition through targeting excitatory cells 
that are located in their close surroundings and have opposite absolute and relative 
spatial phase (relative to the interneuron). Excitatory local connections seem to be 
biased towards the iso-orientation domain. However, excitatory long-range 
horizontal connections target all orientation domains in a balanced manner, thus 
there is a strong crosstalk between all orientation domains. Note however that 
some of the targets of the long-range horizontal connections are excitatory cells, 
whereas some are inhibitory simple cells, since the network is correlation-based. 
Furthermore, the excitatory long-range horizontal connections are mildly 
elongated along the orientation axis, most likely as a result of the stimulus 
configuration. During the learning phase the stimuli were contrast edges. Note that 
on the contrary to layer 2/3, there has not been any report on axial specificity of 
the layer 4 long-range horizontal connections. Nevertheless, we believe that the 
network behavior supports the existence of elongated summation pools in visual 
cortex, and gives a simple explanation for how it might be carried out within area 
17. 

During the learning phase exclusively contrast edges stimuli were used. We 
believe that this affected the layout of the local and long-range horizontal 
connections significantly. One obvious question is how other types of stimuli like 
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sinusoidal gratings or other shapes might affect the layout of these connections. 
Our intention is to address this question in the near future. 
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Abstract 
We present a quantitative assessment of the local and long-range horizontal 
connections within two separate models of layer 4 and layer 2/3 of the striate 
cortex. Connections between the orientation minicolumns, building the models, are 
developed during exposure to visual input. Layer 4 long-range horizontal 
connections target all orientation domains in a balanced manner, whereas local 
connections are biased towards the iso-orientation domain. However, both local 
and long-range horizontal connections of the layer 2/3 network are biased towards 
the iso-orientation domains. We hypothesize that the patchy layout of the layer 2/3 
long-range connections is a consequence of excitatory cells targeting mainly other 
excitatory cells located in distal iso-orientation domains. Furthermore, both 
networks demonstrate dense local and sparse distal connectivity. 

10.1 Introduction 
The columnar organization of the neocortex [6,15] is one of the most influential 
findings in neuroscience [16]. Hubel and Wiesel [15] found that the striate cortex 
(primary visual cortex) is composed of orientation minicolumns each one 
comprising some hundreds of excitatory cells and a smaller number of inhibitory 
interneurons of different kinds. Vertical penetration of the cortex showed that 
contrast edge orientation is coded such that the cells in each orientation 
minicolumn respond selectively to a broad range of orientations. Furthermore, 
orientation selectivity was shifted smoothly during horizontal penetration. One 
decade earlier, Hubel and Wiesel [1] addressed the fundamental question of the 
orientation selectivity of the cortical cells. The proposed model of orientation 
selectivity, which is known as the ‘feedforward’ model, relies heavily on the 
arrangement of the thalamic afferents. According to this arrangement, the ON-
center LGN cells converge on the ON-subregions of a simple cell’s receptive field 
(RF). The OFF-subregions of a simple cell were constructed in the same way by 
the OFF-center LGN cells (see also [2]). Still today the Hubel and Wiesel 
feedforward model serves as a model of the thalamocortical circuitry. However, 
some of the orientation selectivity properties are not possible to predict by the 
feedforward model [3]. Contrast invariance of orientation tuning is one such 
example. As contrast increases the height of the response curve increases while the 
width remains almost constant [21]. Furthermore, the psychophysical studies 
examining the long-range spatial interactions within the visual cortex clearly 
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demonstrate that the cortical circuitry plays a major role in cortical cell responses. 
Polat and Norcia [5] demonstrated that elongation of a Gabor patch along the 
orientation axis results in facilitation of the responses of the cells in visual cortex, 
probably as an effect of summation fields. 

Since the discovery of the patchy layout of the layer 2/3 long-range horizontal 
connections [13], the layout and the function of intracortical connections have 
started to drawn more attention. It is now widely accepted that the long-range 
horizontal connections of the superficial layers are a prominent feature of the 
visual cortex [7–14]. More recent studies on a variety of species have confirmed 
the patchy, iso-orientation biased, layout of these connections [7,8,10,12]. A study 
by Kisvárday et al. [10] shows that 56.2% of the excitatory local connections 
target the iso-orientation (±30º) domain. Oblique- (±30–60º) and cross-orientation 
(±60–90º) domains receive 28.4 and 15.3 per cent of the connections respectively. 
Long-range connections show a similar pattern, i.e. 40.0% of them descending 
from the injection site are targeting the iso-orientation domains, 36.9% the 
oblique-, and 23.1% the cross-orientation domains. Same study reveals also that 
only 30% of the excitatory connections from an injection site, in area 17 of cat, are 
defined as distal (>0.5 mm), and thus the majority of the connections target nearby 
cells. A recent study by Chisum et al. [8] reveals the fall-off in bouton distribution 
as a function of distance from an injection site. Number of boutons along the 
preferred axis is down to 15% of the maximum only 0.7 mm from the injection 
site. At 1.4 mm the number of boutons is roughly 5% of the maximum. The 
decrease along the orthogonal axis is even more dramatically. Thus, axial 
specificity of the layer 2/3 long-range connections is prominent. Chisum et al. [8] 
show that the dramatic fall-off with distance implies that most long-range 
connections are between neurons for which the RFs overlap by at least 50%. 
Furthermore, the long-range horizontal connections are to be responsible for the 
summation field of the neurons. Chisum et al. [8] observe also the similarity 
between the elongated RF and axial specificity of the long-range connections.  

Surprisingly, the long-range horizontal connections found in the layer 4 have 
drawn much less attention. Layer 4 is the main recipient of the thalamic input, and 
the simple cells found in the cat layer 4 are well tuned for orientation [1,2]. Thus, 
the interplay between the orientation map and the layout of long-range connections 
is essential for understand the origins of orientation selectivity. The findings 
suggest that the layout of the layer 4 long-range horizontal connections is different 
from those found in the superficial layers [8,10,11,14]. Their extent is only 50% of 
the long-range connections of the superficial layers [10]. Furthermore, Yousef et 
al. [11] found that layer 4 long-range connections (of area 18) are hardly biased 
towards iso-orientation domains. 35.4% of the connections (>740 µm) targeted the 
iso-orientation domain. Oblique- and cross-orientation domains received 33.7% 
and 30.9% of the connections respectively. The pattern shown by the local 
connections (<740 µm) is different. The local iso-orientation domain receive 
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60.0% of the connections, while 22.0% of the connections are targeting the 
oblique- and 18.0% the cross-orientation domains. Note that as much as 40% of 
the local connections are targeting oblique- and cross-orientation domains. 
Inhibitory long-range horizontal connections extent only one third to one half of 
the excitatory network, and the excitatory ones out number them. Thus, majority of 
the long-range connections are considered to be excitatory in both layer 4 and 
layer 2/3 [10]. It seems that independent of the layer, the excitatory long-range 
horizontal connections are neither random nor restricted to iso-orientation 
domains. Consequently cross talk between different orientation domains is a 
prominent feature of both the layer 4 and the superficial layers. 

The Bayesian Confidence Propagation Neural Network (BCPNN) has been 
developed in analogy with the known generic cortical structure [24]. This is an 
abstract neural network architecture in which each unit corresponds to a cortical 
minicolumn. The learning rule is based on Hebb’s ideas on synaptic plasticity and 
emergence of cell assemblies [26]. Thus, correlated activity reinforces the 
connections between the units. Anti-correlated activity results in weakening of a 
connection, and emergence of an inhibitory one. The network is partitioned into 
hypercolumn-like modules and the summed activity within each hypercolumn is 
normalized to one. A biologically plausible model of a hypercolumn module based 
on the BCPNN was presented recently [28]. 

A quantitative assessment of the local and long-range horizontal connections 
within two separate models, of layer 4 and superficial layers, of the striate cortex 
is presented. Long-range horizontal connections of the layer 4 network target all 
orientation domains in a balanced manner, whereas local connections are biased 
towards the iso-orientation domain. The pattern shown by the layer 2/3 network is 
different. Both local and long-range horizontal connections are biased towards the 
iso-orientation domains. We hypothesize that the patchy layout of the layer 2/3 
long-range connections is a consequence of excitatory cells targeting mainly other 
excitatory cells located in distal iso-orientation domains. Both networks 
demonstrate dense local and sparse distal connectivity as a result of fall-off with 
distance. Furthermore, tests with contrast edges indicate that both layer 4 and layer 
2/3 networks can detect contrast edges, which have low contrast. However, these 
tests need to be verified quantitatively. 
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Figure 10.1. A, Layer 4 network connections, which originate from the abstract 
injection positioned at 90º (illustrated with a gray circle), visualized by 9x11 polar-
plots organized as the network model. Each polar-plot represents a hypercolumn 
module. The legend (top right) shows the orientation of the units in each polar-plot, 
consequently the relative spatial phases are ignored. Distance from the origin is 
proportional to the strength of the connection. The oval marks the RFs of units 
detecting vertical lines inside the host hypercolumn. We see that these units’ RF 
overlap with many other hypercolumns, and hence indicate strong overlap between RF 
of units situated in neighboring hypercolumns. Note the elongated shape of the long-
range connections. B, Same as A but for the layer 2/3 network connections.  

10.2 Network Model 
As stated before the columnar organization of the striate cortex [15] is the main 
influence of our network model. We hypothesize that V1 is composed of repetitive 
structures, i.e. orientation minicolumns. We assume further that the orientation 
minicolumns can be grouped around hypothetical centers, the so-called pinwheels 
[18], to form modules we refer to as hypercolumns. We hypothesize that a 
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hypercolumn can be built from a finite number of orientation minicolumns each 
one representing a unique orientation. The network model used during the 
simulations consists of 99 (9x11) hypercolumns arranged to form a hexagonal 
array. The diameter of the circular hypercolumns, and thus the distance between 
two adjacent hypercolumns is 0.7 mm [19]. The size of the network model in 
cortical dimensions is 5.6x8.1 mm. The distance between the RF centers of two 
adjacent hypercolumns corresponds to 0.5º of visual angle (at 5º of eccentricity 
[19]). The visual field covered by the model is 4.5x7.3º. Note that the modeled 
cortical patch, and hence the visual field covered by the network model is 
elongated. This shape was chosen after observing the axial specificity of the long-
range horizontal connections, and having the computational limitations in mind. 
However no artifacts related to corner effects due to the elongated shape of the 
network model was observed during the simulations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10.2. A, Fraction of the layer 4 local (solid thick line) and long-range (dashed 
thick line) connections as a function of the deviation from the mean orientation 
selectivity at the abstract injection site. Long-range connections are equally 
distributed, whereas local connections are biased towards the iso-orientation domain. 
Furthermore, both layer 2/3 local (solid thin line) and long-range (dashed thin line) 
connections are biased towards the iso-orientation domains. B, Composition of the 
abstract injection sites for layer 4 and layer 2/3 networks. Spread of orientations inside 
these regions correspond roughly to that of an iso-orientation domain and is less than 
those in A. 

Each layer 4 hypercolumn consists of 24 units, representing 12 orientations. The 
difference in orientation selectivity between two successive units inside a model 
hypercolumn is 15°. Observe that having this configuration, we represent every 
orientation twice with two so-called anti-correlation units. These anti-correlation 
units represent the same orientation. But they have opposite relative and absolute 
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spatial phases, so that the units’ subfields with opposite sign overlap. The RF 
centers of the units belonging to a model hypercolumn are positioned in the center 
of their host hypercolumn. As a consequence of this arrangement, the units 
belonging to a hypercolumn analyze the same spot of the visual field. Furthermore, 
as shown by the oval, which represents RFs of units detecting vertical lines, there 
is a strong overlap between the RF of units situated in neighboring hypercolumns 
(Fig. 10.1A). The RFs of the units are designed as contrast edge detectors, and 
hence are composed of two subregions with opposite sign. Orientation tuning of 
the LGN input is 40º at half-width at half-height [20], suggesting a subfield aspect 
ratio of 3:1. The RF width is 1º [19], and hence the RF height is 1.5º. All units are 
tuned for the same spatial frequency of 1 cycle/degree [19]. The thalamic input of 
the units is computed using a model developed by Troyer et al. [23]. 

The inhibition is mediated by local interneurons. Recently, Hirch et al. [4] 
reported inhibitory simple cells, which have good orientation tuning, and complex 
inhibitory cells that are untuned for orientation. We assume that the inhibitory 
simple cells can mediate local inhibition to excitatory simple cells. We 
hypothesize further that the opponent inhibition theory proposed by Ferster [22] 
can explain the local circuitry of inhibitory and excitatory simple cells. Opponent 
inhibition implies that the presynaptic inhibitory simple cell has opposite absolute 
spatial phase as the postsynaptic excitatory cell. Furthermore, the cells’ subfields 
with opposite sign overlap, i.e. they have opposite relative spatial phase. We 
hypothesize that the inhibitory complex cells reported by Hirch et al. [4] can 
regulate the total activity of the excitatory cells in a region, which corresponds to a 
hypercolumn. 

10.3 Simulation Results 
The simulations are divided into two phases. During the first phase, we intent to 
show that the incremental BCPNN learning rule can develop a network that 
quantitatively resembles layer 4 local and long-range connectivity. During the 
second phase, the objective is to show that layer 2/3 local and long-range 
connectivity can be derived based on the results from the first phase and additional 
simulations. 

The incremental BCPNN learning rule [24] develops the fully connected 
recurrent network of units. The result is a weight matrix, which contains 
information on the degree of correlation between pairs of units located in the 
different regions of the network. Briefly, the incremental BCPNN learning rule 
behaves in the following way. If two units are correlated during a time step, the 
connection between them strengthens. This corresponds to the creation of an 
excitatory connection. However, anti-correlation between two units will result in 
an inhibitory connection (via a local inhibitory interneuron [4,22]). We assume 
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that the excitatory long-range connections can mediate long-range inhibition 
through local inhibitory interneurons. We hypothesize that interneurons can inhibit 
excitatory simple cells in their close surroundings as proposed by the opponent 
inhibition theory [22]. If units are uncorrelated, the weight will fluctuate around 
zero value. Thus, the weight between two units is a measure of the correlation 
between them during the training sequence. The weight matrix is symmetric, and 
hence can be interpreted both as connections from one unit to all units in the 
network, and connections from all units into one. Training of the fully connected 
network lasts for 1000 simulation steps. The time step is defined as 1 second, and 
hence the simulation duration corresponds to 1000 seconds. The learning rate, 
which defines the degree of weight modification, is 0.005 [15]. At every time step, 
the activity levels of the units are initiated with a new arbitrary contrast edge 
stimulus. The position and the orientation of the stimulus are sampled from a 
uniform distribution. The stimulus width is 1º, and its spatial frequency is 1 
cycle/degree. Observe that for convenience, the width and the spatial frequency of 
the stimulus is the same as that of the RFs. Noise is added to the activity levels 
through several steps. First a normally distributed noise with a standard deviation 
of 10% of the so-called bias value is added. The bias value is defined as the mean 
activity of an arbitrary unit inside a hypercolumn in absence of stimulus. The 
activity levels are rectified so that all negative activity levels are set to zero, and a 
5-10% uniform distribution noise is added to all units to simulate the background 
activity. Later the activity levels are normalized so that the sum of activities in 
each hypercolumn is equal to one, as required by the incremental BCPNN learning 
rule. The contrast of the stimulus is 100%, though the effect of high noise in 
combination with the normalization procedure lowers this level considerably.  

Recently we reported the behavior of a layer 4 network similar to the current 
network [25]. We saw that the long-range connections have facilitory effect on the 
units. This result was in line with the elongated summation pools proposed by 
Polat et al. [27]. The network could detect a noisy contrast edge much faster in 
presence of the intracortical connections. As revealed by the weight matrix, the 
modular specificity of the long-range connections targeting excitatory cells was 
prominent. Cross-orientation domains were inhibited through excitatory long-
range connections targeting local inhibitory interneurons. However, quantitative 
values on corticocortical connections reported by Yousef et al. [11] and others are 
based on connections from cells located inside an injection site, which can be 200–
400 µm across, i.e. roughly an iso-orientation domain. Inside such a patch we find 
cells with a broad range of orientation preferences. Note that the information 
available as the weight matrix is fundamentally different from the data on the 
connections from an injection site. As a consequence, an abstract injections site, 
which corresponds to a typical iso-orientation domain, is constructed (Fig. 10.2B). 
Spread of orientation preferences inside an orientation minicolumns is also an 
important factor while constructing an abstract injection site. Note that Murphy 
and Sillito [17] reported that orientation selectivity could vary 9–18º inside an 
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orientation minicolumn. To enable a quantitative assessment, the connections 
originating from the abstract injection site are divided into local connections, i.e. 
connections to the units inside the so-called host hypercolumn, and long-range 
connections, i.e. connections to units located in all other hypercolumns. The 
abstract injection site is located inside the host hypercolumn. Connection strengths 
from this abstract injection site is defined as the weighted sum of connections from 
each one of the units participating in the connection. The size of this weight 
corresponds to a fraction that defines the occurrence of neurons with a given 
orientation selectivity inside the injection site, which has the size of an iso-
orientation domain (Fig. 10.2B). The strength of the connections is visualized as 
polar-plots (Fig. 10.1A). Connections to distal hypercolumns, which are >15% of 
the connections within the host hypercolumn are plotted and used during the 
quantitative assessment. Calculations show that 43.3% of the local connections 
target the iso-orientation domain (Fig. 10.2A). Oblique-orientation domain’s share 
of the local connections is 33.1%, and the cross-orientation domain receives 23.6% 
of the local connections. However, the distribution of the excitatory long-range 
connections differs prominently. Only 35.5% are targeting the iso-orientation 
domains. The oblique- and cross-orientation domains receive, respectively, 32.4 
and 32.1 per cent of the connections. These values are close to reported values of 
Yousef et al. [11]. To test the parameter dependencies, the abstract injection site 
was set to infinity, i.e. nearly the whole model. The distributions were almost 
equal for all three orientation domains, both for local and distal connection. Iso-
orientation domains were targeted by 34.6% of the connections, while 33.7 and 
31.7 per cent of the connections targeted oblique- and cross-orientation domains 
respectively. 

The patchy layout of the layer 2/3 long-range connections is investigated by a 
series of simulations. The layer 2/3 network used during the simulations has 
similar set up as the previous networks, which were used to investigate the layer 4 
connectivity. However, now the units have complex cell RFs, and hence only 12 
units are needed in each hypercolumn instead of 24 as earlier. Input to a complex 
cell unit is defined as the sum of rectified inputs to the anti-correlation unit pairs, 
found in the layer 4 network, having the same orientation selectivity as the 
complex cell unit. Note that the anti-correlation pairs have same orientation 
selectivity but opposite relative spatial phase, i.e. they detect the same orientation 
but opposite phase. We hypothesize that the patchy layout of the layer 2/3 network 
is, at least partially, a consequence of excitatory cells targeting mainly other 
excitatory cells located in distal iso-orientation domains. To test this hypothesis 
the excitatory connections targeting the inhibitory interneurons are removed (Fig. 
10.1B). The distribution of the long-range connections from the abstract injection 
site is 58.4% to iso-, 31.4% to oblique- and 10.2% to cross-orientation domains 
(Fig. 10.2A). Local connections show a similar pattern. The iso-orientation domain 
receives 54.3% of the connections. Oblique- and cross- orientation domains 
receive 33.4 and 12.3 per cent respectively. Kisvárday et al. [10] report a similar 
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distribution for the local connections, whereas the long-range connections reported 
by Kisvárday et al. [10] are less orientation specific.  

The fall-off with distance for both layer 4 and layer 2/3 networks is less than the 
reported values by Chisum et al. [8]. We found that the degree of overlap between 
RFs of units situated in adjacent hypercolumns is one decisive factor that controls 
the degree of fall-off. When the distance between the RF centers of two adjacent 
hypercolumns increased, the extent of the long-range connections is reduced (not 
shown here). A consequence of the fall-off with distance is dense local and sparse 
distal connectivity demonstrated by both networks. Furthermore, the elongated 
shape of the long-range connections of both networks matches well the RF aspect 
ratio of the units. These findings are in line with the reported similarities between 
RF shape and the extent of the long-range connections by Chisum et al. [8]. 
Furthermore, preliminary results indicate that both networks can detect low 
contrast (15%) stimulus, defined as contrast edge. However, to confirm this 
observation and investigate the optimal extent of the long-range horizontal 
connections, in relation to the RF sizes and shapes, additional simulations must be 
carried out. 

10.4 Discussion 
We presented a quantitative assessment of the layer 4 and layer 2/3 local and long-
range horizontal connections based on two separate models. Our results show that 
layer 4 long-range horizontal connections target all orientation domains in a 
balanced manner, whereas layer 4 local connections are biased towards the iso-
orientation domain. However, the layer 2/3 network is significantly different. Both 
local and long-range horizontal connections of the layer 2/3 network are biased 
towards the iso-orientation domains. We hypothesize that the patchy layout of the 
long-range connections is a consequence of excitatory long-range connections 
targeting mainly other excitatory cells located in distal iso-orientation domains. 
Furthermore, the fall-off with distance results in dense local and sparse distal 
connectivity for both networks. Preliminary results indicate that the layer 2/3 
network, like the layer 4 network, can detect low contrast stimulus. We intend to 
confirm this observation by further simulations in the near future. The optimal 
extent of the long-range horizontal connections, in relation to the RF sizes and 
shapes, needs also be investigated more carefully. 
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