
Towards Earlier Fault Detection by Value-Driven
Prioritization of Test Cases Using Fuzzy TOPSIS

Sahar Tahvili∗†, Wasif Afzal†, Mehrdad Saadatmand∗, Markus Bohlin∗, Daniel Sundmark†, Stig Larsson∗

∗Swedish Institute of Computer Science (SICS), SICS Swedish ICT Västerås AB, Sweden
†Mälardalen University, Västerås, Sweden

Email: {sahart, mehrdad, markus.bohlin, stig.larsson}@sics.se
† wasif.afzal, daniel.sundmark@mdh.se

Abstract—In industrial software testing, development projects
typically set up and maintain test suites containing large numbers
of test cases. Executing a large number of test cases can be
expensive in terms of effort and wall-clock time. Moreover,
indiscriminate execution of all available test cases typically lead
to sub-optimal use of testing resources. On the other hand,
selecting too few test cases for execution might leave a large
number of faults undiscovered. Limiting factors such as allocated
budget and time constraints for testing further emphasizes the
importance of test case prioritization in order to identify test
cases that enable earlier detection of faults while respecting such
constraints. In this paper, we propose a multi-criteria decision
making approach for prioritizing test cases in order to detect
faults earlier. This is achieved by applying the TOPSIS (Technique
for Order of Preference by Similarity to Ideal Solution) decision
making technique combined with fuzzy principles. Our solution
is based on important criteria such as fault detection probability,
execution time, complexity, and other test case properties. By
applying the approach on a train control management subsystem
from Bombardier Transportation in Sweden, we demonstrate how
it helps, in a systematic way, to identify test cases that can lead
to early detection of faults while respecting various criteria.

Keywords–Software Testing, Fault Detection, Test Cases Priori-
tization, Optimization, Fuzzy Logic, MCDM, TOPSIS, Failure Rate

I. INTRODUCTION

Value-based software engineering [1] emphasizes the impor-
tance of integrating value considerations in software develop-
ment. In software testing, prioritizing by value has immediate
benefits, given that a lot of time and effort is spent on testing,
rework and fixing of faults. In this paper, we use a value-
based method of test case prioritization whereby we combine a
multi-criteria decision making (MCDM) technique with fuzzy
logic. The MCDM technique used is called TOPSIS (Technique
for Order of Preference by Similarity to Ideal Solution) [2]
that is combined with fuzzy principles and hence called as
FTOPSIS [3]. To optimize for value, we have considered
multiple factors but start with factors most important from
a customer perspective: quality and time-to-market. In order
to maximize quality, we want to execute test cases having
higher fault detection probability while in order to reduce
time-to-market, we need to minimize time in terms of reduced
number of test executions. Still, we want to satisfy additional
criteria such as cost and requirements coverage but after having
optimized for the most important ones. The advantages of

using TOPSIS include its ease of use, simplicity and ability to
keep constant steps regardless of the problem size [4]. Using
fuzzy principles with TOPSIS suits the problem of test case
prioritization which is characterized by interplay of complex
factors and difficulties in gathering precise data. Considering the
time and cost required to execute each test case from a test suite,
the ideal situation is to detect the same number of faults (as
detected by the whole test suite) by executing as few test cases
as possible and under minimum amount of time. To achieve this
goal, prioritization of test cases based on their fault detection
probability and execution time is required. However, other
test case properties such as the number of requirements that
they cover may also serve as additional prioritization criteria.
Properties such as these are important for testers and thus
need to be considered as well. Therefore, in our optimization
problem to find the closest solution (i.e., a set of test cases) to
the aforementioned ideal situation, such other criteria play a role
and can affect the result. It is naturally beneficial to use a multi-
criteria technique for solving such a prioritization problem. This
paper, proposes such an approach for prioritizing a set of test
cases for integration testing by using TOPSIS. Our approach
enables to identify a set of test cases which are closest to the
ideal situation, and therefore, contribute towards the ultimate
goal of identifying faults earlier and under a shorter time. To
facilitate the application of our approach in real world scenarios
where precise specification of quantified values for different
criteria may not always be possible, we apply and combine
fuzzy concepts with TOPSIS to enable the specification of
values using linguistic variables (i.e., high, low, etc.). Finally,
to demonstrate and evaluate the applicability of our approach,
we have applied it on a train control management subsystem
from Bombardier Transportation AB, Sweden, hereby called
as BT.

II. BACKGROUND & PRELIMINARIES

Today, there are several aspects of optimization in the testing
process with different goals, such as increasing fault detection
rate [7], decreasing the use of redundant test cases, or use
resources more efficiently. By prioritizing test cases, we are
able to propose an order for executing test cases at different
levels of testing process. In this order, every single test case
will be ranked with a value, which can either be a “sharp” value,
or, in the context of fuzzy logic, a linguistic value (e.g., low,
high, etc.) As there are more than one criteria which can affect

the ranking of test cases, a sensible approach is to consider
several of the aforementioned objectives at the same time as
a multi-objective optimization problem (e.g. maximizing the
rate of fault detection and minimizing cost). To solve this kind
of problem, several multi criteria decision making (MCDM)
analysis techniques have been developed. MCDM techniques
formulate the problems as the interdependency between various
criteria and alternatives [4]. TOPSIS, originally developed by
Hwang and Yoon (see [2]), is one such MCDM technique which
has been shown useful when combined with a fuzzy approach,
and when there are some conflicting and no commensurable
criteria in the initial problem.

A. Motivating Example

As mentioned earlier, for using TOPSIS we need to identify
the criteria which have effect on the alternatives. Some standard
criteria for software testing might be time, cost, requirement
coverage, etc. In reality, there are some additional limitations
during the testing process, for example due to budget, time,
or resources constraints. By proposing an optimal order for
execution, we are able to execute test cases according to such
constraints. Figure 1 illustrate a MCDM problem where 5
different criteria (C1 to C5) have a direct effect on every single
alternative (test cases), of which there are 10 in total. As we
can see in Figure 1, there are limitations on budget and time in
the problem. In fact, testers can only execute a limited number
of test cases before the deadline or budget limit is reached.
‘Goal achieved’ in Figure 1 represents that testers detect the
expected number of faults after executing 8 test cases in this
particular order. The last two test cases (T9 , T10) are thus
considered as redundant.

C1

C2

C3

C4

C5

T2

T2

T1

T3

T4

T5

T6

T7

T8

T9

T10

ConstraintsAlternativesCriteriaProblem

Budget constraint

Time constraint

Goal achieved

Figure 1: Illustration of a MCDM problem with constraints.
III. PROPOSED APPROACH

The TOPSIS method is based on identification of two ideal
solutions; the positive ideal solution (PIS) and the negative
ideal solution (NIS). The PIS consists of the best value for
each criteria (taken from the set of alternatives), and similarly,
the NIS consists of the worst values for each criteria. The
PIS, in the concept of prioritizing test cases, will then be an
ideal test case which satisfies all the identified criteria properly,
such as a fast (execution) and cheap (implementation cost) test
case with very high probability of fault detection which tests
a set of complex requirements. However, the negative ideal
solution comprises slow and expensive test cases with very
low probability of detecting the faults and just tests a simple
single requirement. In TOPSIS, alternatives are then ranked

according to their distance from the PIS (in increasing order
of preference) and the NIS (in decreasing order of preference)
simultaneously [8].

NIS

TC1

TC2

PIS

TC3TC4

Faults detection probability

Ti
m

e
ef

fic
ie

nc
y

Figure 2: Positive (PIS) and negative (NIS) ideal solutions in
a bi-criteria prioritization problem for four test cases.

Figure 2 illustrates TOPSIS for two different criteria; time
efficiency and fault detection probability. Measuring the effect
of the criteria on the test cases is not an easy task as some
criteria such as execution time, can be measured by a sharp
value and some criteria like cost, can be written as a function
of time or lines of code (or other measurable criteria). For esti-
mating some other criteria (such as fault detection probability),
software developers and testers can provide estimations using
fuzzy linguistic variables by comparing test cases with each
other. For this purpose, we later extend the initial problem to
the fuzzy environment and use linguistic variables to capture
the effect of weighted values with some uncertainty. It should
be noted that this approach is not limited to any particular set
of criteria and some other criteria can well be applied. After
identifying a set of test cases that are closest to the positive
ideal solution, we can calculate the fault failure rate (explained
in Section III-C) for this set which enables us then to compare
them against other (sub-)set of test cases from the test suite or
the whole test suite. Moreover, by using the fault failure rate,
we can compare the efficiency of different set of test cases
with respect to detecting faults and the number of test cases
to execute to detect them. In short, our proposed approach
consists of the following steps to enable earlier detection of
faults through test case prioritization:

1) Identify the set of criteria for prioritization of test
cases (besides fault detection probability and time
efficiency).

2) Determine the criteria value for each test case using
fuzzy linguistic variables. This can be done, for
instance, by sending a questionnaire to testers.

3) Apply fuzzy TOPSIS in order to prioritize test cases
and find a set of test cases closest to the positive
ideal solution. During this process, consider the fault
detection probability and time efficiency criteria as
the most important among the set of criteria.

As an additional step and in order to compare and enable
the evaluation of the identified set resulting from the application
of FTOPSIS, fault failure rate can be calculated for the set
of test cases. In the following sections, we describe the fuzzy
TOPSIS method by using basic concept of fuzzy logic provided
by Yang [9], Baets and Kerre [10] and Yun Shi [11].

A. Intuitionistic Fuzzy Sets (IFS)

Fuzzy set theory was proposed by Zadeh [12] for solving
MCDM problems based on the inclusion degrees of Intuitionis-
tic Fuzzy Sets (IFS) and a membership function. In this section,
we define these formally.

Definition 1. A fuzzy set is a pair (A,mA) where A is a set
and mA : A → [0, 1]; for each x ∈ A, mA(x) is called the
grade of membership of x in (A,mA). Let x ∈ A, then x is
fully included in the fuzzy set (A,µA) if µA(x) = 1 and is
fully excluded if µA(x) = 0 where x is a fuzzy member if
0 < µA(x) < 1 (see [9]).

The membership function can be illustrated by different
shapes which helps interpreting the values appropriately. Tri-
angular, bell-shaped, Gaussian and trapezoidal membership
functions are the most common. In this paper, we use bell-
shaped membership functions (see Figure 3) which is defined
using the following formula:

cc− α1 c+ α3

µA(x)

x

1

Figure 3: Bell-shaped fuzzy membership function.

The membership of an element to a fuzzy set is a single
value between 0 and 1 and can be obtained by:

µÃ(x) =
1

1 + (x− c
α)

2b
(1)

Since in reality, there is always a hesitation degree for calcu-
lating functional and non-functional degree, a generalization of
fuzzy sets had been proposed as intuitionistic fuzzy sets (IFS)
which incorporated the degree of hesitation called hesitation
margin [13].

Definition 2. An Intuitionistic Fuzzy Set (IFS) A on a universe
U is defined as the following form: A = {(u, µA(u), νA(u)) |
u ∈ U}, where the functions uA : U → [0, 1] and vA : U →
[0, 1] define the degree of membership and the degree of non-
membership of the element u ∈ U in A, respectively, and for
every u ∈ U we have 0 ≤ µA(u) + νA(u) ≤ 1, furthermore,
πA(u) = 1− µA(u)− νA(u) called the intuitionistic fuzzy set
index or hesitation margin of u in A (see [13], [14]).

Thus, a fuzzy set can be written as:

{(u, µA(u), 1− µA(u)) | u ∈ U} (2)

IFS distributes fuzzy sets for every membership function µ and
non-membership functions ν where ν = 1− µ (see [15]).

Definition 3. A function I : [0, 1]2 ⇀ [0, 1] is called a fuzzy
implication if the following conditions are satisfied for all
x, y, z ∈ [0, 1]: if x ≤ y then I(x, z) ≥ I(y, z) and if y ≤
z then I(x, y) ≥ I(x, z) also the boundary conditions are:
I(0, 0) = I(0, 1) = I(1, 1) = 1 and I(1, 0) = 0 (see [11]).

A fuzzy implication can be calculated by using various for-
mula such as Residuated implications (R-implications), Strong
implications (S-implications) and Quantum Logic implications
(QL-implications), in this work we use Residuated implications,
proposed by Goguen [16]:

Rπ(a, b) =


1, if a = 0,

min
(
b
a , 1

)
if a > 0

(3)

Let U be a finite universe and R is an implication:

Definition 4. Inclusion degree function of IFS denoted by
IIFS , if R satisfies the following conditions (see [11]):

• ∀a, b ∈ [0, 1] and a ≤ b⇒ R(a, b) = 1

• R(a, b) is non-decreasing with respect to b and non-
increasing with respect to a.

thus:

IIFS(A,B) =
1

|U |
∑
u∈U

[λRπ(µA(u), µB(u)) + (1− λ)Rπ(νB(u), νA(u))], λ ∈ [0, 1]

(4)

where |U | is the cardinality of U and calculated as (see [17]):

|U | =
∑
u∈U

1 + µA(u)− νA(u)
2

(5)

B. Fuzzy TOPSIS

As previously mentioned, TOPSIS is based on positive
(PIS) and negative (NIS) ideal solutions. The best alternative
per time, is an alternative which has the farthest distance from
NIS and the shortest distance from PIS.

Let A = {A1, A2, ..., An} be a set of alternatives and
C = {C1, C2, ..., Cm} be a set of identified criteria. By using
IFS, we are able to represent A and C as:

A1 = {(C1, µ1,1, ν1,1), (C2, µ1,2, ν1,2), ..., (Cm, µ1,m, ν1,m)}
A2 = {(C1, µ2,1, ν2,1), (C2, µ2,2, ν2,2), ..., (Cm, µ2,m, ν2,m)}

(6)
...

An = {(C1, µn,1, νn,1), (C2, µn,2, νn,2), ..., (Cm, µn,m, νn,m)}

where µi,j indicates the degree by which the alternative Ai
satisfies criterion Cj and νi,j indicates the degree by which the
alternative Ai does not satisfy criterion Cj [15]. In FTOPSIS,
the sum of µi,j and νi,j does not exceed 1.

Definition 5. A fuzzy positive ideal solution is defined as:

PISf = {(C1,max{µi,1},min{νi,1}), . . . (Cm,max{µi,m},min{νi,m})}
(7)

Definition 6. A fuzzy negative ideal solution is defined as:

NISf = {(C1,min{µi,1},max{νi,1}), . . . (Cm,min{µi,m},max{νi,m})}
(8)

The distance between the alternatives to PISf and NISf
can be measured by inclusion degrees:

Definition 7. The inclusion degree D+(Ai) of the positively
ideal solution in alternative Ai is calculated by:

D+(Ai) = max(I(PISf , Ai)), (9)

and the inclusion degree d−(Ai) of the negatively ideal solution
in alternative Ai is respectively measured as:

d−(Ai) = min(I(Ai, NISf)) (10)

where I represents the inclusion degree function, calculated
by Eq. (4).

Definition 8. The ranking index of alternative Ai is defined
as:

Pi =
D+(Ai)

d−(Ai) +D+(Ai)
(11)

where 0 ≤ Pi ≤ 1.

If there exists i0 ∈ {1, 2, ..., n} where Pi0 =
max{P1, P2, ..., Pn}, then Ai0 is the best alternative [15]. In
fact, by selecting the maximum value of ranked index of
alternatives (Pi) per mentioned criteria, we propose a set of
alternatives which have satisfied the criteria properly. The
ranking index of alternatives in the concept of prioritizing
test cases, is a set of test cases (alternatives) which has
maximum probability of detecting faults and also has a high
time efficiency.

C. Fault Failure Rate
Definition 9. Assume T test cases which are available for use,
let F be the number of test cases that fail during the testing a
system under test. Then the failure rate λfn can be defined as
the proportion of the failed test cases on the total number of
executed test cases:

λfn =
F

T
(12)

A high value for λfn indicates that the faults are overall
easy to detect, which implies that, the executed test cases have
detected relatively more faults. However, a low value for λfn
shows that the faults in the system under test are harder to
detect [18]. To calculate the failure rate, we have checked the
initial version (the faulty version) of a set of test cases in
integration testing level at BT.

IV. APPLICATION OF FTOPSIS

As mentioned in Section III, for prioritizing test cases using
FTOPSIS, we need to identify a set of criteria having a direct
effect on test cases. In consultations with our industrial partner
(BT), the following criteria have been identified as the most
effective ones:

• Fault detection probability: The probability of fault
detection of test cases.

• Time efficiency: The sum of setup, implementation and
execution time of each test case.

• Cost: The sum of cost incurred in implementation,
hardware setup and configuration for each test case.

• Requirement coverage: The requirement(s) tested by
each test case.

A set of 86 test cases, which test Drive-Brake Control and
Auxiliary Control sub-level function groups in the train control
management system at BT at the integration testing level, has
been chosen as alternatives. To measure the effect of above-
mentioned criteria on the test cases, a questionnaire was filled
by a test expert at BT, using linguistic variables such as low,
medium and high. To avoid lengthy calculations, we present a
subset of test cases with ratings for different criteria in Table I:

TABLE I: The effect of criteria on test cases, with values very
low (VL), low (L), medium (M), high (H) and very high (VH)

Test Case ID Fault Detection Time Efficiency Cost Requirement Coverage
HVAC-007 M L L M

AirSupply-036 H L M L
Drive-S-046 M H H VH

Speed-S-IVV-005 M M VL M
AirSupply-IVV-047 M VH M M

SyTs-ExtDoors-S-IVV-011 H M L M
...

...
...

...
...

Brake-041 VH M M H

The specifications of the alternatives (test cases) and criteria
for IFS based on Eq. (6) are calculated as follows (again we
show it for a subset of test cases):

HVAC-007 ={(C1, 0.5, 0.5), (C2, 0.1, 0.9), (C3, 0.1, 0.9), (C4, 0.5, 0.5)}
Airsupply-036 ={(C1, 0, 9, 0.1), (C2, 0.5, 0.5), (C3, 0.5, 0.5), (C4, 0.1, 0.9)}

...
Brake-041 ={(C1, 0.9, 0.1), (C2, 0.6, 0.4), (C3, 0.5, 0.5), (C4, 0.5, 0.5)}

By using Eqs. (7) & (8), we calculate the positive and negative
ideal solutions:

PISf = {(C1, 1, 0.1), (C2, 0.8, 0), (C3, 0.7, 0.3), (C4, 0.9, 0.1)}
NISf = {(C1, 0.1, 0.9), (C2, 0, 1), (C3, 0.1, 0.9), (C4, 0.1, 0.8)}

The inclusion degrees of PIS and NIS are calculated by
Eqs. (9) & (10) and the results have been summarized in Table
II.

TABLE II: The inclusion degrees of PISf and NISf in Ai

HVAC-007 Airsupply-036 Drive-S-046 ... Brake-041
I(PISf , Ai) 0.35 0.45 0.51 0.61
I(Ai, NISf) 0.78 0.41 0.48 0.45Table III show the ranking indices (Pi) of test cases that

are obtained by using Eq. (11). As we can see in Table III, the

TABLE III: The ranking index of test cases

Test Case ID HVAC-007 Airsupply-036 Drive-S-046 ... Brake-041
Pi 0.30 0.52 0.50 0.58test cases with ID number Brake-041 has the maximum value

(P = 0.58), which means that this test case should be executed
first. As is evident from Table I, fault detection probability
for it is high and the mentioned test case has a higher time
efficiency in comparison with HVAC-007, Airsupply-036 and
Drive-S-046. Based on Table III, we propose the following
order of execution: {Brake-041 → Airsupply-036→Drive-S-
046 → · · · → HVAC-007}. By calculating the ranking index
for every single test case in Table I, we are able to get a set of
best candidates for execution that satisfy first fault detection
probability and time efficiency and then rest of other criteria.

We propose a subset of 48 test cases for execution (48 test
cases of among total 86 test cases) which are are time efficient
test cases and also have a high ability to detect the faults.

A. Industrial Evaluation

To evaluate our approach using an industrial case study,
we have monitored the result of executing 86 test cases at
the initial level of integration testing at BT. In this level, 2
sub-level function groups, which are Drive-Brake Control and
Auxiliary Control, have been tested by 86 test cases. Table IV
presents the results of monitoring the test effort.

TABLE IV: Integration test result at BT

Number of sub-level function groups 2
Executed test cases 86

Total passed test cases 69
Total failed test cases 7

Not set test cases 10
Fault failure Rate λf0 0.081As is shown in Table IV, to detect 7 faults in the initial level

of integration testing at BT, 86 test cases have been executed,
which implies that 69 test cases could not find any fault during
the testing process. Total of 10 test cases have not been set
up for execution, which indicates that there were errors in the
test specifications and these 10 test cases could not even get
started. According to BT’s method for executing test cases,
‘Not set test cases’ (10 mentioned test cases in Table IV) will
be tested in the next level of testing, which is system testing
at BT. Table IV also show the fault failure rate for the testing
effort, as described in Section III-C. The rate is obviously low
since very few test cases failed.

Figure 4 shows the correlation observed for the time
efficiency and fault detection probability for 86 test cases. Not
all 86 test cases are distinctly visible in this figure as some of
them are overlapping. The X-axis (horizontal axis) represents
the probability of detecting fault per test case and the Y-axis
(vertical axis) represents the time efficiency. Since probability
is quantified as a number between 0 and 1 (where 0 indicates
impossibility and 1 indicates certainty), X-axis is built up on
a scale of 0 to 1. As explained earlier, the truth value of the
fuzzy number lies in between 0 and 1, which have been used
to show the scale of Y-axis in Figure 4.

NIS
0 1

PIS

Ti
m

e
E

ffi
ci

en
cy

1

Faults detection probability

Figure 4: Correlation for fault detection probability and time
efficiency

We can see the positive ideal solution (PIS) and also the
negative ideal solution (NIS), along with other test cases. As
explained in Section III, PIS represents a test case (or a set of
test cases) that optimally satisfies the most important criteria. In

Figure 4, ’fault detection probability’ and ’time efficiency’ have
been illustrated as two critical criteria. In this situation, PIS is
a test case (or a set of test cases) having highest probability
of detecting faults and also being highly time efficient. As
Figure 4 shows, some test cases have shorter distance to PIS
and longer distance to NIS in comparison with other test cases
and FTOPSIS identifies such test cases. The red dashed lines in
Figure 4 represent the feasible set 1 of proposed test cases for
execution. In other words, the test cases in the feasible set are
satisfying both time efficiency and fault detection probability
simultaneously. Other test cases which are not located in the
feasible set have still a chance to detect some faults but they
don’t satisfy other criteria. In fact, by adding a new test case
in the proposed set for execution (48 test cases of among
total 86 test cases) we are exiting from the feasible set, which
means that, the newly joined test case (in the proposed set) is
not able to satisfy at least one of the criteria. To evaluate the
performance of our prioritized test cases, we need to measure
the fault failure rate of prioritized test cases at regular intervals
of time and compare it with current execution of test cases
as shown in Table IV. For example, if we take 48 test cases
to execute, using the prioritized set of test cases, we achieve
a fault failure rate of λf1 = 0.146 (where 7 failed test cases
are divided by 48 executed test cases). This is a significant
improvement over the initial fault failure rate of λf0 = 0.081.
It needs to be mentioned that some of the ‘Not set test cases’
(10 mentioned test cases in Table IV) are also in our proposed
set for execution, but because these 10 test cases could not
even get started, we are not able to use them for measuring
fault failure rate. This result signifies that prioritization of test
cases has immediate benefits in detecting faults early and hence
improving software quality. We aspire to continue monitoring
the fault failure rate at more regular time instances to better
quantify the gains from prioritizing test cases.

V. RELATED WORK

Prioritization of test cases in a test suite is about ordering
their execution that increases test effectiveness, typically
through maximizing early fault detection. This means that
certain test cases are more valuable than others and prioritizing
their execution will add value to the testing effort. Much of the
literature on test case prioritization is in the context of regression
testing, see e.g., the review paper by Yoo and Harman [6]
and rely on code coverage based strategies. The motivation
for using code coverage based strategies is that maximizing
structural coverage will improve early maximization of fault
detection. These strategies are of course not applicable for
cases where such coverage information is either not readily
available (e.g., in real-time embedded systems [19]) or is hard to
trace (e.g., for testing at higher levels than unit). Other authors
have used a requirements-based approach [20], [21] where test
cases are prioritized by properties such as customer-assigned
priority and implementation complexity. A criticism of such
approaches is that such properties are subjective [6]. This has
opened opportunities for using fuzzy approaches for prioritizing
test cases since these approaches can better simulate experts’
reasoning (see e.g., [22]–[27]). A fuzzy reasoning approach
is also suited for a complex ranking problem as test case

1is the set of all possible points of an optimization problem that satisfy
the problem’s constraints

prioritization which is impacted by different criteria having
uncertain, subjective and imprecise data. In this paper, we
have used a fuzzy-based multi-criteria decision-making method
known as FTOPSIS. Fuzzy-based TOPSIS has previously been
used in other domains (see e.g., [28]); in this paper we seek to
evaluate its applicability in the context of test case prioritization.

VI. CONCLUSION AND FUTURE WORK

Considering that the execution time for running various
test cases are different, and also that each test case can have
a different fault detection rate, it makes more sense to select
the test cases for execution which have higher probability to
detect faults and at the same time take shorter execution time.
By prioritizing test cases based on such an order, it becomes
possible to detect the faults in a system earlier. It should be
noted that by prioritizing the test cases we are not able to
detect more faults, yet the hidden faults in the system under
test will be detected earlier. Using this method can be useful, for
instance, in exploratory testing when time is severely limited to
select and execute some random test cases to detect the hidden
faults. In this paper, we introduced an approach based on the
combination of fuzzy logic and TOPSIS multi-criteria decision
making technique towards identifying a set of test cases that
can detect faults with higher detection probability while at the
same time result in a shorter overall execution time; hence
earlier fault detection. We did this particularly by considering
fault detection probability and time efficiency properties of
each test case as two important criteria that are used in the
decision making process. Through an example, we showed how
the approach can be applied in practice. To enable the efficiency
evaluation of the identified set of test cases, we used the concept
of fault failure rate as an indicator to compare the fault detection
capability of different sets of test cases. As a future work, we
plan to perform more industrial case studies in order to evaluate
more precisely how the identified set of test cases based on
our approach and considering the estimated fault detection
probability of test cases compares in practice against the test
cases that have failed after executing the complete test suite.
In other words, we are interested to perform more evaluations
to see how our prediction in terms of suggesting a set of test
cases matches the result of test suite after execution. From
this perspective, one factor that can affect the outcome of our
proposed approach is the estimation accuracy of fault detection
probably and execution time of test cases which are provided
by testers in a subjective manner, and thus are prone to human
judgment errors. Investigation of methods and techniques that
help in providing more accurate estimation of fault detection
probability of test cases would be another interesting direction
of this work. One observation that we had as part of this work
was that the test cases that had higher fault detection probability,
also targeted and covered more requirements as well. It would
be interesting to investigate whether such correlation can also
be observed in other systems and domains, and how existence
of such correlation can help with better design of test cases
to achieve a higher fault detection rate in a more efficient
way. Another advantage of our proposed method is that the
decision making part can be performed in an automatic and
systematic way. However, the part that requires manual work
and intervention is when values for various test criteria are to be
specified. This can also be a limiting factor with respect to the
scalability of our approach when the number of test cases for

which various criteria values need to specified grows more and
more. Identification of techniques and methods for more precise
estimation of criteria values might help with the scalability
issue but deserves a more thorough study and investigation in
a separate work.

ACKNOWLEDGEMENTS

This work was supported by VINNOVA grant 2014-03397
through the IMPRINT project and the Swedish Knowledge
Foundation (KKS) grant 20130085 through the TOCSYC
project, and the ITS-EASY industrial research school.

REFERENCES

[1] B. Boehm, “Value-based software engineering,” SIGSOFT Software
Engineering Notes, vol. 28, no. 2, 2003, pp. 4–.

[2] C.-L. Hwang and K. Yoon, “Methods for multiple attribute decision
making,” in Multiple attribute decision making. Springer, 1981, pp.
58–191.

[3] C.-T. Chen, “Extensions of the {TOPSIS} for group decision-making
under fuzzy environment,” Fuzzy Sets and Systems, vol. 114, no. 1,
2000, pp. 1 – 9.

[4] M. Velasquez and P. T. Hester, “An analysis of multi-criteria decision
making methods,” International Journal of Operations Research, vol. 10,
no. 2, 2013, pp. 56–66.

[5] P. Bourque and R. E. Fairley, Eds., SWEBOK: Guide to the
Software Engineering Body of Knowledge, version 3.0 ed. Los
Alamitos, CA: IEEE Computer Society, 2014. [Online]. Available:
http://www.swebok.org/

[6] S. Yoo and M. Harman, “Regression testing minimization, selection and
prioritization: A survey,” Software Testing, Verification and Reliability,
vol. 22, no. 2, 2012, pp. 67–120.

[7] G. Rothermel, R. H. Untch, and M. J. Harrold, “Prioritizing test cases
for regression testing,” IEEE Transactions on Software Engineering,
vol. 27, no. 10, 2001, pp. 929–948.

[8] M. Amir-Aref, N. Javadian, and M. Kazemi, “A new fuzzy positive and
negative ideal solution for fuzzy TOPSIS,” WSEAS Transactions on
Circuits and Systems, vol. 11, 2012, pp. 92 – 103.

[9] J. Yang and J. Watada, “Fuzzy clustering analysis of data mining:
Application to an accident mining system,” International Journal of
Innovative Computing, Information and Control, vol. 8, no. 8, 2012, pp.
5715–5724.

[10] B. D. Baets and E. Kerre, “Fuzzy relational compositions,” Fuzzy Sets
and Systems, vol. 60, no. 1, 1993, pp. 109 – 120.

[11] B. Michał and J. Balasubramaniam, Fuzzy implications. Springer-Verlag
Berlin Heidelberg, 2008.

[12] L. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, no. 3, 1965,
pp. 338 – 353.

[13] P. Ejegwa, S. Akowe, P. Otene, and J. Ikyule, “An overview on intu-
itionistic fuzzy sets,” International Journal of Scientific and Technology
Research, vol. 3, no. 3, 2014, pp. 142 – 145.

[14] K. T. Atanassov, “Intuitionistic fuzzy sets,” Fuzzy Sets and Systems,
vol. 20, no. 1, 1986, pp. 87 – 96.

[15] C. Yu and Y. Luo, “A fuzzy optimization method for multi-criteria
decision-making problem based on the inclusion degrees of intuitionistic
fuzzy sets,” in Advanced intelligent computing theories and applications.
With aspects of artificial intelligence, ser. Lecture Notes in Computer
Science, D.-S. Huang, I. Wunsch, DonaldC., D. Levine, and K.-H. Jo,
Eds. Springer Berlin Heidelberg, 2008, vol. 5227, pp. 332–339.

[16] J. A. Goguen, “The logic of inexact concepts,” Synthese, vol. 19, no. 3,
1969, pp. 325–373.

[17] J. Fan, W. Xie, and J. Pei, “Subsethood measure: new definitions,” Fuzzy
Sets and Systems, vol. 106, no. 2, 1999, pp. 201 – 209.

[18] Debroy.V and W. W. Eric, “On the estimation of adequate test set size
using fault failure rates,” The Journal of Systems and Software, 2011,
p. 587–602.

[19] G. Wikstrand, R. Feldt, J. Gorantla, W. Zhe, and C. White, “Dynamic
regression test selection based on a file cache: An industrial evaluation,”
in Proceedings of the 2009 International Conference on Software Testing,
Verification and Validation (ICST’09), 2009.

[20] H. Srikanth, L. Williams, and J. Osborne, “System test case prioritization
of new and regression test cases,” in Proceedings of the 2005 International
Symposium on Empirical Software Engineering (ESE’05), 2005.

[21] R. Krishnamoorthi and S. S. A. Mary, “Factor oriented requirement
coverage based system test case prioritization of new and regression
test cases,” Information and Software Technology, vol. 51, no. 4, 2009,
pp. 799 – 808.

[22] S. Tahvili, M. Saadatmand, and M. Bohlin, “Multi-criteria test case
prioritization using fuzzy analytic hierarchy process,” in Proceedings of
the 10th International Conference on Software Engineering Advances
(ICSEA’15), 2015.

[23] A. M. Alakeel, “Using fuzzy logic in test case prioritization for regression
testing programs with assertions,” The Scientific World Journal, vol.
2014, 2014, pp. 1–9.

[24] C. Malz, N. Jazdi, and P. Gohner, “Prioritization of test cases using
software agents and fuzzy logic,” in Proceedings of the 2012 IEEE 5th
International Conference on Software Testing, Verification and Validation
(ICST’12)„ 2012.

[25] Z. Xu, K. Gao, T. M. Khoshgoftaar, and N. Seliya, “System regression
test planning with a fuzzy expert system,” Information Sciences, vol.
259, 2014, pp. 532–543.

[26] C. Hettiarachchi, H. Do, and B. Choi, “Risk-based test case prioritization
using a fuzzy expert system,” Information and Software Technology,
vol. 69, 2016, pp. 1–15.

[27] A. Schwartz and H. Do, “A fuzzy expert system for cost-effective
regression testing strategies,” in Proceedings of the 2013 29th IEEE
International Conference on Software Maintenance (ICSM’13), 2013.

[28] Y. Kim, E.-S. Chung, S.-M. Jun, and S. U. Kim, “Prioritizing the best
sites for treated wastewater instream use in an urban watershed using
fuzzy TOPSIS,” Resources, Conservation and Recycling, vol. 73, 2013,
pp. 23 – 32.

