FASTCHART - Idea and Implementation

Lennart Lindh!
University of Eskilstuna/Vasteras

Abstract

In this article there is a description of a new hardware
structure for small real-time systems which is time de-
terministic in the execution of CPU instructions and
the real-time operating system. It also includes the
studies of practicability and the difficulties in imple-
menting the structure.

1 Introduction

The designers of hard real-time systems want to know
whether the response time for all functions will be
shorter than a specified maximum time. Achieving
this requirement the real-time system will be predic-
table. This article shows how one can get predictable
real-time systems on a microscopic level and an im-
plementation of this principle. In the article we define
a new unit named RTU, Real Time Unit, which works
concurrently with the CPU.

2 Idea

In this section we give only a short overview of FA-
STCHART. For a full description see [9]. Before we
describe the functionality of FASTCHART we explain
the design goals we want to reach with FASTCHART.

2.1

In today’s real-time systems it is normal that one can
not get an absolute execution timing because of the
use of pipeline, cache or DMA. Also the operating sy-
stem is not predictable because the execution time of
the real-time operating system depends on the num-
ber of tasks which are currently active or in delay
status etc.

Wit FASTCHART we want to get a predictable real-
Lime systein, so FASTCHART must be deterministic
i

Design goals

¢ Execution of CPU instructions

o Execution of the real-time operating system

!University of Eskilstuna/Visterds, Institute of Data and
Electronics, P.O.Box 11, 72103 Visterds, Sweden, FAX : 446
21 114922

2University of Erlangen-Nirnberg, Institute of Computer
Science 3 (IMMD 3), Martensstrafie 3, 8520 Erlangen. FAX :
419 9131 393838,
e-mail 1 stani@immd3.informatik.uni-erlangen.de

CH3040-3/91/0000/0401$01.00 © 1991 IEEE

401

Frank Stanischewski?
University of Erlangen-Niirnberg

2.2 Overview

Because of the defined design goals FASTCHART can
not have pipeline, cache, DMA or interrupts. For this
reason the performance of the CPU slows down. So we
transfer important parts of the real-time kernel RTK
into hardware to give the CPU more time to spend in
the working tasks.

Instead of the known ways to implement real-time
systems (e.g. [6], [7], [8]), FASTCHART contains the
whole real-time operating system in hardware. That
means there are no microcoded or ROM-based opera-
ting system instructions like TRON ([5]) or Transpu-
ter or in [7]. Also FASTCHART is designed for general
rea[l—]time applications instead of the system described
n [8].

Therefore FASTCHART has two concurrent running
parts. One is a CPY designed to our purposes and
the other part is the Real Time Unit RTU.

2.3 The Central Processing Unit CPU

The concept of the CPU is similar to the FORTH-
machine described in [2] and [3]. But we have chan-
ged the data-stack into a register file and moved the
return stack into memory. So we have a very simple
CPU where normal instructions need one CPU-cycle
and instructions with an extra memory fetch need two
cycles.

The programming model consists of a Program Coun-
ter PC, a Status Register SR, eight or sixteen gene-
ral purpose registers RO - R7/R15 and an Instruction
Latch IL. The register RO has the function of the re-
turn stack pointer. One can also use every register as
a data stack pointer.

The instruction set of the CPU is similar to a LOAD-
STORE-architecture without indirect addressing mo-
des. The CPU recognizes instructions for ALU and
Shifter operations, Load or Store from or to main
memory, conditional and unconditional branches and
call and return subroutines. Additionally three real-
time functions (see section 2.4) are in the instruction
set. We also have the possibility to combine instruc-
tions as for example :

LOAD R3, (R4)+

This operation loads a data addressed by register R4
from maln memory into register R3 and also incre-
ments the value in R4. So we can obtain a high con-
currency in our CPU that accelerates execution time
to compensate for the lack of pipeline and cache.

To meet our design goals we have to implement two
registerfiles which means all above named registers
and latches exist twice. One registerfile is currently
used by the CPU, the other can be accessed by the
RTU. In figure 1 one can see this by the shadowed
registers.

If a task switch occurs the RTU changes the registerfi-
les and the CPU can immediately run the next task by
accessing the other registerfile. A detailed description
of a task switch is in the following section.

2.4 The Real-Time Unit RTU

The Real-Time Unit RTU can manage 64 tasks with
eight priorities. This is an arbitray choice to get closer
to a realistic implementation. Every task can be in
one of four states (see figure 2).

Terminate

Activate

Terminate

Figure 2: State diagram

From figure 2 one can infer that we have only 3 real-
time function calls for each task. These are:

e Activate Task : activates another task.

e Terminate Task terminates itsell, after-
wards it can only be activated by another task.

e Delay Task : deactivates task for a constant
time.

Because we have made the real-time kernel RTK so
simple we can copy the state diagram directly into
hardware. For each state one can find a block in the
schematic of the RTU. Additionally there is a Con-
trol Unit that controls the overall execution of the
RTU and receives the synchronize instructions from

the CPU.

The shaded part in the RTU schematic stands for the
execution state and the task-switch part of the RTU.
The register named OLD contains the task D of the
current task. The other register NEW contains the
ID of the next task. After a task switch, when the
register-files are exchanged, the values of all registers
of the old task are written back to TCB memory in
the location given by OLD-task-!D multiplied by TCB

402

size. Then the contents of task register NEW are
transferred to register OLD. After that a new task
ID 1s fetched from Ready Queue. Using this new ID
the registers are addressed from this task in TCB me-
mory and transferred to the register-file. The values
in TCB memory contain the register RO to R7/R15.
the status register SR, the program counter PC and
the instruction latch IL for every task.

There are two ways in which the current (OLD) task
can change its state; first by itself, second when a
higher privileged task is in Ready Queue. In the se-
cond case the ID from register OLD is written into
the Ready Queue before the contents of this register
is overwritten with the value of NEW. If the current
task changes its state by itself, the ID is not written
into Ready Queue, but in Wait- or Terminate-Queue.

The scheduler algorithm in the Ready Queue is a sta-
tic priority-driven algorithm and it is implemented
with 8 FIFO's, one for each priority level with a depth
of 8. If a task changes to ready state, the priority
of this task is used to select the correct priority-FIFO
and the ID is put into this FIFO. To get the task with
the highest priority one has only to look for the hig-
hest privileged non empty FIFO.

When the current task wants to be delayed for a num-
ber of time ticks, the CPU gives the delay time to the
RTU and then a task switch is initiated. A down-
counter in the Wait Queue is loaded with the Delay
Time. The counter counts with the system time tick.
If the value in the counter reaches zero, the ID connec-
ted to the counter is loaded in the Ready Queue.

If a task terminates, its ID is written in the Terminate
block and the task can only be activated by another
task.

3 Implementation

This section describes how we implemented our first
prototype and what kind of problems we had with it.

3.1

We built up a first prototype to show that the idea of
FASTCHART will really work. The prototype is rea-
lised in a manner called “Rapid Prototyping™. Ra-
pid prototyping allowed us to develop the first FAST-
CHART in eight weeks. But we had to make some
compromises for the implementation.

The prototype “FASTCHART ONE™ is described in
VHDL, a logic synthesis language, compiled and si-
mulated with ViewLogic and then it is built up from
small gate arrays (FPGAs from the company AC-
TEL). Because of the limited complexity we had to
shrink the features of FASTCHART ONE. So we have
only two priorities and eight tasks. And the CPU can
only perform instructions like No-Op, Jump, and the
real-time functions.

First prototype

The building consists of six FPGAs and has a com-
plexity of 10,000 gates. The RTU needs about thirty
state-machines and has a clock ten times faster than
the CPU. The CPU has an 8 bit data bus and an & bit
address bus.

Internal databus
intemal adressbus

Registertlle

Addressbus

SHIFTER

+1

Databus

SET/RESET FLAG
-SWITCH FLAG
b
|{
E
c

SWITCH

DELaY, TEAM, ACT

ADD/SUB

Figure 1: The CPU schematic

INIT_TASK TASK.1

begin DELAY (16 CLOCKS);
ACTIVATE (TASK_1,PR.0); IMP begin;
STARTADDRESS (20H),;
ACTIVATE (TASK.2,PR.1); TASK.2
STARTADDRESS (40H); begin - DELAY (16 CLOCKS);
ACTIVATE (TASK.3,PR_0); JMP begin;
STARTADDRESS (60H);
TERMINATE; TASK_3 :

begin DELAY (16 CLOCKS);

JMP begin;

Figure 4: Prototype program

To show that FASTCHART operates we test FAST-
CHART ONE with a small program (see figure 4).
In this program there are four tasks. The first task
(INIT_TASK) initialises and starts the other tasks
with different priorities and theun it terminates. The
other tasks (TASK_1, TASK_2, TASK_.3) are periodic,
run in a loop and have a delay of 16 CPU clock cycles
i the loop.

3.2 Difficulties

In the structure of FASTCHART we assume that it is
possible to transfer the contents of one registerfile in

403

TCB-memory and back in one CPU cycle. For a real
implementation this transfer is difficult to achieve.
First one has the possibility to run the RTU faster
than the CPU. That means that one transfers one
register after the other into the TCB memory and
vice versa. But then one needs very many RTU cycles.
The other way is to widen the data path to the TCB
memory so that one does not need so many cycles for
the transfer. Which way one chooses is a question
of the implementation and what speed one wants to
achieve.

A second problem is the dependence of the TCB me-
mory size on the number of tasks one would currently
run. For each task one needs about 50 bytes in the
memory. So if the number of tasks were to increase,
the TCB memory would have to be enlarged, making
it impossible to implement on the same chip.

3.3 Design discussion

When we implemented FASTCHART we saw that
there was the possibility of problems when running a
real application on it, because FASTCHART doesn’t
know a minimum execution time for a task. So it
might be that some tasks with low priorities never

READY QUEUE D
PRIORITY
CONTROL
NEW TIME TICK
UNIT WAIT o PRIORITY
DELAY TIME |
ID | TIMER [PRIORITY .
oLD
TERMINATE » PRIGRITY
ACTIVATE
TERMINATE © @ .
TCB SIZE []
SWITCH
NOT SWITCH FLAG
REGISTER
TCB MEMORY FILE 1/0
FILE 071
— ~r —
CPU

Figure 3: The RTU schematic

execute their job. We also have no maximum tire
so tasks with high priorities must terminate on their
own otherwise no other task can change into execute
state.

4 Conclusions

Today it is possible to design a predictable CPU for
real-time systems. We have also shown that it is pos-
sible to implement a real-time kernel in hardware wor-
king concurrent to the CPU. But to get a 100 percent
predictable system one has to make a number of con-
cessions e.g. decrease of performance of the CPU or
complex implementation.

References

[1] John A. Stankovic and Keirti Ramanmritham,
Hard Real-Time Systems, pages 361-370, Com-
puter Society Press of the IEEE, 1988

(2] C.H. Ting, Footsteps in an empty valley, Offete
Enterprises, 1986

(3] RTX2000, Data Sheet, Harris Corporation, 1988
[4] The Transputer Databook, INMOS, 10383
[5] Ken Sakamura (ed.), TRON Project 1989, Spriu-

ger, 1989, ISBN 0-387-70050-1

404

[6] Joachim Roos, The Design of a Real-Time Copro-
cessor for ADA Tasking. pages 17.0-17.12, NOR-
SILC/NORCHIP Seminar 1989, Stockholm, Swe-
den

John Tinnon, Real-Time Operating System Puts
Its Execution on Silicon, pages 137-140, Electro-
nics, April 21, 1982

T Juntunen, J. Kiveld, A. Reinikka, M. Sipola,
J.-P. Soininen, K. Tiensyrja, T. Tikkanen, Real-
Time Structured Analysis in System Level Design
of Embedded ASICs, pages 449-454, Microproces-
sing and Microprogramming (24), 1988

.. Lindh, F. Stanischewski, FASTCHART - A
FFast Deterministic CPU and Hardware Based
Real-Time-Kernel, accepted for EUROMICRO
91 Workshop on Real-Time Systems, 1991

<

